
Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

In this report, Hammerl and colleagues investigated the spatial contexture of CD8+ T cells in a 

TNBC cohort and identified T-cell inflamed, excluded and ignored subtypes with prognostic 

implications. A subset of these tumors were expression profiled, and subtype-discriminatory genes 

were identified from which a T-cell subtype gene-based classifier was constructed. The classifier 

performed with reasonable accuracy (though could not discriminate excluded from ignored 

subtypes) and consistently retained prognostic value in independent breast tumor cohorts. In a 

phase II trial of anti-PD1 in metastatic TNBC, the gene classifier significantly discerned responders 

and nonresponders, outperforming other predictive measures including TMB and PD-L1 staining. 

Further, gene and cellular differences between T-cell subtypes were identified, implicating 

immunostimulatory and immunosuppressive/evasive pathways in ICI outcomes. 

Strengths: 

- This study represents the first attempt in breast cancer to reconcile tumor T-cell spatial 

architecture with gene expression signatures predictive of immune checkpoint blockade response 

in breast cancer patients. 

- The study confirms the prognostic and treatment-predictive power of T-cell-inflamed genes 

previously observed in breast and other cancer types. 

- The study points to possible new molecular targets in TNBC, such as collagen-10 deposition and 

CLEC9A+ dendritic cells, that if therapeutically manipulated could enhance ICI outcomes. 

Concerns: 

- The logic in transitioning from IHC-based T-cell spatial subtyping to a gene-based signature is 

unclear. Since the signature shows some classification inaccuracy, might the IHC-based spatial 

subtyping approach result in better classification of anti-PD1 responders and nonresponders? 

- The clinical relevance of the gene classifier is uncertain. Do multivariable Cox or logistic 

regression models that include other prognostic variables such as patient age, tumor size, 

histologic grade, LN status, stage, etc, confirm that the prognostic value of the gene signature is 

independent of these variables? 

- Tertiary lymphoid structures (TLS) were identified in both inflamed and excluded subtypes. TLS 

are associated with improved patient outcomes and activation of anti-tumor immunity. Are TLS 

independently associated with patient survival within the excluded/ignored and inflamed subtypes? 

If so, can these structures also be “predicted” by a gene signature and incorporated into the 

current classification system for improved prognostic/predictive performance? 

- How gene-based classifiers are constructed can impact their ultimate performance. Cutoffs used 

for DE gene selection are not clear. How the classifier was trained is not clear – was a form of 

cross-validation used to guard against overfitting? Such details are needed for other researchers to 

reproduce the work. 

- While the biological characterization of the subtypes revealed novel insights and potential new 

targets, these findings are thus far correlative in nature. Demonstration of functional roles for one 

or more of the named variables, such as collagen-10 overexpression, in promoting T cell exclusion 

would increase scientific merit. 

- Many immune gene classifiers capable of discerning short and long survival, as well as treatment 

responses, have been described for breast cancer and other cancer types, including ICI treated 

cancer cohorts. What are the value-added aspects of your gene signature? Does your signature 

outperform other published signatures? 

Reviewer #2: 

Remarks to the Author: 

Major issues: 

1. More clearly define ‘stromal’ and ‘intra-tumoral’ – are these mutually exclusive? Is stromal only 

at tumor border or also within tumor center? 

2. Much of their results were already published in Gruosso et al, JCI 2019 (citation #18 in this 

manuscript). 



3. In the Gruosso 2019 JCI paper, they further divided inflamed TNBC tumors into stromal 

accumulation vs. epithelial infiltration (analogous to tumor cell clusters, citation #53 in this 

manuscript). Authors should also do this. 

4. Authors overstated their results in metastasis and response to anti-PD1 therapy. Spatial 

immunophenotypes were done in primary tumors, not mets, and do not directly predict anti-PD1 

response. They derived a gene expression signature from primary tumors based on spatial 

immunophenotypes, then applied this gene signature to metastatic samples in relation to anti-PD1 

responses. 

5. Cohort D is the only metastatic samples. It is possible/likely that gene signatures of metastatic 

samples may be different from primary tumors. As such, it would be important to do similar IHC 

analysis of at least some met samples in cohort D to confirm their spatial patterns. 

Reviewer #3: 

Remarks to the Author: 

GENERAL IMPRESSION: 

This is an interesting paper describing novel prognostic value for immune spatial phenotypes in 

TNBC. The authors use multiple independent cohorts and their findings are clearly presented, tying 

everything in a scientific narrative that makes sense, is easy to understand, and whose direct 

clinical implications are clearly presented. The paper is well written, and presents a significant 

addition to the literature on the topic, with clear directions for future research. 

MAJOR COMMENTS: 

1. While the authors report the results for genomic subsets, i.e. TNBC, they do not report the 

results for histological subsets. Of particular relevance are infiltrating lobular carcinomas where the 

concepts of "tumor border" are hard to define. How do the author's conclusions hold for 

histological phenotypes where there is no definite tumor boundary? This question does not only 

apply to breast cancer, but to other tumor sites as well. 

