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Proofs 
 
Notation. 
 
Let the subscript 𝑡 index the timing of measurement for variable 𝑉𝑡  (0=pre-baseline, 1=baseline, 2=follow-
up). Let 𝐿1 and 𝐿2 equal, respectively, a patient’s outcome (e.g., blood pressure) at the baseline and follow-up 
visit. Let 𝑌1 and 𝑌2 equal, respectively, a patient’s diagnosis based on 𝐿 (e.g., uncontrolled hypertension; 
1=yes, 0=no) at the baseline and follow-up visit. Let 𝑀1 equal a determinant of 𝐿2 that we want to intervene 
upon to alter the distribution of 𝑌2 (e.g., decision to intensify antihypertensive treatment; 1=yes, 0=no). Let  
𝑋0

𝑒𝑑𝑢 , 𝑋0
𝑖𝑛𝑠, 𝑋0

𝑑𝑖𝑎  (educational attainment, private health insurance, and diabetes, respectively) be measured 
common causes of 𝐿1, 𝑀1, and 𝐿2, let 𝑋0

𝑎𝑔𝑒
 and 𝑋0

𝑠𝑒𝑥  (age and sex, respectively) equal common causes of all 
these variables, let 𝑅0 equal a binary variable that defines a socially marginalized population (e.g., race), let 
𝐻0 equal sociopolitical forces (e.g., racism) that creates association between 𝑅0 and 𝑋. Let 𝑈0 equal an 
unmeasured source of correlation between 𝐿1 and 𝐿2. (Our results still hold even if this unmeasured cause 
affects the covariates 𝑋). For intuition, see eFigure 1 for a causal graph relating these variables. Let 𝑉(𝑤) 
equal the value that 𝑉 would take (i.e. potential outcome, counterfactual) had 𝑊 been set to value 𝑤. Let the 
notation 𝑉∐𝑊|𝑍 denote statistical independence between 𝑉 and 𝑊 given 𝑍.  
 

 
  

eFigure 1. Causal graph describing the the 𝑅0—𝑌2 association through 𝐻,𝑋,𝐿1,𝑌1,𝑀1, and 𝐿2 
 
Definition. 
 
General formulation. 
 
As defined above, the variable 𝑅 represents the social status across which the disparity will be measured (e.g. 
race). 𝑅0 = 𝑟0 will represent a marginalized group (e.g. blacks) and 𝑅0 = 𝑟0

′ the privileged group (e.g. whites). 
(It is entirely possible to consider the following proposition with these values switched). The population of 
interest consists of all patients with uncontrolled hypertension at baseline (𝑌1 = 1). Consider an intervention 
to set the distribution of a target variable 𝑀1 (antihypertensive treatment intensification) to affect disparities 
in the outcome 𝑌2, uncontrolled hypertension. We will define three non-overlapping sets. The first variable 

set 𝑨𝟏
𝒚

 defines the covariates that are considered both outcome- and target-allowable. The second variable set 

𝑨𝟏
𝒎 defines covariates that are additionally considered target-allowable but not outcome-allowable. The third 

variable set 𝑵𝟏 defines covariates that, in addition to those in 𝑨𝟏
𝒚

 and 𝑨𝟏
𝒎, are needed for causal identification 

but are nonetheless considered non-allowable. It is permissible to partition the covariates such that some sets 

remain empty. For example, if 𝑨𝟏
𝒚

 contains all covariates, then by definition 𝑨𝟏
𝒎 and 𝑵𝟏 are empty. All 

expressions that follow condition on the population of interest, patients with hypertension at baseline. 
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Proposition. 
 
Consider an intervention 𝐺𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚  among those with 𝑅0 = 𝑟0 to set the distribution of 𝑀1 according to the 

observed distribution 𝑃(𝑚1|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

). The observed disparity prior to intervention, and the reduced 

and residual disparity after intervention are given, respectively, as: 
 

i)   ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝒂𝟏
𝒚]𝑃(𝒂𝟏

𝒚) − ∑ 𝐸[𝑌2|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒚
]𝑃(𝒂𝟏

𝒚)𝒂𝟏
𝒚

𝒂𝟏
𝒚   

ii)  ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

]𝑃(𝒂𝟏
𝒚)𝒂𝟏

𝒚 − ∑ 𝐸[𝑌2(𝐺𝑚1|𝒂𝟏
𝒎𝒂𝟏

𝒚)|𝑅0 = 𝑟0, 𝒂𝟏
𝒚]𝑃(𝒂𝟏

𝒚)𝒂𝟏
𝒚   

iii) ∑ 𝐸 [𝑌2(𝐺𝑚1|𝒂𝟏
𝒎𝒂𝟏

𝒚)|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

] 𝑃(𝒂𝟏
𝒚) − ∑ 𝐸[𝑌2|𝑅0 = 𝑟0

′, 𝒂𝟏
𝒚

]𝑃(𝒂𝟏
𝒚)𝒂𝟏

𝒚
𝒂𝟏

𝒚  

 

