Supplementary Data for

USP7 Facilitates SMAD3 Autoregulation to Repress Cancer Progression in p53-deficient Lung Cancer

Yu-Ting Huang¹, An-Chieh Cheng¹, Hui-Chi Tang², Guo-Cheng Huang¹, Ling Cai^{3,4}, Ta-Hsien Lin^{1,5}, Kou-Juey Wu⁶, Ping-Hui Tseng¹, Greg G. Wang^{3,4}, Wei-Yi Chen^{1,7,*}

- ¹Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- ²Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- ³Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- ⁴Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- ⁵Basic Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei 112, Taiwan
- ⁶Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- ⁷Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan

*Correspondence: Wei-Yi Chen Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan Contact: chenwy@nycu.edu.tw Phone: +886-2-2826-7328

Supplemental Figures

Figure S1. Comparable levels of MDM2 are expressed in wildtype and *USP*7 KO H1299 cells.

Immunoblots of MDM2 in the cell lysates from wildtype (WT) and the indicated USP7 KO H1299 cells. β -actin is the loading control.

Figure S2. Genome-wide profiling of USP7-responsive enhancers in H1299 cells.

Venn diagrams showing the comparison of H3K27ac ChIP-seq peaks identified in wildtype (left panel, two biological experiments) or in *USP7* KO (right panel, two clonal lines: HKO-E2 and HKO-E3) H1299 lines. Peak overlapping analysis was performed using the *mergePeaks* of HOMER software with "-d given" parameter. The common regions of each genomic background were further analyzed for identifying the USP7-responsive enhancers in Fig. 2A and listed in dataset S1.

Figure S3. USP7 inactivation significantly downregulates the expression of SMAD3.

RT-qPCR assays showing the relative expression levels of *SMAD3* in wildtype (WT) or *USP7* KO (two independent clones: HKO_E2 and HKO_E3) H1299 cell lines treated with 1% FBS. Means \pm SD from three biological experiments are shown. Student's t-test, *** p <0.001.

Figure S4. USP7 inactivation has no effects on the SMAD3 protein stability. (Upper) Representative immunoblots showing the stability of SMAD3 in wildtype or *USP7* KO H1299 lines. Cells were treated with cycloheximide (CHX, 20 μ g/mL) for indicated time (h) and cell lysates were subjected to immunoblotting assays with anti-SMAD3 antibody. β -actin as an internal control. Asterisks denote non-specific signals. Calculated half-lives (t_{1/2}) of SMAD3 in each cell line are indicated.

(Bottom) Decay curves for SMAD3 protein in the indicated cell lines. The SMAD3 levels were quantitated by the ImageJ software and the level in the control cells (without CHX treatment) was set to 1. Mean ± SD from 3 independent experiments.

Supplemental Table S1. Oligos used in this study

RT-qPCR

SMAD2	F: GCTGGCCTGATCTTCACAGT
	R: CCAGAGGCGGAAGTTCTGTT
SMAD3	F: GCTGTCTACCAGTTGACCCG
	R: AGGACCTTGTCAAGCCACTG
SMAD4	F: GGACTGCACCATACACACCT
	R: AATGGGAGGCTGGAATGCAA

ChIP-qPCR

SMAD3_EN1	F: AACTGCTCCAGAAACTCTCAA
	R: CACATGAAGCCCAAACCTGTG
SMAD3_EN4	F: TCTCTCTATCGCCAACGTGA
	R: TCCTGGCAGGCCTTTCCTTA
SMAD3_EN9	F: GTTGCTTTCGCCTAACTGGC
	R: AGCAAAGGGATCCACAGACG
SMAD3_EN10	F: GGAAGCAGAGTGGTATTCAGCA
	R: TAGGCAACATGGGGAAAATGGA

For reporter construction

SMAD3_EN1	F: CACATGCTATCTTCACAGTGTGATCGA
	R: GACAGAAAAAGAAAATAATGTTGACTTCAGTTTGCA
SMAD3_EN2	F: GAATCCTGGTTTTCCAAGTGTTTAGAGG
	R: GATCAGGAGGCCTCCAGCAG
SMAD3_EN3	F: TGTGTGCTTGCTCTGAAGATTCCA
	R: TTGCCTCTGTGCTGCCAAG
SMAD3_EN4	F: TTGCCTCTGTGCTGCCAAG
	R: AAAATGATTGCTTCCTGAGGTCTGGATG
SMAD3_EN5	F: GGTCTCCCCTTAAATGTCATCTAAGAGAG
	R: CGCGGGAGGTGGTGG
SMAD3_EN6	F: CTGTTCCCCCAGACCCTG
	R: ATAGCAAGACCTCTTCTCAACAGAAAAATACAAAAA
SMAD3_EN7	F: AAATCAAGGAACATTGCCCCATCTCC
	R: CTCGGTAAGCACCAGCACATCT

SMAD3_EN8	F: CTTGGCCTGTTGGTGGTGG
	R: GAAAGAATCCAACAACTCAGATATGCAAAATTTTACC
SMAD3_EN9	F: CAGTAATTCTGCAGCCTCCCTCAC
	R: CCAGTCCCAGCTGAGATTCAGA
SMAD3_EN10	F: TCCATAGATCTGACTCTGGAAACACCG
	R: CCTGCCTGTGATTTCACAAGTGT

Fig. 1B

Fig. 5C

Fig. 6A

Ab: USP7

Fig. 6B

Fig. 6C

Fig. 7B

Ab: USP7

Fig. 7G

Figure S1

Figure S3

Ab: β-actin

Ab: SMAD3