SUPPORTING INFORMATION

Polyethylenimine-Bisphosphonate-Cyclodextrin Ternary Conjugates: Supramolecular Systems for the Delivery of Antineoplastic Drugs

Simona Plesselova,^{a,d,†} Pablo Garcia-Cerezo,^{b,d,†} Victor Blanco,^{b,d} Francisco J. Reche-Perez,^{a,d} Fernando Hernandez-Mateo,^{b,c,d} Francisco Santoyo-Gonzalez,^{b,c,d*} María Dolores Giron-Gonzalez,^{a,d} and Rafael Salto-Gonzalez^{a,d*}

^aDepartment of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain

^bDepartment of Organic Chemistry, School of Sciences, University of Granada, E-18071 Granada, Spain ^cBiotechnology Institute, University of Granada, E-18071 Granada, Spain

^dUnit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain

Corresponding Authors e-mails: rsalto@ugr.es; fsantoyo@ugr.es

List of Contents

1. Synthesis and characterization of PEI-BP-CD (20-21a,b) and PEI-MP-CD (22a.b)	
ternary systems	S3
2. NMR Spectra	S4
3. HRMS Spectra of key Products	S35
5. Particle size of the PEI-BP-CD ternary conjugates	S42
6. Subcellular fractionation of MG-63 cells	S43
7. Effects of inhibitors of internalization routes on DOX⊂21b uptake	S44
8. Specific PEI-BP-CD (20-21b) and PEI-MP-CD (22b) conjugates uptake in bone ce	lls S45
9. In vivo imaging of tumor MDA-MB-231 xenografts in mice	S46

1. Synthesis of PEI-BP-CD (20-21a,b) and PEI-MP-CD (22a,b) ternary systems

Entry	2kPEI (µmol)	Phosphonate (µmol)	β-CD-VS (µmol)	Compound(mg)
1	12.5	7 (12.5)	50.0	20a (95)
2	12.5	7 (25.0)	50.0	20b (47)
3	12.5	11 (12.5)	50.0	21a (76)
4	12.5	11 (25.0)	50.0	21b (82)
5	7.5	17 (7.5)	30.0	22a (54)
6	7.5	17 (15.0)	30.0	22b (57)

Table S1. Individual Conditions.

Compound 20a. White foam. ³¹P NMR (202 MHz, D₂O/DMSO-d₆): δ =17.73. IR (neat): v= 2969, 1740, 1367, 1216, 1026 cm⁻¹.

Compound 20b. White foam. ³¹P NMR (162 MHz, D₂O/DMSO-d₆): δ =17.75. IR (neat): v= 2932, 1740, 1367, 1216, 1026 cm⁻¹.

Compound 21a. White solid. ³¹P NMR (202 MHz, $D_2O/DMSO-d_6$): $\delta=6.50$. IR (neat): v=3282, 2930, 1285, 1079, 1022 cm⁻¹.

Compound 21b. White solid. ³¹P NMR (202 MHz, D₂O/DMSO-d₆): δ =6.89. IR (neat): v= 3282, 2930, 1739, 1367, 1079, 1026 cm⁻¹.

Compound 22a. Light yellow solid. ³¹P NMR (202 MHz, D₂O/DMSO-d₆): δ=11.50. IR (neat): ν= 3271, 2923, 1738, 1365, 1078, 1024 cm⁻¹.

Compound 22b. Light yellow solid. ³¹P NMR (202 MHz, D₂O/DMSO-d₆): δ =11.01. IR (neat): v= 2914, 1740, 1367, 1080, 1029 cm⁻¹.

3. NMR spectra

Compound 2:

Figure S2. ¹³C NMR (101 MHz, CDCl₃) spectrum of 2.

Compound 4:

Figure S4. ¹³C NMR (101 MHz, CDCl₃) spectrum of 4.

Figure S6. ¹³C NMR (101 MHz, CDCl₃) spectrum of 5.

Figure S7. ³¹P NMR (162 MHz, CDCl₃) spectrum of 5.

Figure S8. ¹H NMR (400 MHz, D_2O) spectrum of 6.

Figure S10. ¹³C NMR (101 MHz, D₂O) spectrum of **7**.