2. The authors use a gene expression classifier as a proxy for visual examination of IHC stained 

slides to characterize spatial immune contexture in cohorts where IHC is not available. The authors 

should make it clear that this is an indirect relationship, and relies on correlations that may not 

necessarily hold for different patient subsets and tumor sites. The authors do briefly mention this 

fact in the limitations, but I recommend expanding on this, and using a more conservative 

language when interpreting the findings that rely exclusively on the gene expression classifier, 

such those done in non-breast-cancer cohorts from the TCGA. 

3. The authors use a very simple differential gene expression analysis framework, even though 

there are state-of-the-art methods exist. The limitations of this simple approach are best described 

in the introduction section of the seminal paper by Subramanian et al, 2005, "Gene set enrichment 

analysis: A knowledge-based approach for interpreting genome-wide expression profiles". 

Proceedings of the National Academy of Sciences. 102 (43): 15545–15550: 

" 

A common approach involves focusing on a handful of genes at the top and bottom of L (i.e., those 

showing the largest difference) to discern telltale biological clues. This approach has a few major 

limitations. 

(i) After correcting for multiple hypotheses testing, no individual gene may meet the threshold for 

statistical significance, because the relevant biological differences are modest relative to the noise 

inherent to the microarray technology. 

(ii) Alternatively, one may be left with a long list of statistically significant genes without any 

unifying biological theme. Interpretation can be daunting and ad hoc, being dependent on a 



biologist’s area of expertise. 

(iii) Single-gene analysis may miss important effects on pathways. Cellular processes often affect 

sets of genes acting in concert. An increase of 20% in all genes encoding members of a metabolic 

pathway may dramatically alter the flux through the pathway and may be more important than a 

20-fold increase in a single gene. 

(iv) When different groups study the same biological system, the list of statistically significant 

genes from the two studies may show distressingly little overlap (3) 

" 

To be clear, I am not necessarily recommending that the authors use GSEA specifically, but some 

sort of "second generation"/"Functional Class Scoring" pathway analysis (including GSEA or recent 

improvements on it) is probably the better approach to use than simple differential expression and 

averaging. Please take a look at the following review by Butte et al for reference: Khatri P, Sirota 

M, Butte AJ (2012) Ten Years of Pathway Analysis: Current Approaches and Outstanding 

Challenges. PLOS Computational Biology 8(2): e1002375. 

https://doi.org/10.1371/journal.pcbi.1002375 

MINOR COMMENTS: 

1. Figure 2F is inadequately explained in the figure legend of the corresponding text. What is the 

predictor here? Do the various panels show predictions for ignored-vs-others, excluded-vs-others, 

and ignored/excluded-vs-inflamed in predicting response to ICI? I recommend clarifying the text 

here. 

2. A brief discussion on the limitations of visual assessment (ambiguity, non-representativeness of 

examined regions compared to full tumor, etc) is needed. The authors should explain in the 

limitations that future studies, wherever practically possible, can use quantitative computational 

approaches instead for this task. 

3. Likewise, a brief discussion of the limitations of digital image analysis is needed. For example, 

the authors state in the methods that "Tissue-segmentation, cell-segmentation 

and phenotyping of individual cells was performed using Inform software". While commercial 

software tends to do a reasonable job for many tasks, it should be noted that misclassifications 

and errors in segmentation are not uncommon. The authors should mention this somewhere in the 

limitations as a confounder to the analysis. 
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Response to Reviewers’ comments to original manuscript 
NCOMMS-20-22117 

 

 

Reviewer#1 
Comment 1: 
The logic in transitioning from IHC-based T-cell spatial subtyping to a gene-based signature is 
unclear. Since the signature shows some classification inaccuracy, might the IHC-based spatial 
subtyping approach result in better classification of anti-PD1 responders and nonresponders? 
 
Response: 
Authors thank R1 for requesting clarification regarding the transitioning from IHC to gene-based 
spatial T cell phenotyping. The rationale for designing, validating and utilizing a gene-classifier 
rather than IHC to classify spatial T cell phenotypes is that whole tissue sections, in particular for 
metastasized tumors such as from anti-PD1 treated patients, are not standardly available for 
diagnosis and in particular for research. For such patients, mostly small biopsies consisting of 
fragmented tissue parts are available, which are not generally adequate for spatial T cell 
phenotypes (i.e., lack of tumor borders does not allow accurate distinction between ignored and 
excluded phenotypes). In case of gene-based classification, one would require tissue-derived RNA 
expressions from those genes that are part of our proposed signature which can be determined via 
standard molecular techniques and developed into a diagnostic tool. Alternatively, NGS-techniques 
are expected to be implemented at Pathology departments of Medical Centers to become part of 
systemic evaluation of targetable alterations in the near future. 
 
