1	Restored macrophage function ameliorates disease pathophysiology in inflammatory
2	bowel disease
3	
4	M Ackermann ^{1,2} , A Mucci ^{1,3} , A McCabe ³ , S Frei ⁴ , K Wright ¹ , SB Snapper ^{4,6} , N Lachmann ² , DA
5	Williams ^{1,3,5,6} , C Brendel ^{1,3,5,6}
6	
7	¹ Pediatric Oncology, Dana-Farber Cancer Center, Boston, MA, USA JRG Translational
8	² Translational Hematology of Congenital Diseases, Institute of Experimental Hematology,
9	Hannover Medical School, Hannover, Germany
10	³ Division of Hematology/Oncology, Boston Children's Hospital, MA, USA
11	⁴ Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston,
12	USA
13	⁵ Harvard Stem Cell Institute, Cambridge, MA, USA
14	⁶ Harvard Medical School, Boston, MA, USA
15	
16	Supplementary Information
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	

1 Supplementary Figures:

3 Supplementary Figure 1: Ex vivo generation of macrophages and in vivo depletion of 4 macrophages with clodronate. Total bone marrow, lineage positive or lineage negative cells 5 were differentiated for 7-10 days in medium containing M-CSF. (A) Brightfield microscopy and 6 H/E stained cytospins of bone marrow derived macrophages (BMDMs) generated in vitro. (B) 7 Flow cytometric analyses of in vitro generated BMDMs. Grey filled: unstained control, Blue 8 line: respective surface marker. (C) Macrophage populations in spleen, liver, peritoneum und 9 lamina propria (LP) were analyzed by flow cytometry 3 and 7 days post i.p. injection of clodronate liposomes in *ll10rb*^{-/-} mice. Non-treated animals served as controls (n=3) 10 11 animals/group, mean±SD).

Supplementary Figure 2: Therapeutic effect of a macrophage-based therapy on colitis
in *II10rb^{-/-}* mice. (A) Representative gating strategy for the analysis of lamina propria
macrophages and granulocytes by flow cytometry. Pre-gating on total CD45⁺ hematopoietic

1 cells was followed by two single-cell gating steps. Myeloid, non-dendritic cell populations were 2 defined as CD11b⁺/CD103⁻ cells. Subsequently, granulocytes and monocyte/macrophages 3 were separated by expression of Ly6G and CD64 as CD45⁺/CD11b⁺/CD103⁻/Ly6G⁺/CD64⁻ 4 granulocytes and CD45⁺/CD11b⁺/CD103⁻/Ly6G⁻/CD64⁺ monocyte/macrophages. Pro- and 5 anti-inflammatory macrophages were identified by analyzing expression of Ly6C and MHCII. 6 (B) Relative expression of IL1 β (left) and IL17 α (right) in total lamina propria (LP) cell extracts 7 analyzed by qRT-PCR (data represent three independent experiments, individual values with 8 mean±SD, n=5-8). (C) Representative flow cytometry plots showing the frequency of 9 Ly6C⁺/MHCII⁺ inflammatory and Ly6C⁻/MHCII⁺ anti-inflammatory LP monocyte/macrophages in IBD animals treated with clodronate liposomes and IBD macrophages as well as untreated 10 11 animals. (D) Quantification of n=3 animals. (individual values with mean±SD, n=3-9). 12 (Significances calculated by one-way ANOVA with Dunnett's multiple comparison test, *p<0.05, **p<0.01, ***p<0.001, ****<0.0001, ns not significant) 13

14

Supplementary Figure 3: Functional consequences of IL10Rb deficiency in peritoneal
macrophages. (A) Brightfield microscopy of WT and *II10rb^{-/-}* IBD macrophages derived from
the peritoneal lavage fluid after stimulation with LPS alone or LPS in combination with IL10.
(B) Legendplex-based cytokine secretion analysis of WT and *II10rb^{-/-}* IBD peritoneal cavity
derived macrophages after 24 hours of stimulation. Values are given as fold change for IL10
and LPS vs. LPS only treated samples (n=3, mean±SD, dashed line represents 1).

