

Supplementary Information for

Therapeutic Inhibition of USP9x-Mediated Notch signaling in Triple-Negative Breast Cancer

Arushi Jaiswal^{1,2}, Kiichi Murakami², Andrew Elia², Yukiko Shibahara^{3,4}, Susan J. Done^{3,4}, Stephen A. Wood⁵, Nicholas Donato⁶, Pamela S. Ohashi^{1,2,7} and Michael Reedijk^{1,2,8,*}

¹ Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. ² Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.

³ Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

⁴ Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.

⁵ Griffith Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia.

⁶ Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan, School of Medicine and Comprehensive Cancer Center, Ann Arbor, MI 48109, USA.*

*Current address: Center for Scientific Review, National Institutes of Health, Bethesda, MD 20892, USA.

⁷ Department of Immunology, University of Toronto, Toronto, Ontario, Canada.

⁸ Department of Surgical Oncology, University Health Network, Toronto, Ontario, Canada.

*Corresponding author: Michael Reedijk; Email: michael.reedijk@uhn.ca

This PDF file includes:

Figures S1 to S7 Tables S1 to S2

Suppl Fig 1. USP9x knockdown does not affect the expression of Ets-1 or ltch in KBP cells. Immunoblot of USP9x, N1^{IC}, Ets-1 and Itch in KBP cells transfected with either siscr or USP9x siRNA and treated with either DMSO or 1 μ M Tg. β -actin is included as a loading control. *Mw* markers are shown in kilodaltons.

Suppl Fig 2. Ectopic N1^{IC} expression rescues the effect of USP9x knockdown on the expression of Notch target genes. qPCR analysis of *Usp9x* and Notch target genes (*II1b* and *Plau*) in uninfected or retrovirus infected (expressing N1^{IC}) KBP shUSP9x and treated with either DMSO or 1 μ M Tg in the absence or presence of doxycycline. Expression levels were normalized to GAPDH. Experiments were performed in triplicate; error bars represent SEM. The asterisks (*) denotes *P* < 0.05 relative to the respective control. *P* values are determined by one-way ANOVA and corrected for multiple comparisons using Tukey's test.

Suppl Fig 3. Doxycycline treatment has no effect on KBP allograft growth. (a) Weight of KBP allografts fed a regular or doxycycline-containing diet (n = 4 per group). (b and c) Quantification (by flow cytometry) of TAMs (Gr-1⁻ F4/80⁺ CD11b⁺) (b) and CD8⁺ T (c) infiltrates in KBP tumors expressed as % of CD45⁺ cells. Error bars represent SEM. NS, non-significant. *P*-value is determined by the two-tailed Student's *t*test.

Untreated KBP shUSP9x tumorgrafts

Dox-treated KBP shUSP9x tumorgrafts

Suppl Fig 4. Co-localization of hypoxia and Notch activation is USP9x-dependent.

(a) Representative quantified IHC images of the hypoxia marker pimonidazole (Pimo) and N1^{IC} in serial sections of KBP allografts. The color bar indicates the expression level of Pimo and N1^{IC}. Scale bars: 1mm. (b-d) Percentage of N1^{IC+} cells in Pimo^{Io} (< 20% pimo⁺ cells) *vs* Pimo^{hi} (> 20% cells Pimo⁺) regions of KBP (b), untreated KBP shUSP9x (c) and doxycycline-treated KBP shUSP9x (d) allografts (14-18 x 20,000 μ m² regions were surveyed in n = 4 tumors per group). Error bars represent SEM. * = P < 0.05. *P* indicates the significance value determined by the two-tailed Student's *t*-test with Welch's correction for unequal variances.

Suppl Fig 5. G9 inhibits stress-induced Notch activation in murine KBP cells. Immunoblot of HA and Flag after anti-Flag immunoprecipitations from HEK293T cells transfected with plasmids expressing HA-Ub and either TRB3-Flag (a) or MIB1-Flag (b) and treated with either vehicle or varying concentrations of G9 in the presence of proteasome inhibitor, MG132. * marks the predicted size of monoubiquitinated TRB3-Flag-HA-Ub (a), or MIB1-Flag-HA-Ub (b). (c) Immunoblot of MIB1, TRB3, and N1^{IC} in KBP cells treated with either vehicle or 1µM G9 and treated with either DMSO or 1µM Tg. Expression of ERK1/2 is included as a loading control. Expression of MIB1, TRB3 and N1^{IC} are determined by densitometry and quantified relative to ERK1/2. *Mw* markers are shown in kilodaltons.