These definitions require that 𝑃(𝑅0 = 𝑟0|𝒂𝟏
𝒚

) > 0 and 𝑃(𝑅0 = 𝑟0
′|𝒂𝟏

𝒚
) > 0 for all 𝒂𝟏

𝒚
 with 𝑃(𝒂𝟏

𝒚
) > 0.  

 
Remark 1. Alternate definitions of (i)-(iii) that replace the pooled distribution of the outcome-allowable 

covariates 𝑃(𝒂𝟏
𝒚

) can be used. For example, if the distribution the outcome-allowable covariates among blacks 

were used, we would replace 𝑃(𝒂𝟏
𝒚

) with 𝑃(𝒂𝟏
𝒚

|𝑅0 = 𝑟0), under the weaker assumption that  

𝑃(𝑅0 = 𝑟0
′|𝒂𝟏

𝒚
) > 0 for all 𝒂𝟏

𝒚
 with 𝑃(𝒂𝟏

𝒚
|𝑅0 = 𝑟0) > 0. Likewise, if the distribution of the outcome-allowable 

covariates among whites were used, we would replace 𝑃(𝒂𝟏
𝒚

) with 𝑃(𝒂𝟏
𝒚

|𝑅0 = 𝑟0
′), under the weaker 

assumption that 𝑃(𝑅0 = 𝑟0|𝒂𝟏
𝒚

) > 0 for all 𝒂𝟏
𝒚

 with 𝑃(𝒂𝟏
𝒚

|𝑅0 = 𝑟0
′) > 0. Alternatively, one could restrict the 

population of interest to a region where common support holds, perhaps through eligibility criteria. Then, 
each component of the formulae above would implicitly condition on the eligible population of interest. 
 

Henceforth, we will develop results using the pooled distribution of outcome-allowable covariates 𝑃(𝒂𝟏
𝒚

) to 

measure disparities. The alternatives we outlined will produce diverging estimates when measures of 

disparity within levels of the outcome-allowable covariates 𝑨𝟏
𝒚

 vary across levels of these covariates. 

 
Identification. 
 

As stated, let 𝑵𝟏 denote additional variables needed for conditional exchangeability beyond 𝑨𝟏
𝒎 and 𝑨𝟏

𝒚
. 

 
Assumptions. 
 
A) Conditional exchangeability among 𝑅0 = 𝑟0:  
 

𝑌2(𝑚)∐𝑚1|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
 for all values 𝑚1 with 𝑃(𝑚1|𝑅0 = 𝑟0

′, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
) > 0 

 
B1) Positivity among 𝑅0 = 𝑟0: 
 

𝑃(𝑚1|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
) > 0 for 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

 with 𝑃(𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚|𝑅0 = 𝑟0) > 0 for all values 𝑚1 with 

𝑃(𝑚1|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

) > 0 

 
B2) Common support across 𝑅0: 
 

𝑃(𝒂𝟏
𝒎, 𝒂𝟏

𝒚|𝑅0 = 𝑟0) > 0 if 𝑃(𝒂𝟏
𝒎, 𝒂𝟏

𝒚|𝑅0 = 𝑟0
′) > 0 and 𝑃(𝑚1|𝑅0 = 𝑟0, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

) > 0 if 𝑃(𝑚1|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

) > 0 

for 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
 with 𝑃(𝒂𝟏

𝒎, 𝒂𝟏
𝒚|𝑅0 = 𝑟0

′) > 0 

 
C) Consistency:  
 

𝑀1,𝑖 = 𝑚1,𝑖 ⇒ 𝑌2,𝑖 = 𝑌2,𝑖(𝑚1,𝑖) for all individuals 𝑖 
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Remark 2. Assumption “A” is a form of “partial” conditional exchangeability: within levels of allowables and 
non-allowables among blacks, only potential outcomes indexed by certain target values (those values 
observed among whites with identical values for allowables) are assumed to be independent of the observed 
target value. Assumption B1 is a form of “partial” positivity: within levels of allowables and non-allowables 
among blacks, only certain values of the target (those values observed among whites with identical values for 
allowables) are assumed to be observed with positive probability. These assumptions allow for identification 
when, for some values of allowables, blacks’ treatment is always intensified if whites’ treatment is as well. 
These conditional exchangeability and positivity assumptions are weaker than their standard versions. 
 