Supplementary Figure 4: Cytokine profiling in the BI6 *II10rb*^{-/-} model. Secretion of IL1β,
IL17α, IL27 and GM-CSF by macrophages derived from the peritoneal lavage fluid of different
experimental groups (WT untreated, BI6 *II10rb*^{-/-} IBD untreated, IBD+BMDMs and
IBD+Clodro/BMDMs) after LPS stimulation (Data represent one experiment, individual values
with mean±SD, n=4-5 per group, cells isolated 6 days post transplantation). Significances are
calculated by one-way ANOVA with Dunnett's multiple comparison test, *p<0.05, **p<0.01,
p<0.001, *<0.0001, ns not significant.

1 Supplementary Methods:

2

Mice: II10rb^{-/-} (II10rb^{tm1Agt}) (RRID: MGI:3603437) 129SvEv mice, B6.129S2-II10rb^{tm1Agt}/J and 3 4 their matched controls were housed in a specific pathogen-free animal facility at Boston 5 Children's Hospital. Mice had access to food and water ad libitum. Both male and female mice 6 were used throughout this study. The animals were 3-5 month of age at the beginning of 7 treatment. All experimental groups were randomly allocated to co-housed littermates. All 8 experiments were conducted following approval from the Animal Resources at Children's 9 Hospital following the guidelines of the Institutional Animal Care and Use Committees (IACUC 10 protocols 17-05-3410R and 17-01-3364R).

11

12 Isolation of BM& lineage depletion: Iliac crest, femur and tibias were isolated from euthanized 13 animals and bone marrow isolated by flushing the bones with a syringe or crushing the bones 14 with mortar and pestle. Isolated total bone marrow cells were either used directly for 15 differentiation or subjected to lineage depletion using a MACS-based sorting strategy by using 16 a lineage cell depletion kit (Miltenyi Biotec, Bergisch Gladbach, Germany) following the 17 manufacturer's instructions and subsequently differentiated to macrophages.

18

19 Generation and preparation of lentiviral vectors

The 3rd generation lentiviral vector PGK-*mIL10rb* (pCCL-hPGK-*coIL10rb*-T2A-mVenus-wPRE) was generated by replacing GFP in the pCCL-PGK-GFP-WPRE with a codon optimized (GeneArt, Invitrogen, Carlsbad, USA) variant of the murine *II10rb* cDNA-T2A-mVenus fragment via BamH1 – Sal1 restriction cut sites.¹ Vector production was performed by transient transfection of HEK293T cells following standard procedures.²

25

26 <u>Transduction of lineage negative cells</u>

Lineage negative bone marrow cells were prestimulated at 0.5-1*10^6 cells/ml for 24h in
CellGro SCGM media supplemented with mSCF, hTPO and hFLT-3L (each 100ng/ml,

Peprotech, Rocky Hill, NJ, USA). Viral supernatants, titered previously under identical
 conditions on lineage negative cells, were added at a multiplicity of infection (MOI) of 1-2
 overnight.

4

5 <u>STAT3 phosphorylation:</u>

Cells were stimulated for 20min with 50ng/ml IL10, then fixed for 10min at 37C (BD Cytofix
#554655). After washing the cells were permeabilized using ice cold Methanol buffer (BD
PermBuffer III #558050) and stained for 45min with anti P-STAT3 antibody (pY705,
BD #612569).

10

11 <u>Hematopoietic stem cell transplantation</u>

12 *II10rb-/-* 129SvEv mice were irradiated using a 7Gy+4.5Gy split dose gamma irradiation 13 spaced 24h apart. Transduced lineage negative cells were washed twice in PBS and 14 administered via retroorbital injection. Mice received Baytril[™] supplemented drinking water 15 (1.9ml/250ml) for two weeks post irradiation.

16

Macrophage Differentiation: Total bone marrow, lineage negative or lineage positive cells were differentiated into macrophages by 7-9 days of cultivation in DMEM medium supplemented with 10% FCS, 1 mM penicillin/streptomycin, and 30% macrophage colony-stimulating factor (M-CSF) conditioned supernatant produced by L929 cells as described previously.³ Cells were cultured on non-tissue culture treated plate and non-adherent cells were removed by media change after 3-4 days.