Suppl Fig 6. The effect of G9 on the gastrointestinal epithelium. (a) Schematic diagram of the experimental design. (b) Bodyweight of animals treated with DMSO or G9 (n = 5 mice per group). (c) Representative images of H&E-stained sections of murine intestinal villi. (d) Left panel: representative images of AB-PAS-stained sections of murine intestinal villi. Right panel: quantification of intestinal goblet cells (i.e secretory cells) from AB-PAS-stained sections (n = 6 mice). Arrows in (c) and (d) indicate goblet cells. Error bars represent SEM. Scale bars: 100 μ m. *P* values are determined by the two-tailed Student's *t*-test.

Suppl Fig 7. G9 suppresses Notch-dependent KBP tumor growth. (a) Immunoblot of N1^{IC} in lysates of spontaneous KBP tumors treated with DMSO or G9. The expression of ERK1/2 is included as a loading control. *Mw* markers are shown in kilodaltons. **(b)** Expression of N1^{IC} determined by densitometry relative to ERK1/2. The arrow indicates N1^{IC} expression in G9-treated tumor #3. **(c)** Correlation analysis of specific growth rate (SGR; calculated using the formula $\ln(V_2/V_1)/\Delta t$, where V₁ and V₂ are the measured tumor volumes at the beginning and end of treatment respectively, and Δt is the treatment duration) with tumoral N1^{IC} levels. Each data point is labelled with the sample ID (treatment type followed by sample number). R indicates the degree of correlation and P indicates the significance value determined through the Pearson correlation test. **(d)** SGR of KBP tumors treated with DMSO or G9 (DMSO, n = 6 tumors; G9, n = 5 tumors). Error bars represent SEM. * = P < 0.05. *P* values are determined by the two-tailed Student's *t*-test for (b) and (d).

Suppl Table 1. Sequences and Primers

siRNA	Sequence	
siscr	UGGUUUACAUGUCGACUAA	
	UGGUUUACAUGUUGUGUGA	
	UGGUUUACAUGUUUUCUGA	
	UGGUUUACAUGUUUUCCUA	
siTRB3	GCAGAUACCCAUUCCACGA	
	GAGAGAGGAUCACGGCCGA	
	CUGGAAGAUGCCUGCGUGA	
	AGGUGGGGCUGUACGGCUA	
siUSP9x	CAAAGGAGAUUUACUAGAA	
	AGAAAUCGCUGGUAUAAAU	
	ACACGAUGCUUUAGAAUUU	
	GUACGACGAUGUAUUCUCA	
shRNA	Sense	Anti-sense
shUSP9x (5'-3')	GATGAGGAACCTGCATTTC	GAAATGCAGGTTCCTCATC
qRT-PCR	Forward Primer	Reverse Primer
Mouse Usp9x	AAGGAGCTACTGGCTTTTCAGA	GATGCGGGAAAGATGAAGTC
Mouse <i>Plau</i>	GACAGCCTGGCCTACCATAA	AGTCTGAACCAAACGGAGCA
Mouse <i>II1b</i>	CTCTTGTTGATGTGCTGCTG	GACCTGTTCTTTGAAGTTGACG

Suppl Table 2. Antibodies

Immunoblot and IHC	Source	Catalog no.
USP9x	Bethyl Laboratories	A301-351A
TRB3	Santa Cruz Biotechnology	sc-365842
MIB1	Abcam	ab245766
JAG1	CST	2620
Cleaved Notch1 [Val1744]	CST	4147
Notch1 (to detect ectopic N1 ^{IC})	Santa Cruz Biotechnology	sc-6014
p44/42 MAPK (ERK1/2)	CST	9102
НА	Santa Cruz Biotechnology	sc-805
Flag	Santa Cruz Biotechnology	sc-807
β-actin	Santa Cruz Biotechnology	sc-1615
Ets-1	CST	14069
AIP4 / Itch	Santa Cruz Biotechnology	sc-11890
CCL2/MCP-1	Santa Cruz Biotechnology	sc-1785
IL-1β	CST	12242
anti-Mouse IgG, HRP-linked	CST	7076
anti-Rabbit IgG, HRP-linked	CST	7074
anti-goat IgG, HRP-linked	Santa Cruz Biotechnology	sc-2020
Pimonidazole	Hypoxyprobe	PAb2627
SMA	Abcam	ab5964
ELISA	Source	Catalog no.
CCL2	R&D	DY479-05
<u>ΙL-1β</u>	R&D	DY401-05
Flow cytometry	Source	Catalog no.
CD45	eBioscience	63-0451-82
CD3	Biolegend	100234
F4/80	eBioscience	17-4801-82
CD11b	BD biosciences	553310
CD206	Biolegend	141719
CD8	eBioscience	45-0081-82
GrmB	Invitrogen	48-8898-82
FOXP3	eBioscience	12-5773-80
GF-1 Viability		40-5931-80 65 0965 14
Viability	eBioscience	65-0865-14