
SUPPLEMENTARY MATERIAL 

 

METHODS 

 

Cognitive decline over time 

To analyze cognitive decline over time, the modified practice adjusted reliable change index 

(RCI) was applied to correct for learning effects, as described previously.1, 2 The following 

equation was used: ((𝑋𝑖2 − 𝑋𝑖1) − (𝑆𝐸𝑀𝐻𝐶2 − 𝑆𝐸𝑀𝐻𝐶1))/𝑆𝑑𝑖𝑓𝑓𝐻𝐶, which represents the 

difference between the corrected participant scores on both two time-points (𝑋𝑖2-𝑋𝑖1), the 

difference between healthy controls’ (HCs) standard error on both time-points (𝑆𝐸𝑀𝐻𝐶2-

𝑆𝐸𝑀𝐻𝐶1), and the HCs’ standard error of the difference between both time-points (𝑆𝑑𝑖𝑓𝑓𝐻𝐶).1, 2 

The RCIs were divided by the participants’ time interval and the test-specific yearly RCIs 

were averaged across tests into a ‘yearly rate of cognitive decline’ representing longitudinal 

cognition.1 

 

MEG recordings and pre-processing 

MEG data were acquired in a magnetically-shielded room using a 306-channel whole-head 

system (Elekta Neuromag Oy, Helsinki, Finland). Eyes-closed resting-state measurements 

were performed (5 minutes) at 1250 Hz, and two filters were applied online: 1) a 410 Hz 

antialiasing filter, and 2) a 0.1 Hz high pass filter. Signal Space Separation (xSSS) was 

applied to aid visual inspection (LB, SK and IN) of malfunctioning channels;3 at most 12 

channels were excluded for each participant. Then, the temporal extension of Signal Space 

Separation (tSSS) was performed offline in MaxFilter (Elekta Neuromag Oy, version 2.2.15) 

to remove artefacts.4, 5 Figure 1 presents an overview of the MEG pre-processing steps. 



The outline of the scalp was digitized with a 3D digitizer (Fastrak, Polhemus, 

Colchester, VT, USA) and head localization coils monitored the head position relative to the 

sensors, which were subsequently co-registered to the scalp surface obtained from MRI. The 

beamformer approach was applied to reconstruct source-localized MEG activity: each co-

registered MRI was normalized to standard space after which an atlas-based beamformer 

approach (Elekta Neuromag Oy, version 2.1.28) was applied.6 Cortical regions of the 

automated anatomical labeling atlas7 were inversely transformed to each MRI, where 

centroids of these regions were selected to reconstruct localized MEG activity.8 Subsequently, 

52 consecutive epochs (based on the participant with the lowest number of epochs available) 

of 4096 samples (3.27 seconds), were included and band pass filtered in the canonical MEG 

frequency bands using a fast Fourier transform in Matlab (version R2012.a, Mathworks, 

Natick, MA, USA): delta (0.5-4 Hz), theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-13 Hz), 

beta (13-30 Hz), and gamma (30-48 Hz). All bins outside the pass band were set to 0, and 

accordingly, an inverse Fourier transform was used to obtain the filtered time series for the six 

frequency bands. The final number of included patients (N=146) was reached after the 

exclusion of eight additional patients, for whom MEG scans could not be included due to poor 

quality of the MEG data, which was the result of too many malfunctioning channels, failed 

head position monitoring, or regularly opening of the eyes. These eight participants were 

therefore not included in our sample. 

 

Functional connectivity and the MST 

Functional connectivity between all pair-wise combinations of the 78 cortical regions was 

assessed with the phase lag index (PLI),9 also implemented in Matlab. The PLI is a measure 

of connectivity that quantifies the asymmetry of the distribution of phase differences (∆φ) 

between two time series, and ranges between 0 (no synchrony) to 1 (full synchronization). 



Since the PLI only takes non-zero phase lag between two time series into account, the PLI is 

relatively insensitive to the effects of signal leakage.9, 10 Connectivity matrices (78x78 per 

epoch for each participant) were fed to a minimum spanning tree (MST) algorithm, resulting 

in a dichotomized backbone of the functional brain network formed by only the strongest 

functional connections.11-13 By definition, each MST contained 78 nodes (i.e. representing the 

78 cortical regions) and a constant number of edges (77; N-1 for all MSTs),11, 13 and therefore 

there is no need for arbitrary thresholds, which optimizes comparability between subjects.14 

Each MST was analyzed at baseline using the following measures that indicate aspects of 

network integration and the risk of network overload (see Table 2 for a more detailed 

explanation): leaf fraction (LF), betweenness centrality (BC), diameter, and tree hierarchy. 

These measures were calculated for each of the six frequency bands in Matlab using 

previously described codes.15 A visual representation of these topological MST measures is 

represented in Figure 2.  
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