23

<u>Treatment with Clodronate Liposomes:</u> Clodronate liposomes were purchased from Liposoma
 (Amsterdam, The Netherlands) and 100-200ul (approx. 50 mg/kg body weight) were injected
 intraperitoneally (i.p.) to the animals under isoflurane anesthesia.

<u>Transplantation of BMDMs:</u> Bone marrow derived macrophages (BMDMs) were resuspended
 in PBS and 4-12x10⁶ cells in 200ul volume were injected i.p. to the animals under isoflurane
 anesthesia.

4

5 Isolation of lamina propria cells:

Lamina propria immune cells were prepared as we reported recently.⁴ Briefly, colons were cut
in pieces and stripped of epithelial cells by performing agitation in 10 mM EDTA containing
buffer for 40 min at 37°C. Subsequently, tissues were further minced with a scalpel and
digested using collagenase VIII (Sigma-Aldrich, St. Louis, MI, USA) for 30–45 min at 37°C.
Single cell suspensions were filtered and stained for flow cytometry.

11

<u>Cytospins:</u> Cytospins were generated utilizing a Shandon cytocentrifuge (Thermo Scientific,
 Waltham, MA, USA). Slides were stained for 5 min in May-Grünwald stain and 10 min in 5%
 of Giemsa Azur-Eosin-Methyleneblue solution and washed extensively in aqua dest.

15

<u>Histology and scoring</u>: Colon sections were fixed in 4% PFA overnight. Paraffin embedding
and H/E staining were performed at the Beth-Israel Diaconess Medical Center Histology Core
following standard procedures. Blinded scoring was performed following adapted guidelines
from Erben et. al..⁵ In brief parameters for colitis were: Inflammatory infiltrates (severity 0-4
and extent 0-3), Hyperplasia (0-4), Goblet cell loss (0-4) and Erosion (0-4), (1: minimal; 2: mild;
3: moderate; 4: severe.

22

<u>Flow cytometry:</u> PBS supplemented with 2 mM EDTA and 5% FCS (FACS buffer) was used
during the staining process. Fc blocking reagent was used to prevent unspecific binding. Cells
were rinsed with FACS buffer, analyzed on a LSRII machine (BD, Franklin Lakes, NJ, USA)
and raw data were analyzed using FlowJo software (TreeStar, Ashland, OR, USA). Used
antibodies:

Antigen	Fluorochrome	Catalog number	Provider
CD45	PE -Cy7	103113	Biolegend
CD103	APC-Cy7	121431	Biolegend
CD11b	BV510	101245	Biolegend
CD11b	PE	101207	Biolegend
Ly6G	AlexaFluor700	127622	Biolegend
CD64	PerCp-Cy5.5	139308	Biolegend
Ly6C	eFluor 450	48-5932-82	Invitrogen
MHCII	PE	107607	Biolegend
B220	Pacific Blue	558108	BD Pharmingen
B220	AlexaFluor 488	103228	Biolegend
CD3	APC	17-0032-80	Invitrogen
TCRb	eFluor 450	109207	Biolegend
Gr1	PE	108407	Biolegend
Gr1	APC-Cy7	552985	BD Biosciences
CD45	FITC	103107	Biolegend
CD45.1	PE-Cy7	4334853	Invitrogen

RNA Isolation and qRT-PCR: Total RNA was extracted from whole colonic tissue using
TRIzol® Reagent (Ambion® by life technologies, Carlsbad, CA, USA) according to
manufacturer's instructions. Complementary DNA (cDNA) was generated from 1-2 µg RNA
using iScriptTM Select cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA, USA).
Transcipt analysis was performed using SsoAdvanced[™] Universal SYBR® Green Supermixes
on a CFX96 Real-Time System (Bio-Rad). The following primers were used: *II17a-2*F 5' GGC
CCT CAG ACT ACC TCA AC 3', *II17a-2*R 5' TCT CGA CCC TGA AAG TGA AGG 3';