Following Jackson & VanderWeele 2018 and Jackson 2018 we have among those with 𝑅0 = 𝑟0: 
 

∑ 𝐸 [𝑌2 (𝐺𝑚1|𝒂𝟏
𝒎𝒂𝟏

𝒚 = 𝑚1) |𝑅0 = 𝑟0, 𝒂𝟏
𝒚

] 𝑃(𝒂𝟏
𝒚

)𝒂𝟏
𝒚   

 = ∑ 𝐸 [𝑌2(𝑚1)|𝑅0 = 𝑟0, 𝐺𝑚1|𝒂𝟏
𝒎𝒂𝟏

𝒚 = 𝑚1, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎 𝑃 (𝐺𝑚1|𝒂𝟏
𝒎𝒂𝟏

𝒚 = 𝑚1|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
) 𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

)   

 = ∑ 𝐸[𝑌2(𝑚1)|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎 𝑃 (𝐺𝑚1|𝒂𝟏
𝒎𝒂𝟏

𝒚 = 𝑚1|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
) 𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

)   

 = ∑ 𝐸[𝑌2(𝑚1)|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒎|𝑅0 = 𝑟0, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒚
)    

 = ∑ 𝐸[𝑌2(𝑚1)|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0

′, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒎|𝑅0 = 𝑟0, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒚
)   

 = ∑ 𝐸[𝑌2(𝑚1)|𝑅0 = 𝑟0, 𝑚1, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0

′, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒎|𝑅0 = 𝑟0, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒚
)   

 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0

′, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒎|𝑅0 = 𝑟0, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒚
)  (1) 

 
Where the first (and fourth) equality follow by the total law of probability, the second by definition of 
𝐺𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚  as random among 𝑅0 = 𝑟0 given 𝒂𝟏

𝒎 and 𝒂𝟏
𝒚

, the third by definition of 𝐺𝑚1|𝒂𝟏
𝒎𝒂𝟏

𝒚  among 𝑅0 = 𝑟0 as a 

random draw from the distribution 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

) under assumption B2, the fifth by A and B1, 

and the sixth by C. 
 
Note that among those with 𝑅0 = 𝑟0: 
 

∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

]𝑃(𝒂𝟏
𝒚

)𝒂𝟏
𝒚   

 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

)  (2) 

 
And likewise, among those with 𝑅0 = 𝑟0

′: 
 

∑ 𝐸[𝑌2|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒚
]𝑃(𝒂𝟏

𝒚
)𝒂𝟏

𝒚   

 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0
′, 𝑚1, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

]𝑚1,𝒂𝟏
𝒚

,𝒂𝟏
𝒎 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0

′, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒚
)  (3) 

 
Alternatively, among those with 𝑅0 = 𝑟0

′: 
 

∑ 𝐸[𝑌2|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒚
]𝑃(𝒂𝟏

𝒚
)𝒂𝟏

𝒚   

 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0
′, 𝑚1, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

]𝑚1,𝒂𝟏
𝒚

,𝒂𝟏
𝒎,𝒏𝟏

𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0
′, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒏𝟏|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒎|𝑅0 = 𝑟0

′, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

)  (3*) 

 
Remark 3. Equations (1), (2), and (3) represent g-formulae for decomposition with time-fixed interventions.  
 

Remark 4. The distribution 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

) in (1) could be viewed as a marginalization of  

𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0
′, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

) over the distribution 𝑃(𝒏𝟏|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

) rather than conditional 

independence between 𝑀1 and 𝑵𝟏 given 𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, and 𝒂𝟏
𝒚

, as can be seen by contrasting the expressions 

(3) and (3*).  Nonetheless, this distribution 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

) defines the intervention 𝐺𝑚1|𝒂𝟏
𝒎𝒂𝟏

𝒚  

which, when applied to blacks 𝑅0 = 𝑟0, produces independence between 𝑀1 and 𝑵𝟏 given 𝒂𝟏
𝒎, and 𝒂𝟏

𝒚
. 

 
Remark 5. The comparison to existing estimators on pages 9 to 13 are derived under the alternate 
identification formulae (1), (2), and (3*). 
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Estimation.  
 
Decomposition using Ratio of Mediator Probability Weights (RMPW) 
 
Let 𝑀1 be categorical with 𝑗 levels 𝑚1𝑗 . 