The above arguments, and also not ruling out IHC-based classifications for routine purposes, can 
be found in the revised Discussion section (see line# 302-327, highlighted in yellow). 
 
 
Comment 2: 
The clinical relevance of the gene classifier is uncertain. Do multivariable Cox or logistic regression 
models that include other prognostic variables such as patient age, tumor size, histologic grade, 
LN status, stage, etc, confirm that the prognostic value of the gene signature is independent of 
these variables?  
 
Response: 
We commend R1 for suggesting to test the confounding effect of other prognostic features 
regarding an association between spatial immunophenotypes and clinical outcome. To this end, we 
have performed multivariable analysis for spatial phenotypes based on IHC (cohort A) as well as 
gene expression (cohort E) using the clinical parameters age, tumor size, tumor grade and nodal 
status. Of note, nodal status was not included for cohort A since all patients used for survival 
analysis were lymph node-negative.  
 
Our analysis revealed that using the multivariable model spatial immunophenotypes based on IHC 
or gene expression remained significantly associated with overall survival (OS) (p≤0.009, see 
Table 1A and 1B). Similar associations were found for metastasis-free survival and disease-free 
survival (p≤0.009). The lack of prognostic significance of histological grade in TNBC is consistent 
with a previously published pooled analysis of 9 Phase 3 adjuvant TNBC-trials (Loi, J Clin Oncol 
2019). We conclude that spatial immunophenotype in comparison to age, tumor size, tumor grade 
and nodal status proves to be the only consistent prognosticator. This is now mentioned in the 
Results section (line #109-111) and below tables are added to the supplementary data 
(Supplementary Table S2) of the revised manuscript. 
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A Covariate HR (CI) p-value 

immunophenotype based on IHC 0.31 (0.13-0.75)  0.009 

tumor size 1.01 (0.98-1.05) 0.19 

grade 0.89 (0.49-1.6) 0.69 

age 0.98 (0.95-1.01) 0.13 

 

B Covariate HR (CI) p-value 

immunophenotype based on gene expression 0.17 (0.05-0.58)  0.004 

nodal status 6.83 (0.85-54.8) 0.07 

tumor size 1.17 (0.4-3.39) 0.76 

age 1.02 (0.98-1.05) 0.23 

Table 1. A. Multivariable Cox regression analysis including spatial immunophenotypes based on IHC (Cohort A, 
n=106). B. Multivariable Cox regression analysis including spatial immunophenotypes based on gene-
expression (Cohort E, n=140). All spatial immunophenotypes were part of analysis, but outcomes are displayed 
for inflamed immunophenotype. Abbreviations: HR: hazard ratio, CI: confidence interval. 

 
 
 
Comment 3: 
Tertiary lymphoid structures (TLS) were identified in both inflamed and excluded subtypes. TLS 
are associated with improved patient outcomes and activation of anti-tumor immunity. Are TLS 
independently associated with patient survival within the excluded/ignored and inflamed subtypes? 
If so, can these structures also be “predicted” by a gene signature and incorporated into the 
current classification system for improved prognostic/predictive performance?  
 
Response: 
In line with R1’s suggestion we have evaluated the prognostic value of the presence and frequency 
of TLS per spatial immunophenotype. TLS, when scored as dense clusters of CD4+ T-cells and 
CD20+ B cells (as described in the Materials and Methods section), did not significantly associate 
with survival outcomes in a univariate model (Figure 1A). Overall survival, but not metastasis-
free survival nor disease-free survival, showed a trend towards association with TLS (OS: HR 0.54 
(CI 0.3-1.02) p=0.05); MFS: HR 0.81 (CI 0.4-1.6) p=0.18); DFS: HR 1.08 (CI 0.56-2) p=0.63). 
Using the same set of patients, all three survival outcomes were clearly associated with spatial 
immunophenotypes, and the association between phenotypes and OS was not improved when 
stratifying for TLS (Figure 1B, C). Importantly, using a multivariate model, TLS did not 
significantly associate with any of the three survival outcomes, whereas spatial 
immunophenotypes did significantly associate with all three survival outcomes (Figure 1C, Table 
2A). 
 
In addition to immune staining, we also scored TLS using a gene expression signature with 
reported prognostic and predictive value in melanoma (Cabrita, Nature 2020). Using this 
signature, we again could not demonstrate a significant association with OS whether it be in 
univariate (HR 0.88 (CI 0.52-1.5) p=0.65) or multivariable settings (Table 2B). Notably, this 
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signature was also not associated with response to anti-PD1 in multivariable analysis (Table 2C, 
and for details see response to R1’s comment 6). 
 
