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Figure S1. Dynamic parameters are consistent between different preparations of recombinant human a1A/glll tubulin
(related to Figures 1 and 3). (A) SDS-polyacrylamide gel (5 pgs) of recombinant human a1A/BlIl from two different growths and
purifications. (B) Plus-end dynamic parameters of a1A/BlIl microtubules at 6 yM from the two different preparations shown in (A).
From left to right: Growth rates in box-whisker plot (whiskers represent minimum to maximum); n= 256 and 95 growth phases for
preparation #1 and preparation #2, respectively. Catastrophe frequencies; n= 29 and 12 microtubules for preparation #1 and
preparation #2, respectively. Microtubule mean lifetime and mean length; n= 256 and 95 growth phases for preparation #1 and
preparation #2, respectively. Error bars represent S.D. (C) Microtubule plus-end mean length at 4 uM tubulin concentration; n=
181 and 424 for a1A/BIIl and a1AA-tail/Blll, respectively. Error bars represent S.D.; **** denotes p < 0.0001 as determined by a
Mann-Whitney test.
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Figure S2. Sequence alignment of a-tubulin tails (related to Figures 1 and 3).

(A) Sequence alignment of the C-termini of eight human a-tubulin isotypes. Uniprot ID for each sequence indicated in brackets.
The length of the H12 helix is based on the cryo-EM structure of human recombinant a1A/BlII microtubules (PDB ID: 5JCO;
(Vemu, et al., 2016)). (B) Sequence alignment of tubulin a1A isotypes from various species.
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Figure S3 (related to Figures 2 and 3).

(A) Schematics of MD models used to examine the interactions between the tail of a-tubulin and its body. Red outline marks the
a-tubulin subunit used in the analyses. (B) A snapshot of a simulation with a GTP-tubulin dimer, showing the a-tubulin tail
interacting with positively charged residues at the a-tubulin longitudinal polymerization interface colored on a gradient from
yellow to red according to the probability of its contact with the a-tubulin tail. Residue S439 where the tail originates is shown in
blue. (C) Distribution of conditional contact probabilities for residues in the a-tubulin tail with the longitudinal polymerization
interface, provided that at least one residue of the a-tubulin tail contacts the interface. Calculated from 5 independent one-micro-
second-long simulations for GTP-tubulin.
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Figure S4. Metadynamics simulation for enhanced sampling of the a-tubulin C-terminal tail (related to Figure 2).

(A) Schematic of the metadynamics simulation. A bias potential (purple) is applied to the tip of the a-tubulin tail. Three configura-
tions of the tail at three times are schematized. Bias potential accelerates displacement of the tail to enhance sampling of the
configuration space. (B) A cloud of bias potentials (purple dots) added throughout the 2 ps-long metadynamics simulation. (C)
Visualization of the positions where the highest densities of bias potentials were added to steer the C-terminal tip of the a-tubulin
tail. The spatial distribution of these spots illustrates that the tail is predominantly located at the longitudinal polymerization
interface. Residue S439 where the tail originates is shown in blue.
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Figure S5 (related to Figure 4)

(A) TIRF microscopy images of GFP-EB1 (100 nM, green) on recombinant tyrosinated (100%) and detyrosinated (0%) microtu-
bules. (B) Averaged fluorescence intensity profiles of GFP-EB1 (100 nM) on 15 uM tyrosinated (100%; n=124) or detyrosinated
(0%; n=96) microtubules. (C) Comet profiles parameters. Comet profiles were fitted using Gaussian (-1.5 to 0 ym) and single
exponential functions (0 to 1.5 ym; STAR Methods). (D, E) Plus-end dynamic parameters of 6 uM tyrosinated (100% Tyr) or
detyrosinated (0% Tyr) microtubules in the presence of 300 nM EB1 and 0/75/300 nM GFP-H2. (D) Growth rates; n= 223, 82,
426, 309, 934, and 106 growth phases for 100%Tyr/EB1, 0%Tyr/EB1, 100%Tyr/EB1/H2 (75 nM), 0%Tyr/EB1/H2 (75 nM),
100%Tyr/EB1/H2 (300 nM), and 0%Tyr/EB1/H2 (300 nM), respectively. Whiskers represent minimum and maximum. (E)
Catastrophe frequencies; n= 39, 17, 63, 50, 63, and 21 microtubules for 100%Tyr/EB1, 0%Tyr/EB1, 100%Tyr/EB1/H2 (75 nM),
0%Tyr/EB1/H2 (75 nM), 100%Tyr/EB1/H2 (300 nM), and 0%Tyr/EB1/H2 (300 nM), respectively. Error bars represent S.D.
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Figure S6. CLIP-170 preferentially increases the rescue rates of tyrosinated microtubules (related to Figure 4).
(A) Representative IRM kymographs of 6 uM 100% (left) or 0% (right) tyrosinated microtubules with 300 nM GFP-H2. (B)
Representative IRM (top) and TIRF microscopy (bottom) kymographs of 6 uM tyrosinated (100% Tyr; left) or detyrosinated

(0% Tyr; right) microtubules with 300 nM GFP-H2 (green).
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