1 II1b-F 5' GCA ACT GTT CCT GAA CTC AAC 3', II1b-R 5' ATC TTT TGG GGT CCG TCA ACT 2 3'; Hprt-F 5' GTT GGA TAC AGG CCA GAC TTT GTT G 3', Hprt-R 5' GAG GGT AGG CTG 3 GCC TAT AGG CT 3'. Gene expression was normalized against hypoxanthine-guanine 4 phosphoribosyl transferase (*Hprt*). Relative expression was quantified using the $2^{-\Delta Ct}$ method. 5 PCR: The II10rb and Gtcd1 genes were amplified from gDNA using Promega GoTaq 6 Polymerase (Cat# M3005) using the following conditions: 95C 2:00min, (95C 30s, 60C 30s, 7 70C 60s) x35, 72C 5min. Primer sequences: II10rb-F 5' GGAGACAAGACTTTGGAGGGG 3', 3'. 8 II10rb-R 5' CACCTGGCACCAGAAGGAAG Gtcd1-F 5' GAAGTTCAGGTTAATTAGCTGCTG 3', Gtcd1-R 5' GGCACCTTAACATTTGGTTCTG 3'. 9 10 Legendplex: For analysis of cytokine secretion macrophages were starved in X-VIVO 15 11 12 medium (Lonza, Basel, Switzerland) over night and stimulated with 50ng/ml LPS (sigma) and 13 100ng/ml IL10 (Peprotec, Hamburg, Germany) for 24 hours. Supernatants were analyzed 14 using the Legendplex Mouse Inflammation Panel (13-Plex, Biolegend, San Diego, CA, USA) 15 following the manufacturer's instructions.

16

17 <u>Statistics:</u>

GraphPad Prism 7 or 8 Software (San Diego, CA, USAI were applied to perform analysis of
variance (ANOVA). Asterisks indicated: * P< .05; ** P< .01; ***P< .001

- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28

1 Supplementary References:

2	1	Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D. & Naldini, L. A
3		third-generation lentivirus vector with a conditional packaging system. J Virol 72,
4		8463-8471 (1998).
5	2	Brendel, C., Goebel, B., Daniela, A., Brugman, M., Kneissl, S., Schwable, J., Kaufmann,
6		K. B., Muller-Kuller, U., Kunkel, H., Chen-Wichmann, L., Abel, T., Serve, H., Bystrykh,
7		L., Buchholz, C. J. & Grez, M. CD133-targeted gene transfer into long-term
8		repopulating hematopoietic stem cells. <i>Mol Ther</i> 23 , 63-70, doi:10.1038/mt.2014.173
9		S1525-0016(16)30011-9 [pii] (2015).
10	3	Mucci, A., Kunkiel, J., Suzuki, T., Brennig, S., Glage, S., Kuhnel, M. P., Ackermann, M.,
11		Happle, C., Kuhn, A., Schambach, A., Trapnell, B. C., Hansen, G., Moritz, T. &
12		Lachmann, N. Murine iPSC-Derived Macrophages as a Tool for Disease Modeling of
13		Hereditary Pulmonary Alveolar Proteinosis due to Csf2rb Deficiency. Stem cell reports
14		7 , 292-305, doi:10.1016/j.stemcr.2016.06.011 (2016).
15	4	Shouval, D. S., Biswas, A., Goettel, J. A., McCann, K., Conaway, E., Redhu, N. S.,
16		Mascanfroni, I. D., Al Adham, Z., Lavoie, S., Ibourk, M., Nguyen, D. D., Samsom, J. N.,
17		Escher, J. C., Somech, R., Weiss, B., Beier, R., Conklin, L. S., Ebens, C. L., Santos, F. G.,
18		Ferreira, A. R., Sherlock, M., Bhan, A. K., Muller, W., Mora, J. R., Quintana, F. J., Klein,
19		C., Muise, A. M., Horwitz, B. H. & Snapper, S. B. Interleukin-10 receptor signaling in
20		innate immune cells regulates mucosal immune tolerance and anti-inflammatory
21		macrophage function. <i>Immunity</i> 40 , 706-719, doi:10.1016/j.immuni.2014.03.011
22		(2014).
23	5	Erben, U., Loddenkemper, C., Doerfel, K., Spieckermann, S., Haller, D., Heimesaat, M.
24		M., Zeitz, M., Siegmund, B. & Kühl, A. A. A guide to histomorphological evaluation of
25		intestinal inflammation in mouse models. Int J Clin Exp Pathol 7, 4557-4576 (2014).