In conclusion, and based on our datasets, TLS is not of added value for the prognosis or prediction 
of anti-PD1 response according to spatial immunophenotypes in TNBC. These findings do warrant 
further research into the exact role of TLS in shaping anti-tumor immune responses in TNBC, 
particularly its biological relationship to spatial immunophenotypes. We have included above 
findings and interpretations in the revised Results section (line# 130-132), Table S2 and 
Discussion section (line# 311-315). 
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Figure 1. Prognostic value of tertiary lymphoid structures (TLS) stratified per spatial 
immunophenotype in TNBC. A. Kaplan-Meier curves show overall survival (OS), metastasis-free survival 
(MFS) and disease-free survival (DFS) according to spatial immunophenotype. B. Kaplan-meier curves show 
OS, MFS and DFS according to presence of TLS. C. Kaplan-Meier curves show OS for the three spatial 
immunophenotypes in Cohort A stratified for the presence of TLS. (Cohort A, n=106 LNN primary TNBC) 
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A Covariate OS: HR (CI) p-value 
MFS: HR (CI) p-value DFS: HR (CI) p-value  

spatial 
immunophenotype 
based on IHC  

0.31 (0.13-0.75) 
p=0.009 

0.32 (0.13-0.78) p=0.01
0.28 (0.12-0.65) 

p=0.003 

TLS presence 0.64 (0.29-1.5) p=0.28 0.75 (0.31-1.77) p=0.51 1.09 (0.5-2.4) p=0.81 

 TLS frequency 1.00 (0.78-1.17) p=0.13 1.06 (0.88-1.2) p=0.5 1.04 (0.89-1.23) p=0.59 

 

B Covariate HR (CI) p-value  

spatial immunophenotype based on gene 
expression  

0.17 (0.05-0.51) p=0.002 

TLS signature (Carbrita, Nature, 2020) 1.3 (0.7-2.5) p=0.38 

 

C Covariate OR (CI) p-value 

spatial immunophenotype based on gene 
expression  

7.25 (1.39-47.13) p=0.02 

TLS signature (Carbrita, Nature, 2020) 0.99 (0.46-2.1) p=0.99 

Table 2. Multivariable survival analysis of spatial immunophenotypes and TLS. A. Spatial 
immunophenotypes and TLS based on IHC (Cohort A, n=106 LNN primary TNBC). B. Multivariable overall 
survival analysis including TLS based on gene expression (Cohort E, n=145 primary TNBC). C. Multivariable 
analysis for response to anti-PD1 including TLS based on gene expression (Cohort D, n=51 metastatic TNBC). 
All spatial immunophenotypes were part of analysis, but outcomes are displayed for inflamed 
immunophenotype. Abbreviations: OS: overall survival, DFS: disease-free survival, MFS: metastasis -free 
survival, HR: hazard ratio, CI: confidence interval. 
 

 
 
Comment 4: 
How gene-based classifiers are constructed can impact their ultimate performance. Cutoffs used 
for DE gene selection are not clear. How the classifier was trained is not clear – was a form of 
cross-validation used to guard against overfitting? Such details are needed for other researchers to 
reproduce the work.  
 
Response: 
We thank R1 for providing the opportunity to better explain the construction of the gene classifier.  
Construction of our classifier has been performed according to top differentially expressed genes 
from cohort A1 (microarray data), rank correlations of classifier gene expressions and assignment 
based on correlation coefficients. The performance of the classifier was validated in an 
independent dataset primary TNBC (IHC and RNAseq data) as well as a new set of TN lymph node 
metastases (IHC and RNAseq data; see also response to R2’s comment 4). This methodology 
was compatible to the use of different platforms (i.e., micro-array and RNAseq data), and yielded 
accurate classification of individual spatial immunophenotypes in at least 81% of samples in both 
validation sets. It is noteworthy that machine learning-based classifiers and cross-validation (i.e., 
the geNetClassifier package in R) did not yield such accuracy. In more detail, and along R1’s 
specific questions, we have selected 42 genes with most discriminatory expression levels (i.e. 
>1logFC, padj<0.05 among all 3 spatial immunophenotypes) and did not implement machine-
learning-based training nor cross validation. The Materials and Methods section of the revised 
manuscript has been amended accordingly (see line# 668-691); and all classifier genes and 
ranks have been added to Supplementary File 1, thereby enabling reproduction of our findings.  
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Comment 5: 
While the biological characterization of the subtypes revealed novel insights and potential new 
targets, these findings are thus far correlative in nature. Demonstration of functional roles for one 
or more of the named variables, such as collagen-10 overexpression, in promoting T cell exclusion 
would increase scientific merit.  
 
Response: 
R1 suggests functional validation of the T cell evasive mechanisms linked to the spatial 
immunophenotypes in TNBC. In itself these additional experiments represent a correct and logical 
extension of our study outcomes. We would like to put forward, however, that the primary 
message of the present study entails the discovery of T cell evasive mechanisms that are 
differentially related to distinct spatial immunophenotypes in TNBC. These outcomes are the result 
of interrogating large cohorts of TNBC patients (n=699); analysis at the gene as well as spatial 
protein expression levels; and relating data with NGS-, immunologic- and clinical sets of patient 
data. Using this extensive and integrative approach, we enabled the identification of T cell evasive 
pathways using NGS which were subsequently validated using multiplexed immune fluorescence 
stainings. At this point, we are in the process to set up NSG mouse models with TNBC to test the 
individual targeting of such evasive mechanisms. For the current revised manuscript, given the 
message as it stands, as well as the timelines needed for follow-up messages, authors consider 
functional validations beyond its scope. 
 