Figure S12. DOSY NMR (500 MHz, D₂O) spectrum of 7.

Figure S14. ¹³C NMR (101 MHz, CDCl₃) spectrum of 9.

Figure S15.³¹P NMR (162 MHz, CDCl₃) spectrum of 9.

Figure S16. ¹H NMR (400 MHz, D_2O) spectrum of 10.

Figure S18. ³¹P NMR (162 MHz, D₂O) spectrum of 10.

Figure S20. 13 C NMR (126 MHz, D₂O) spectrum of 11.

Figure S22. DOSY NMR (500 MHz, D₂O) spectrum of 11.

Figure S25. ³¹P NMR (162 MHz, CDCl₃) spectrum of 13.

Figure S26. ¹H NMR (400 MHz, CD₃OD) spectrum of 14.

Figure S27. ¹³C NMR (101 MHz, CD₃OD) spectrum of 14.

Figure S28.³¹P NMR (162 MHz, CD₃OD) spectrum of 14.

S18

Figure S32. HSQC NMR (500 MHz and 126 MHz, CDCl₃) spectrum of 16.

Figure S36. HSQC NMR (400 MHz and 101 MHz, D₂O) spectrum of 17.

Figure S37. DOSY NMR (500 MHz, D₂O) spectrum of 17.

Compound 20a:

Figure S39. ³¹P NMR (202 MHz, D₂O/DMSO-*d*₆) spectrum of **20a**.

Figure S40. DOSY NMR (500 MHz, D₂O/DMSO-*d*₆) spectrum of 20a.

Compound 20b:

Figure S42. ³¹P NMR (162 MHz, $D_2O/DMSO-d_6$) spectrum of 20b.

Figure S43. DOSY NMR (500 MHz, D₂O/DMSO-*d*₆) spectrum of 20b.

Compound 21a:

6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 ppm

Figure S44. Partial ¹H NMR (600 MHz, D₂O/DMSO-*d*₆) spectrum of **21a**.

Figure S45. ³¹P NMR (202 MHz, D₂O/DMSO-*d*₆) spectrum of **21a**.

Figure S45. DOSY NMR (600 MHz, D₂O/DMSO-*d*₆) spectrum of 21a.

Compound 21b:

6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 ppm

Figure S47. Partial ¹H NMR (600 MHz, D₂O/DMSO-*d*₆) spectrum of **21b**.

Figure S48. ³¹P NMR (202 MHz, D₂O/DMSO-*d*₆) spectrum of **21b**.

Figure S49. DOSY NMR (600 MHz, D₂O/DMSO-*d*₆) spectrum of 21b.

Compound 22a:

Figure S51. ³¹P NMR (202 MHz, D₂O/DMSO-*d*₆) spectrum of **22a**.

Figure S52. DOSY NMR (500 MHz, D₂O/DMSO-*d*₆) spectrum of 22a.

Compound 22b:

Figure S54. ³¹P NMR (202 MHz, D₂O/DMSO-*d*₆) spectrum of **22b**.

Figure S55. DOSY NMR (500 MHz, D₂O/DMSO-*d*₆) spectrum of **22b**.

3. HRMS spectra of key compounds

Figure S56. HRMS (ESI⁺) spectrum of 5.

Figure S57. Partial HRMS (ESI⁺) spectrum of 5.

Figure S58. HRMS (ESI⁻) spectrum of 7 (performed using 0.1% of formic acid).

Figure S60. Partial HRMS (ESI⁺) spectrum of 9.

Figure S61. HRMS (ESI⁺) spectrum of 11 (performed using 0.1% of formic acid).

Figure S63. Partial HRMS (ESI⁺) spectrum of 13.

Figure S64. HRMS (ESI⁺) spectrum of 14.

Figure S65. Partial HRMS (ESI⁺) spectrum of 14.

Figure S67. Partial HRMS (ESI⁺) spectrum of 16.

Figure S68. HRMS (ESI⁻) spectrum of 17.

Figure S69. Partial HRMS (ESI⁻) spectrum of 17.