 
Among those with 𝑅0 = 𝑟0 we have that: 
 

∑ 𝐸[𝑌2(𝐺𝑚1|𝒂𝟏
𝒎𝒂𝟏

𝒚)|𝑅0 = 𝑟0, 𝒂𝟏
𝒚]𝑃(𝒂𝟏

𝒚)𝒂𝟏
𝒚    

 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1𝑗 , 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0

′, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒎|𝑅0 = 𝑟0, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒚
)   

 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1𝑗 , 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

)   

 
                               ×

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)
 

 

 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1𝑗 , 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

|𝑅0 = 𝑟0)  

 
                               ×

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

×
𝑃(𝒂𝟏

𝒚
)

𝑃(𝒂𝟏
𝒚

|𝑅0 = 𝑟0)
   

 

 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1𝑗 , 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

|𝑅0 = 𝑟0)  

 
                               ×

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

×
𝑃(𝑟0)

𝑃(𝑟0|𝒂𝟏
𝒚

)
  

 

 = 𝐸[𝐸[𝑌2 × 𝑤𝑟0

𝑟𝑚𝑝𝑤
|𝑟0, 𝑚1, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

]|𝑟0]  (4a) 

   

 
where 𝑤𝑟0

𝑟𝑚𝑝𝑤
=

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

×
𝑃(𝑟0)

𝑃(𝑟0|𝒂𝟏
𝒚

)
  (4b) 

 
The first equality is identified via eqn 1. 
 
Note that, among those with 𝑅0 = 𝑟0 we have: 
 

∑ 𝐸[𝑌2|𝑟0, 𝒂𝟏
𝒚

]𝑃(𝒂𝟏
𝒚

)𝒂𝟏
𝒚    

 = 𝐸[𝐸[𝑌2 × 𝑤𝑟0
|𝑟0, 𝑚1, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

]|𝑟0]  (5a) 

   

 where 𝑤𝑟0
=

𝑃(𝑟0)

𝑃(𝑟0|𝒂𝟏
𝒚

)
 (5b) 

 
And among those with 𝑅0 = 𝑟0

′: 
 

∑ 𝐸[𝑌2|𝑟0
′, 𝒂𝟏

𝒚
]𝑃(𝒂𝟏

𝒚
)𝒂𝟏

𝒚    

 = 𝐸[𝐸[𝑌2 × 𝑤𝑟0
′|𝑟0

′, 𝑚1, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]|𝑟0

′]  (6a) 

   

 where 𝑤𝑟0
′ =

𝑃(𝑟0
′)

𝑃(𝑟0
′
|𝒂𝟏

𝒚
)
  (6b) 
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Thus, under the expressions and weights defined above, we have the general result: 
 
  The observed disparity 

𝜓𝑜𝑏𝑠 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝒂𝟏
𝒚]𝑃(𝒂𝟏

𝒚) − ∑ 𝐸[𝑌2|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒚
]𝑃(𝒂𝟏

𝒚)𝒂𝟏
𝒚

𝒂𝟏
𝒚   (7a) 

 = 𝐸[𝐸[𝑌2 × 𝑤𝑟0
|𝑟0, 𝑚1, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

]|𝑟0] − 𝐸[𝐸[𝑌2 × 𝑤𝑟0
′|𝑟0

′, 𝑚1, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]|𝑟0

′]  

  
The reduced disparity 
𝜓𝑟𝑒𝑑 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝒂𝟏

𝒚]𝑃(𝒂𝟏
𝒚) − ∑ 𝐸[𝑌2(𝐺𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚)|𝑅0 = 𝑟0, 𝒂𝟏

𝒚]𝑃(𝒂𝟏
𝒚)𝒂𝟏

𝒚  𝒂𝟏
𝒚   (7b) 

 = 𝐸[𝐸[𝑌2 × 𝑤𝑟0
|𝑟0, 𝑚1, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

]|𝑟0] − 𝐸[𝐸[𝑌2 × 𝑤𝑟0

𝑟𝑚𝑝𝑤
|𝑟0, 𝑚1, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

]|𝑟0]  

  
The residual disparity 
𝜓𝑟𝑒𝑠 = ∑ 𝐸[𝑌2(𝐺𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚)|𝑅0 = 𝑟0, 𝒂𝟏

𝒚]𝑃(𝒂𝟏
𝒚) − ∑ 𝐸[𝑌2|𝑅0 = 𝑟0

′, 𝒂𝟏
𝒚

]𝑃(𝒂𝟏
𝒚)𝒂𝟏

𝒚
𝒂𝟏

𝒚   (7c) 

 = 𝐸[𝐸[𝑌2 × 𝑤𝑟0

𝑟𝑚𝑝𝑤
|𝑟0, 𝑚1, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

]|𝑟0] − 𝐸[𝐸[𝑌2 × 𝑤𝑟0
′|𝑟0

′, 𝑚1, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]|𝑟0

′]  