We have explicitly acknowledged the future need for functional validation of the identified T cell 
evasive mechanisms in TNBC; see the Discussion section; line# 422-423. 
 
 
Comment 6: 
Many immune gene classifiers capable of discerning short and long survival, as well as treatment 
responses, have been described for breast cancer and other cancer types, including ICI treated 
cancer cohorts. What are the value-added aspects of your gene signature? Does your signature 
outperform other published signatures?  
 
Response: 
Authors appreciate R1’s valuable suggestion to compare our gene classifier to other published 
classifiers that predict ICI responses. Out of many reported classifiers, we have applied those that 
are recognized for capturing lymphocyte activity and location, being most relevant for a head-to-
head comparison. These signatures included: a short (6-gene) and extended (18-gene) IFNγ-
response signature that both predict anti-PD1 response in melanoma and head and neck 
squamous cell carcinoma (Ayers et al., JCI, 2017); a T cell exclusion signature that predicts anti-
PD1 response in melanoma (Jerby-Arnon et al., Cell, 2018); and a TLS signature that predicts 
anti-PD1 response in melanoma (Cabrita et al., Nature, 2020). Of these signatures, the extended 
IFNγ signature was the only one able to predict response in a small cohort of anti-PD1-treated 
mTNBC patients (AUC=0.7; p=0.046), yet did not (nor any of the tested classifiers) outperform 
the prognostic and predictive value of our gene classifier in mTNBC (see figure below). We 
conclude that the spatial immunophenotype gene classifier, in contrast to other classifiers, shows 
clear and unprecedented prediction of response to anti-PD1 in mTNBC.  
 
We have included below figure (as Figure S7) and accompanying text in the Result section (see 
line# 209-212) and Discussion section (line# 310-315) of the revised manuscript.  
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Figure 2. Predictive value of spatial immunophenotype gene classifier versus public classifiers. A. 
Box-plots display signature scores in responder (CR+PR+SD) and non-responder patients from TONIC trial 
(cohort E) (PD) according to a short (6-gene) and extended (18-gene) interferon gamma signature from Ayers 
et al., JCI 2017. ROC displays area under the curve for predicting anti-PD1 response for the extended 
signature. B. Multivariable analysis with spatial immunophenotype gene-classifier and the extended IFNy 
signature. C. Box plots and ROC according to a T cell exclusion program signature from Jerby-Arnon et al., 
Cell, 2018. D. Box plots and ROC according to a tertiary lymphoid structure signature from Cabrita et al., 
Nature, 2020. 
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Reviewer #2 
Comment 1: 
More clearly define ‘stromal’ and ‘intra-tumoral’ – are these mutually exclusive? Is stromal only at 
tumor border or also within tumor center? 
 
Response: 
Authors thank R2 for requesting a clear definition of stromal and intra-tumoral regions. Tumor 
border and center regions comprise both stromal as well as tumor cell compartments, which were 
defined through absence or presence of the cytokeratin marker, respectively. As illustrated in 
Supplementary Figure 2B and shown in Supplementary Figures 3 and 11 stromal and intra-
tumoral compartments are indeed mutually exclusive.  
 
Along R2’s recommendation, we have amended the description in the Materials and Methods 
section and referred to Supplementary Figure 2 (see line# 594-599, 615-622). 
 
 
Comment 2: 
Much of their results were already published in Gruosso et al, JCI 2019 (citation #18 in this 
manuscript). 
 
Response: 
We understand R2’s remark, and although part of the results is overlapping, large parts of the 
results are novel and cover existing gaps in understanding and predicting restistance to anti-PD1 
therapy in TNBC. In our study, we have used cohorts of in total 681 patients with TNBC and 4,003 
patients with other cancers, and were able to present in-depth analyses of 3 spatial 
immunophenotypes (i.e., ignored, excluded and inflamed) in relation to prognosis and response to 
anti-PD1 treatment as well as T-cell evasion. In contrast, the study by Gruosso and colleagues 
have used a cohort of 38 patients with TNBC and analyzed 4 localizations of CD8 T cells (i.e., 
immune desert, margin restricted, stromal restricted and fully inflamed) in relation to prognosis. 
 
Specifically, our study has uniquely covered: 
(1) Development and validation of a gene-classifier that accurately predicts the spatial 

immunophenotypes in TNBC and mTNBC (also see response to R2’s comment 4), and is 
associated with prognosis in 2 independent datasets of TNBC and various other cancers; 

(2) Clinical validation of this gene-classifier in TNBC patients who received anti-PD1; 
(3) Discovery of genomic features (i.e., numbers and types of mutations; TCR repertoire diversity; 

as well as clonality and mutational signatures) as well as oncogenic and immune pathways 
that characterize the spatial immunophenotypes (i.e., immunogenic cell death; VEGF/TGFβ 
signaling; WNT signaling). 
 

