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Sl Figure 1. Metastatic cell line derivation and validation. (A) Representative flow cytometry
plot for metastatic tissue-derived isolates prior to sorting. The desired CD44"°*/EpCAM"" and
CD44""/EpCAM"" cell populations and associated gates are highlighted. These cells were
sorted and for transcriptomic analysis. (B) Clonal isolates from (A) recapitulate metastatic disease
in vivo. Sorted cells were reimplanted into disease-free FVB mice. Once tumors formed, distal
organs were collected and examined for metastatic lesions. A representative FACS plot for
metastatic cells harvested from lymph node tissue upon tumor reimplantation in FVB mice. The
expected CD44"°*/EpCAM"" and CD44""/EpCAM™" populations are highlighted. (C) PCR was
used to confirm the presence of PyMT viral antigen using gDNA extract from cell lines and
controls. Samples with amplified 500bp and 200bp bands are positive for PyMT antigen
expression.
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S| Figure 2. Established breast cancer transcripts identified in MMTV-PyMT cell lines. Bulk
RNA sequencing analysis of bone marrow, lung, and lymph node-derived cell lines was performed
and transcript levels for a panel of breast cancer markers were measured. For (A-H), expression of
gene transcripts (TPM, transcript per million) for CD44 high expressing cells (yellow), CD44 low
expressing cells (purple), and MFP CD44 expressing cells (blue) are shown.
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Sl Figure 3. Complete list of enriched GO-terms and pathway analysis from Fig 1D. Heat
map shows the enrichment scores of the pathways for each cluster (A-E; i-iii).
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S| Figure 4. Western blot analysis of markers identified from RNA-seq analysis. Select
markers were selected from among the DEGs shown in Fig 1D. The following proteins were
examined: Id2 (predicted to be highly expressed in lymph node-derived cell lines) and CEACAM1
(predicted to be highly expressed in bone marrow-derived cell lines). Actin was used as a loading

control.
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S| Figure 5. Box and whisker plot comparing the number of upregulated genes in
CD44"9"[EpCAM"" (top plot) and CD44"°“/EpCAM"9" (bottom plot) expressing cells from
the different metastatic tissues of origin. Distinct gene expression signatures are shown with
single black dots corresponding to a specific tissue-derived clonal isolate. Genes that are shared
between different metastatic sites are represented by black lines that connect the specific
samples. The total number of upregulated genes are denoted above each bar on the graph.
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S| Figure 6. Volcano plots of DEGs from tissue-derived metastatic cell lines. (A-C) Volcano
plots of DEGs from tissue-derived metastatic cell lines with CD44""/EpCAM"" expression
compared to primary tumor samples. (A) Upregulated genes in bone marrow-derived (BM)
isolates with CD44""/EpCAM"" expression are shown in red (1,400 genes), while 808 genes
(blue) were upregulated in the primary tumor. (B) Upregulated genes in lung-derived isolates with
CD44""/EpCAM™" expression are shown in red (1,524 genes), while 1,775 genes (blue) were
upregulated in the primary tumor. (C) Upregulated genes in lymph node-derived (LN) isolates with
CD44""/EpCAM™" expression are shown in red (985 genes), while 785 genes (blue) were
upregulated in the primary tumor. (D-F) Volcano plots of differentially expressed genes from
tissue-derived metastatic cell lines with CD44"°Y/EpCAM"" expression when compared to primary
tumor samples. (D) Upregulated genes in bone marrow-derived (BM) isolates with
CD44"°"/EpCAM"" expression are shown in red (1,600 genes), while 776 genes (blue) were
upregulated in the primary tumor. (E) Upregulated genes in lung-derived isolates with
CD44"°"/EpCAM"" expression are shown in red (2,907 genes), while 1666 genes (blue) were
upregulated in the primary tumor. (F) Upregulated genes in lymph node-derived (LN) isolates with
CD44"°"/EpCAM"®" expression are shown in red (778 genes), while 645 genes (blue) were
upregulated in the primary tumor. The fewer differentially expressed genes amongst the tissue-
derived isolates compared to the primary tumor is suggestive of the order in the metastatic
cascade with LN-derived isolates bring the first metastatic site.
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Sl Figure 7. Cell proliferation analysis. MMTV-PyMT cell growth was measured over 24 h using
a crystal violet assay. Relative proliferation values for lymph node (LN) and lung-derived cells
(compared to MFP-derived cells) are shown. Error bars represent the standard deviation of the
mean for n=3 replicates. ** p < 0.01; * p < 0.05
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S| Figure 8. Analysis of DEGs from metastatic isolates based on CD44 expression. (A)
Volcano plots showing DEGs in CD44"9"/EpCAM"" (red) versus CD44"°*/EpCAM"" (blue) from
(A) lymph node-derived, (B) lung-derived, and (C) bone marrow-derived metastatic cells. (D) GO
terms and relevant genes upregulated in CD44"9"/EpCAM"9" bone marrow-derived cells. (E) GO
terms and relevant genes upregulated in CD44"°"/EpCAM"" bone marrow-derived cells.
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S| Figure 9. Hierarchical clustering analysis from single cell sequencing analyses. Single
cell sequencing heat map showing 13 tissue-specific clusters. See Satija, et al. for details on
the method.
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S| Figure 10. Monocle2 pseudo-time analysis of single cells. The metastatic trajectory of
distinct cells clusters is shown. The composition of the cells was identified by coloring the pseudo-
time map with the tissue of origins (as in Fig. 5A). Expression of cellular proliferation markers (A,
B), metabolism markers (C, D), extracellular remodeling markers (E,F), stem cell signatures
(G,H), and cancer dormancy markers (l,J) of single cells across pseudo-time. Trend line on
graphs tracks the statistical significance of gene expression as it changes across pseudo-time.
See Qiu, et al. for details on Monocle2.
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