 
 With weights defined as 

 𝑤𝑟0
=

𝑃(𝑟0)

𝑃(𝑟0|𝒂𝟏
𝒚

)
  

  

𝑤𝑟0
′ =

𝑃(𝑟0
′)

𝑃(𝑟0
′
|𝒂𝟏

𝒚
)
  

  

𝑤𝑟0

𝑟𝑚𝑝𝑤
=

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

×
𝑃(𝑟0)

𝑃(𝑟0|𝒂𝟏
𝒚

)
   

 
Contrast (7a) can be estimated as 𝛽1 in the weighted regression model with the observed data: 

 
𝐸[𝑌2|𝑅0] = 𝛽0 + 𝛽1𝑅0 fit with weights 𝑤𝑟0

 for those with 𝑅0 = 𝑟0 and 𝑤𝑟0
′ for those with 𝑅0 = 𝑟0

′. 

 
Constrast (7b) can be estimated as 𝛽1 in the weighted regression model with a stacked dataset consisting of 
the original subset 𝑅0 = 𝑟0 (labelled as 𝐷0 = 𝑑0) and a copy of the subset 𝑅0 = 𝑟0 (labelled as (𝐷0 = 𝑑0

′ ). 
 

𝐸[𝑌2|𝐷0] = 𝛽0 + 𝛽1𝐷0 fit with weights 𝑤𝑟0
 for those with 𝐷0 = 𝑑0 and 𝑤𝑟0

𝑟𝑚𝑝𝑤 for those with 𝐷0 = 𝑑0
′ . 

 
Contrast (7c) can be estimated as 𝛽1 in the weighted regression model with the observed data:  

 
𝐸[𝑌2|𝑅0] = 𝛽0 + 𝛽1𝑅0 fit with weights 𝑤𝑟0

𝑟𝑚𝑝𝑤  for those with 𝑅0 = 𝑟0 and 𝑤𝑟0
′ for those with 𝑅0 = 𝑟0

′. 

 

Remark 6. (7a), (7b), and (7c) are based on disparity measures that use the pooled distribution 𝑃(𝒂𝟏
𝒚

) to 

standardize the outcome-allowable covariates. With 𝑃(𝒂𝟏
𝒚

|𝑅0 = 𝑟0) as the standard the weights would be: 

𝑤𝑟0
= 1 𝑤𝑟0

′ =
𝑃(𝑟0|𝒂𝟏

𝒚
)

𝑃(𝑟0
′|𝒂𝟏

𝒚
)

×
𝑃(𝑟0

′)

𝑃(𝑟0)
 𝑤𝑟0

𝑟𝑚𝑝𝑤
=

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)
 

 
With 𝑃(𝒂𝟏

𝒚
|𝑅0 = 𝑟0

′) as the standard the weights would be:  

𝑤𝑟0
=

(𝑟0
′|𝒂𝟏

𝒚
)

𝑃(𝑟0|𝒂𝟏
𝒚

)
×

𝑃(𝑟0)

𝑃(𝑟0
′)

 𝑤𝑟0
′ = 1 𝑤𝑟0

𝑟𝑚𝑝𝑤
=

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

×
(𝑟0

′|𝒂𝟏
𝒚

)

𝑃(𝑟0|𝒂𝟏
𝒚

)
×

𝑃(𝑟0)

𝑃(𝑟0
′)

 

 
Remark 7. The conditionality of the intervention 𝐺𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚 appears through the numerator in (4b). Any non-

allowable confounders 𝑵𝟏 beyond the allowable variables defined in 𝑨𝟏
𝒎 and 𝑨𝟏

𝒚
 appear only in the 

denominator. Thus, the conditionality of the numerator will differ from the denominator whenever the 
intervention 𝐺𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚 does not condition on all of the confounders of 𝑀1. 
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Decomposition using Inverse Odds Ratio Weights (IORW) 
 
Let 𝑀1 be categorical with 𝑗 levels 𝑚1𝑗 . 