In conclusion, our study provides a spatial immunophenotype gene classifier that predicts clinical 
response to anti-PD1 that is independent of currently used clinical markers and outperformes other 
gene-signatures, thereby addressing an urgent clinical need. Moreover, our in-depth analysis of 
NGS, immunologic and clinical sets of patient data points towards differential and actionable 
targets that may proof beneficial for phenotype-stratified immunotherapy in TNBC.  
 
 
 
Comment 3: 
In the Gruosso 2019 JCI paper, they further divided inflamed TNBC tumors into stromal 
accumulation vs. epithelial infiltration (analogous to tumor cell clusters, citation #53 in this 
manuscript). Authors should also do this. 
  
Response: 
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The inflamed phenotype has prognostic value in our data sets (Figure 1A). Along R2’s suggestion, 
we have subdivided the inflamed phenotype in TNBC into stromal restricted (SR) versus fully 
inflamed (FI) localization of CD8 T cells according to Gruosso et al., JCI, 2019, and observed no 
additional benefit to patient survival (Figures 3A, B). We also tested the prognostic value of the 
cholesterol meta-signature, which was found to be characteristic for the SR phenotype as reported 
by Gruosso and colleagues. Again, the subdivision into cholesterol-low versus high did not yield 
additional benefit either to the survival of TNBC patients with the inflamed/IFNγ hi phenotype 
(Figure 3C). Collectively, these results demonstrate that further subclassification of the inflamed 
phenotype in TNBC according to stromal vs intratumoral localizatioin of CD8 T cells is not of added 
value in our datasets. Notably, these results are in line with a recent report showing that both 
stromal as well as intratumoral TIL are associated with good prognosis in >1000 TNBC; that 
stromal and intratumoral TIL were strongly correlated and had similar prognostic value; and that 
inclusion of intratumoral TIL did not improve the multivariable model based on stromal TIL and 
clinicopahological parameters (Loi, J Clin Oncol, 2019).  
 
 

    

 

Figure 3. Subclassification of inflamed phenotype in TNBC according to localization of CD8 T cells. 
A,B. Kaplan Meier curves show overall survival (A) and metastasis-free survival (B) of the inflamed phenotype 
in TNBC stratified for stromal restricted (SR) or fully inflamed (FI) localization of CD8 T cells (according to 
Gruosso et al., JCI, 2019). C. Kaplan Meier curve shows overall survival of the inflamed phenotype in TNBC 
stratified for abundance of cholesterol signature (Cohort E). 

 
 
Comments 4 and 5: 
Authors overstated their results in metastasis and response to anti-PD1 therapy. Spatial 
immunophenotypes were done in primary tumors, not mets, and do not directly predict anti-PD1 
response. They derived a gene expression signature from primary tumors based on spatial 
immunophenotypes, then applied this gene signature to metastatic samples in relation to anti-PD1 
responses. Cohort D is the only metastatic samples. It is possible/likely that gene signatures of 
metastatic samples may be different from primary tumors. As such, it would be important to do 
similar IHC analysis of at least some met samples in cohort D to confirm their spatial patterns. 
 
Response: 
We thank R2 for this valuable recommendation, and agree that validation of our gene classifier in 
metastatic lesions is relevant to its clinical value. From the metastatic samples of cohort D, only 
biopsies are available, and consequently these samples do not allow accurate classification of 
spatial immunophenotypes based on immune stainings (i.e., biopsies often lack tumor border 
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regions thereby not enabling accurate distinction between ignored and excluded phenotypes). To 
overcome this limitation, we have selected a new set of LN metastases from TNBC patients that 
comprises FFPE-derived whole lesion sections, and performed CD8 stainings as well as RNA 
sequencing for these new samples. Although FFPE starting material generally yields worse quality 
of RNA when compared to FF samples, we still captured sequencing data of 12 out of 15 samples 
with sufficiently high quality: i.e., these samples contained <50% duplicated reads (range: 20-
45%); >50% mapped reads (range: 55-95%); and expressed >75% of classifier genes. 
Classification using our spatial immunophenotype gene classifier yielded correct assignment of 10 
out of 12 samples (83%, for details see Table 3). 
 
These new findings extend the notion that gene-expression profiles remain rather stable between 
primary and metastatic breast cancer (Weigelt et al., PNAS 2003), and further substantiate that 
our spatial immunophenotype gene-classifier correlates with anti-PD1 response. 
 
These new data are included as Table 1B and described in the Result section (line# 144-147) of 
the revised manuscript, and corresponding techniques and interpretation are described in the 
Materials and Methods (line# 550, 598-599, 634-641, 682-685) and Discussion sections 
(line#303), respectively. 
 