5. Particle size of the PEI-BP-CD ternary conjugates

Nanoparticle	Size (nm)	SEM
20a	445.9	55.6
20b	450.9	15.8
21 a	533.0	45.6
21b	402.8	29.4
22a	529.8	22.1
22b	560.3	27.5

Table S2. Particle size of the PEI-BP-CD ternary conjugates

The nanoparticle size was determined using the Zetasizer μV instrument (Malvern) and 50 μ l UVtransparent Disposable cuvettes (Sarsted). A 0.1 mg/ml suspension of nanoparticles (PEI- β CD or PEI-BP derivatives) was prepared in PBS and the measurement was carried out at 25°C with a refractive index of the sample of 1.53 and A=0, with 3 cycles of 15 measurements of 10 s.

6. Subcellular fractionation of MG-63 cells

	Pyruvate Carboxylase		Histone H3	
Fraction	DOX	DOX⊂21a	DOX	DOX⊂21a
Lysate	100.00 ± 6.68	100.00 ± 10.31	100.00 ± 16.10	100.80 ± 12.80
Cytosol	31.43 ± 9.54	42.73 ± 1.43	16.04 ± 4.54	11.49 ± 0.28
Nuclei	123.40 ± 6.00	84.81 ± 33.64	109.13 ± 15.51	95.67 ± 5.18
Mitochondria	210.73 ± 21.46	210.94 ± 8.38	9.72 ± 2.90	7.61 ± 3.83

Table S3. Subcellular fractionation of MG-63 cells

Mitochondria from MG-63 cells treated with DOX or **DOX** \subset **21a** for two hours were isolated by a differential centrifugation method. Briefly, cells were washed and scraped with 1.5 ml of sterile icecold phosphate-buffered saline (PBS, Sigma-Aldrich, Missouri, USA) and centrifuged 10 min at 800 x g. The pellet was homogenized with a mitochondrial isolation buffer (Tris HCl 50 mM pH 7.5; sucrose 250mM, EDTA 1mM) in a Teflon-glass homogenizer at maximum speed for 10 passes. The cell lysate was centrifuged 10 min at 800 x g to remove cell debris and nuclei and then the supernatant was spun 10 min at 10 000 x g to obtain mitochondria enriched pellet and a cytosolic fraction as supernatant. All procedure was carried out in cold conditions (at 4 °C). Markers for each subcellular fraction were measured by Western-blot using an antibody against Pyruvate Carboxylase as mitochondrial marker and against Histone H3 as nuclear marker. Results are means ± S.E.M. (n=4).

7. Effects of inhibitors of internalization routes on DOX 21b uptake

Figure S70. *Effects of inhibitors of internalization routes on* **DOX** \subset **21b** uptake. HeLa and MG-63 sarcoma cells were pretreated with chlorpromazine (50 µM), sucrose (0.45 M), filipin (5 µg/mL), genistein (400 µM), cytochalasin D (2 µM) or bromosulfophthalein (BSP) (0.25 mM) for 30 min before incubation with **DOX** \subset **21b** (1µM). DOX uptake was determined 2 h later. Results are expressed as pmol of DOX/mg protein as means ± SEM (n = 6). *p < 0.05 vs **DOX** \subset **21b** treated cells.

8. Specific PEI-BP-CD (20-21b) and PEI-MP-CD (22b) conjugates uptake in bone cells

Figure S71. Specific PEI-BP-CD (**20-21b**) and PEI-MP-CD (**22b**) conjugates. HeLa and MG-63 sarcoma cells were incubated with mitotracker Deep Red (a) for 30 min, and then with different PEI-BP derivatives containing DOX (b) for 2 hours. Merge (c) and Nomarsky (d) photos are also depicted.

9. In vivo imaging of tumor MDA-MB-231 xenografts in mice

Figure S72. *In vivo imaging of tumor MDA-MB-231 xenografts in mice.* NSG mice bearing breast cancer (MDA-MB-231 cells) tumors were injected intravenously in the tail vein with IGC $\subset\beta$ CD or **IGC\subset21b** and fluorescence was measured 30 min later. (A) ICG fluorescence images. The size of the xenografts is indicated by a dotted line. (B) Average radiance of the xenografts in vivo. Data are shown as means \pm SEM (n = 4). *p < 0.05 vs C animals.