 
Among those with 𝑅0 = 𝑟0 we have that: 
 

∑ 𝐸[𝑌2(𝐺𝑚1|𝒂𝟏
𝒎𝒂𝟏

𝒚)|𝑅0 = 𝑟0, 𝒂𝟏
𝒚]𝑃(𝒂𝟏

𝒚)𝒂𝟏
𝒚    

 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1𝑗 , 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0

′, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒎|𝑅0 = 𝑟0, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒚
)   

 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1𝑗 , 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

|𝑅0 = 𝑟0)  

 
                               ×

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

×
𝑃(𝑟0)

𝑃(𝑟0|𝒂𝟏
𝒚

)
  

 

 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1𝑗 , 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

|𝑅0 = 𝑟0)  

 

                               ×

𝑃(𝑅0=𝑟0
′ ,𝑀1=𝑚1𝑗,𝒂𝟏

𝒎,𝒂𝟏
𝒚

)

𝑃(𝑅0=𝑟0
′ ,𝒂𝟏

𝒎,𝒂
𝟏
𝒚

)

𝑃(𝑅0=𝑟0,𝑀1=𝑚1𝑗,𝒏𝟏,𝒂𝟏
𝒎,𝒂

𝟏
𝒚

)

𝑃(𝑅0=𝑟0,𝒏𝟏,𝒂𝟏
𝒎,𝒂

𝟏
𝒚

)

×
𝑃(𝑟0)

𝑃(𝑟0|𝒂𝟏
𝒚

)
  

 

 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1𝑗 , 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

|𝑅0 = 𝑟0)  

 

                               ×

𝑃(𝑅 = 𝑟0
′

|𝑚1𝑗 , 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

𝑃(𝑅 = 𝑟0|𝑚1𝑗 , 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

𝑃(𝑅 = 𝑟0
′

|𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

𝑃(𝑅 = 𝑟0|𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

×
𝑃(𝑀1 = 𝑚1𝑗|𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)

𝑃(𝑀1 = 𝑚1𝑗|𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

×
𝑃(𝑟0)

𝑃(𝑟0|𝒂𝟏
𝒚

)
    

 

 = 𝐸[𝐸[𝑌2 × 𝑤𝑟0

𝑖𝑜𝑟𝑤|𝑟0, 𝑚1, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]|𝑟0]  (8a) 

   

 

where 𝑤𝑟0

𝑖𝑜𝑟𝑤 =

𝑃(𝑅 = 𝑟0
′

|𝑚1𝑗 , 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

𝑃(𝑅 = 𝑟0|𝑚1𝑗 , 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

𝑃(𝑅 = 𝑟0
′

|𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

𝑃(𝑅 = 𝑟0|𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

×
𝑃(𝑀1 = 𝑚1𝑗|𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)

𝑃(𝑀1 = 𝑚1𝑗|𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

×
𝑃(𝑟0)

𝑃(𝑟0|𝒂𝟏
𝒚

)
   (8b) 

 
The first equality is identified via eqn 1. 
 
The second and sixth equalities show that 𝑤𝑟0

𝑖𝑜𝑟𝑤 = 𝑤𝑟0

𝑟𝑚𝑝𝑤
 non-parametrically. Thus, we can implement IORW 

approach by following the procedure outlined with RMPW, replacing 𝑤𝑟0

𝑟𝑚𝑝𝑤
 (4b) by 𝑤𝑟0

𝑖𝑜𝑟𝑤  (8b). 

 
Remark 8.  The conditionality of the intervention 𝐺𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚 appears through the numerators in (8b). Any non-

allowable confounders  𝑵𝟏 beyond the allowable variables defined in 𝑨𝟏
𝒎 and 𝑨𝟏

𝒚
 appear only in the 

denominators. Thus, the conditionality of the numerators will differ from the denominators whenever the 
intervention 𝐺𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚 does not condition on all of the confounders of 𝑀1. 

 
Remark 9. The weight in (8b) is based on disparity measures that use the pooled distribution 𝑃(𝒂𝟏

𝒚
) to 

standardize the outcome-allowable covariates. With 𝑃(𝒂𝟏
𝒚

|𝑅0 = 𝑟0) as the standard the weight would be: 

 

𝑤𝑟0

𝑖𝑜𝑟𝑤 =

𝑃(𝑅 = 𝑟0
′

|𝑚1𝑗 , 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

𝑃(𝑅 = 𝑟0|𝑚1𝑗 , 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

𝑃(𝑅 = 𝑟0
′

|𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

𝑃(𝑅 = 𝑟0|𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

×
𝑃(𝑀1 = 𝑚1𝑗|𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)

𝑃(𝑀1 = 𝑚1𝑗|𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)
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With 𝑃(𝒂𝟏
𝒚

|𝑅0 = 𝑟0
′) as the standard the weight would be:   

 

𝑃(𝑅 = 𝑟0
′|𝑚1𝑗 , 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)

𝑃(𝑅 = 𝑟0|𝑚1𝑗 , 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

𝑃(𝑅 = 𝑟0
′|𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)