  
Table 3. Performance of gene classifier for spatial immunophenotypes in metastatic TNBC.  
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Reviewer #3 
Comment 1: 
While the authors report the results for genomic subsets, i.e. TNBC, they do not report the results 
for histological subsets. Of particular relevance are infiltrating lobular carcinomas where the 
concepts of "tumor border" are hard to define. How do the author's conclusions hold for 
histological phenotypes where there is no definite tumor boundary? This question does not only 
apply to breast cancer, but to other tumor sites as well. 
 
Response:  
Authors thank R3 for pointing out technical challenges regarding the definition of tumor border 
regions in infiltrating lobular carcinoma subtypes. In our study, we observed 6 different subtypes 
according to histology, with invasive ductal carcinoma (IDC) representing the vast majority of 
TNBC. Spatial immunophenotypes according to different histological subtypes are exemplified and 
listed in Supplementary Figure 8D. Our analyses (see aforementioned figure) showed that 
spatial phenotypes were not associated with these subtypes, except for IDC with medullary like 
features, which was (expectedly) associated with the inflamed phenotype. In our dataset only 4 
samples were histologically annotated as invasive lobular carcinoma (ILC) (2 inflamed, and 2 
ignored phenotypes). In this study and irrespective of histological subtype, tumor border regions 
were defined as those areas with 50% tumor area and 50% stroma/surrounding fat/normal ducts, 
which, in case of ILC, may include some isolated tumor cells. Examples of ILC tumor border 
regions are displayed in Figure 4 below. All samples, including the ILC samples, were assessed by 
experienced pathologists, and unresolved challenges regarding the definition of tumor border 
regions in TNBC have not been encountered. 
 
In the revised manuscript we have specifically mentioned the staining of different histological 
subtypes, provided an exact definition of tumor border regions and described the implications for 
ILC subtypes (see line# 563-564, 594-599).  
 
 

 
Figure 4. Image analysis of border regions of invasive locular carcinoma. A. Representative images of 
border region of ignored phenotype in TNBC. B. Representative border region of inflamed phenotype in TNBC. 
Yellow lines indicate tumor borders. The different steps are explained in Supplementary Figure 2. Color coding 
for markers as well as tissue compartments is given at right-hand side. 
 
 
Comment 2: 
The authors use a gene expression classifier as a proxy for visual examination of IHC stained slides 
to characterize spatial immune contexture in cohorts where IHC is not available. The authors 
should make it clear that this is an indirect relationship, and relies on correlations that may not 
necessarily hold for different patient subsets and tumor sites. The authors do briefly mention this 
fact in the limitations, but I recommend expanding on this, and using a more conservative 
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language when interpreting the findings that rely exclusively on the gene expression classifier, 
such those done in non-breast-cancer cohorts from the TCGA. 
 
Response: 
Authors commend R3 for this remark and agree that assignment of spatial phenotypes may be less 
accurate when using gene expression instead of immune stainings. Indeed, when substituting 
immune staining by gene expression in different patient subsets, tumor sites or tumor types, such 
as those that exclusively rely on TCGA data, there is a risk that due to lack of imaging some 
samples are mis-classified. Of note, in the revised manuscript, we have now included the 
validation of the gene classifier not only towards primary tumors, but also towards LN metastases 
of TNBC (see response to R2’s comment 4). According to R3’s suggestion, we have amended and 
expanded the text on limitations of our study, as stated above, in the Discussion section of the 
revised manuscript (see line# 416-419). 
 
 
Comment 3: 
The authors use a very simple differential gene expression analysis framework, even though there 
are state-of-the-art methods. The limitations of this simple approach are best described in the 
introduction section of the seminal paper by Subramanian et al, 2005, "Gene set enrichment 
analysis: A knowledge-based approach for interpreting genome-wide expression profiles". 
Proceedings of the National Academy of Sciences. 102 (43): 15545–15550" 
 
A common approach involves focusing on a handful of genes at the top and bottom of L (i.e., those 
showing the largest difference) to discern tell-tale biological clues. This approach has a few major 
limitations. 
 
(i) After correcting for multiple hypotheses testing, no individual gene may meet the threshold for 
statistical significance, because the relevant biological differences are modest relative to the noise 
inherent to the microarray technology. 
 
(ii) Alternatively, one may be left with a long list of statistically significant genes without any 
unifying biological theme. Interpretation can be daunting and ad hoc, being dependent on a 
biologist’s area of expertise. 
 
(iii) Single-gene analysis may miss important effects on pathways. Cellular processes often affect 
sets of genes acting in concert. An increase of 20% in all genes encoding members of a metabolic 
pathway may dramatically alter the flux through the pathway and may be more important than a 
20-fold increase in a single gene. 
 
(iv) When different groups study the same biological system, the list of statistically significant 
genes from the two studies may show distressingly little overlap (3)" 
 
To be clear, I am not necessarily recommending that the authors use GSEA specifically, but some 
sort of "second generation"/"Functional Class Scoring" pathway analysis (including GSEA or recent 
improvements on it) is probably the better approach to use than simple differential expression and 
averaging. Please take a look at the following review by Butte et al for reference: Khatri P, Sirota 
M, Butte AJ (2012) Ten Years of Pathway Analysis: Current Approaches and Outstanding 
Challenges. PLOS Computational Biology 8(2): e1002375. 
https://doi.org/10.1371/journal.pcbi.1002375 
 
Response: 
Authors thank R3 for proposing the use of functional class scoring analyses, such as gene-set 
enrichment analysis (GSEA), to test the robustness of our outcomes. Along this suggestion, we 
have analysed expression data from cohort A using GSEA4.1 software (Subramanian et al, Proc 
Natl Acad Sci, 2005). These additional analyses, summarized in Figure 5 below, verified our 
analyses of pre-defined gene-sets, differential gene-expression and ingenuity pathway analysis.  
 
Along R3’s suggestion we have added GSEA to our revised flow of analyses, which now comprises 
the following steps in the identification and validation of T cell evasive mechanisms that underly 
spatial immunophenotypes. The first step, which was aimed at generating hypotheses regarding T 
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cell evasive mechanisms that underly different spatial immunophenotypes, constituted a biased 
approach using gene-sets related to T cell evasion. This approach relied on averaging expressions 
of unidirectional gene-set (for details on used gene sets, see Hammerl at al., CCR, 2019). The 
second step constituted an unbiased approach, where we used differential gene expression 
followed by ingenuity pathway analysis, which showed high concordance with our first step. In a 
third step, we exploited multiplex-IF stainings to validate and extract spatial information regarding 
T cell evasive mechanisms identified via the first 2 steps. The fourth and last step now covers 
GSEA, an unbiased, next generation analysis tool, which again confirmed our main findings: the 
excluded phenotype being characterized by glycolysis and collagen-10 deposition and association 
with TGFβ signaling; the ignored phenotype characterized by the presence of myeloid cells and 
association with WNT signaling; and the inflamed phenotype characterized by T cell co-inhibition 
and association with necrosis. See Figures 4, 5, and Supplementary Figure 9 (all in revised 
manuscript) for details. 
 
In the revised manuscript, we have included GSEA in the Materials and Methods (see line#: 663-
665) and Results section (see line#: 240-259) and added below Figure 5 as Supplementary 
Figure 10. 
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Figure 5. Gene-set enrichment analysis for spatial immunophenotypes in TNBC. A. Enrichment plots 
from KEGG and REACTOME databases showing those gene-sets and pathways that are specifically enriched in 
the excluded (left panel), ignored (middle panel) and inflamed (right panel) phenotypes in TNBC which have 
also been identified using DE and IPA analysis (see Figure 4). B. Top 3 enriched pathways according to KEGG 
and REACTOME databases with normalized enrichment scores (NES) per spatial immunophenotype. 

 
 
MINOR COMMENTS: 
 
1: Figure 2F is inadequately explained in the figure legend of the corresponding text. What is the 
predictor here? Do the various panels show predictions for ignored-vs-others, excluded-vs-others, 
and ignored/excluded-vs-inflamed in predicting response to ICI? I recommend clarifying the text 
here. 
 
Response: Authors thank R3 for pointing to lack of clarity regarding the legend to Figure 2F. We 
have amended the figure legend accordingly (see line# 458-462). 
 
2 and 3: A brief discussion on the limitations of visual assessment (ambiguity, non-
representativeness of examined regions compared to full tumor, etc) is needed. The authors 
should explain in the limitations that future studies, wherever practically possible, can use 
quantitative computational approaches instead for this task. Likewise, a brief discussion of the 
limitations of digital image analysis is needed. For example, the authors state in the methods that 
"Tissue-segmentation, cell-segmentation and phenotyping of individual cells was performed using 
Inform software". While commercial software tends to do a reasonable job for many tasks, it 
should be noted that misclassifications and errors in segmentation are not uncommon. The authors 
should mention this somewhere in the limitations as a confounder to the analysis. 
 
Response: We agree that multiplex immunofluorescence with digital image analysis of defined 
regions may not fully reflect tumor heterogeneity, and computed assignments of tissue 
compartments and immune cells may harbor a certain degree of misclassification. 
In line with R3’s recommendations, we have amended text regarding quantitative computational 
approaches as well as limitations of digital analysis in the Discussion section of the revised 
manuscript (see line# 419-422). 



Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The authors have substantially and sufficiently revised the content and clarity of the manuscript 

with appropriate inclusion of new tables, figures and expanded methodological details that directly 

address the reviewer's major concerns. It would be prudent, however, for the authors to review 

the methodological citations so as to prevent omissions, an example being lack of citation for the 

Combat batch correction method. 

Reviewer #2: 

None 

Reviewer #3: 

None 