𝑃(𝑅 = 𝑟0|𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

×
𝑃(𝑀1 = 𝑚1𝑗|𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)

𝑃(𝑀1 = 𝑚1𝑗|𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)

×
𝑃(𝑟0

′|𝒂𝟏
𝒚

)

𝑃(𝑟0|𝒂𝟏
𝒚

)
×

𝑃(𝑟0)

𝑃(𝑟0
′)

 

 
Implementation 
 
The sketch for parametric g-computation in the main-text was based on models using the factorizations (1), 
(2), and (3). However, one can replace (3) with (3*). If that is done, the outcome models for blacks and whites 
would always condition on allowable and non-allowable covariates. Also, the target factor models would 
always condition on the allowable and non-allowable covariates among the observed scenarios for blacks and 
whites, but only condition on the allowables in the counterfactual scenario for blacks. This alternate 
specification can lead to issues with non-compatibility, as it may be difficult to specify models for  

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

) (used for estimating the counterfactual scenario for blacks under (3*)) and 

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝒏𝟏, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

) (used for estimating the observed scenario for whites under (3*)) that are 

compatible with one another. This challenge does not arise when (3) is used because then only  

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

) must be specified. 

 
Ratio of Mediator Probability Weighting 
 
The first component of the weight 𝑤𝑟0

𝑟𝑚𝑝𝑤
 is a ratio of two probabilities. The numerator could be estimated by 

fitting, among whites, a logistic regression model for the probability of treatment intensification 𝑀1 given the 

allowable covariates 𝑨𝟏
𝒎 and 𝑨𝟏

𝒚
. The denominator could be estimated by fitting an analogous model among 

blacks that further conditions on non-allowable confounders 𝑵𝟏. These models need not be compatible when 
fitted this way, separately for blacks and whites. The second component of the weight 𝑤𝑟0

𝑟𝑚𝑝𝑤
 could be 

obtained with logistic regression models for race 𝑅0 that do and do not control for the outcome-allowable 
covariates 𝑨𝟏

𝒚
. The predicted values from these four models are used to obtain the weight 𝑤𝑟0

𝑟𝑚𝑝𝑤
 for each 

individual. 
 
A stacking procedure can be used to estimate the effects of interest. To obtain the disparity reduction (2) 
minus (1), the data from blacks with weight 𝑤𝑟0

 (5b) are stacked onto a copy from blacks with weight 𝑤𝑟0

𝑟𝑚𝑝𝑤
 

(4b) and labelled with a new variable called data origin (𝐷0; 1=original, 0=copy). The weighted mean 
difference in 𝑌2 across data origin 𝐷0 estimates the disparity reduction. To obtain the disparity residual (1) 
minus (3), the data from blacks with weight 𝑤𝑟0

𝑟𝑚𝑝𝑤
 (4b) are stacked onto the data from whites with weight 

𝑤𝑟0
′ (6b). The weighted mean difference in 𝑌2 across race 𝑅0 estimates the disparity residual. For inference, 

the non-parametric bootstrap could be used to obtain 95% confidence intervals. 
 
Inverse Odds Ratio Weighting 
 
The first component of 𝑤𝑟0

𝑖𝑜𝑟𝑤  is a ratio of two odds. The numerator odds can be estimated by fitting logistic 

regressions for race 𝑅0 given treatment intensification 𝑀1, allowable covariates 𝑨𝟏
𝒎 and 𝑨𝟏

𝒚
 with and without 

further control for non-allowable confounders 𝑵𝟏. For the denominator odds one can use similar models but 
without control for treatment intensification 𝑀1. For the second and third components one can adapt what 
was described for the RMPW-style estimator, with the caveat that the models for treatment intensification 𝑀1 
do not condition on race 𝑅0. As noted in the main text, the estimation procedure is valid if all models are 
specified correctly, and here special care should be taken to ensure that models are compatible with one 
another. For guidance, see the procedure proposed by Miles et al. Once all necessary models are fit, their 
predicted values are used to form individual weights. The stacking procedure described above is used but 
replacing 𝑤𝑟0

𝑟𝑚𝑝𝑤
 weights (4b) with 𝑤𝑟0

𝑖𝑜𝑟𝑤  weights (8b). 
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Relation to Existing Estimators (under identifying formulae (1), (2), and (3*)) 
 

In what follows we make the notation more compact as follows: 𝑋0
𝑎𝑔𝑒  = 𝑋0

𝑔, 𝑋0
𝑠𝑒𝑥  = 𝑋0

𝑠, 𝑋0
𝑒𝑑𝑢 = 𝑋0

𝑒 , 𝑋0
𝑖𝑛𝑠 = 𝑋0

𝑖 , 
𝑋0

𝑑𝑖𝑎  = 𝑋0
𝑑, with sets notated as, e.g., 𝑋0

𝑔
, 𝑋0

𝑠 = 𝑋0
𝑔,𝑠

. In weight expressions, 𝑀1 is categorical with 𝑗 levels 𝑚1𝑗 . 
 
Interventional Analogue of the Natural Indirect Effect 
 

Suppose we estimate the disparity reduction where 𝑨𝟏
𝒚

, the covariates deemed both outcome- and target-

allowable, includes all covariates. This leaves 𝑨𝟏
𝒎 empty because we have exhausted the potential covariates 

that could be deemed target-allowable. This leaves 𝑵𝟏 empty because we have exhausted the covariates 
needed to establish conditional exchangeability for 𝑀1. The disparity reduction is identified by the non-
parametric expression of Pearl and the weighting estimators of Hong (2010) and (2015), Huber, Lange et al., 
and Tchetgen Tchetgen. 
 
Non-parametric 
 

𝜓𝑟𝑒𝑑 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

]
𝑚1,𝑙1,𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑    

                             × {𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

) − 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0
′, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
)}  

                             × 𝑃(𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)   

 

A conditional expression is obtained by removing the integration over 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑. This expression is equivalent 

to the mediation formula of Pearl, which underlies the regression-based estimators of Valeri and 
VanderWeele, as well as the simulation-based estimators of Imai et al. and Wang et al. The marginal 
expression serves as the basis for the imputation estimator of Albert, and VanderWeele and Vansteelandt. 
 
Ratio of Mediator Probability Weighting 
 

𝜓𝑟𝑒𝑑 = 𝐸[𝐸[𝑌2 × 𝑤𝑟0
|𝑟0, 𝑚1, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
]|𝑟0] − 𝐸[𝐸[𝑌2 × 𝑤𝑟0

𝑟𝑚𝑝𝑤
|𝑟0, 𝑚1, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
]|𝑟0]   

  

Where   

𝑤𝑟0
=

𝑃(𝑟0)

𝑃(𝑟0|𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)
 𝑤𝑟0

𝑟𝑚𝑝𝑤
=

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
)

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)
× 𝑤𝑟0

   
 

 
A conditional expression is obtained by removing the outer expectation and setting 𝑤𝑟0

= wr0
′ = 1. The 

marginal and conditional versions are equivalent to the weighting approaches of Hong (2010) and (2015) 
and those used in the natural effect models of Lange et al. 
 
Inverse Odds Ratio Weighting 
 

𝜓𝑟𝑒𝑑 = 𝐸[𝐸[𝑌2 × 𝑤𝑟0
|𝑟0, 𝑚1, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
]|𝑟0] − 𝐸[𝐸[𝑌2 × 𝑤𝑟0

𝑖𝑜𝑟𝑤|𝑟0, 𝑚1, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

]|𝑟0]   

  

Where   

𝑤𝑟0
=

𝑃(𝑟0)

𝑃(𝑟0|𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)
 

𝑤𝑟0

𝑖𝑜𝑟𝑤 =

𝑃(𝑅 = 𝑟0
′

|𝑚1𝑗 , 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)

𝑃(𝑅 = 𝑟0|𝑚1𝑗 , 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)

𝑃(𝑅 = 𝑟0
′

|𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)

𝑃(𝑅 = 𝑟0|𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)

× 𝑤𝑟0
    

 

 
This is equivalent to the approach of Huber. A conditional expression is obtained by removing the outer 
expectation and setting wr = wr

′ = 1 which is related to a variant of the approach of Tchetgen Tchetgen. 



10 
 

Interventional Analogue of the Path-Specific Indirect Effect I 
 

Suppose we estimate the disparity reduction where 𝑨𝟏
𝒚

, the covariates deemed both outcome- and target-

allowable, include 𝑋𝑔,𝑠. 𝑨𝟏
𝒎 is left empty so that no additional variables are considered target-allowable, and 

𝑵𝟏 includes all other variables needed to establish conditional exchangeability for 𝑀1 (i.e., 𝐿1, 𝑋0
𝑒,𝑖,𝑑). The 

disparity reduction is identified by the non-parametric expression and weighting estimator for the 
interventional indirect effect of VanderWeele, Vansteelandt, and Robins. 
 
Non-parametric 
 

𝜓𝑟𝑒𝑑 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

]
𝑚1,𝑙1,𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑    

                             × {𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

) − 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0
′, 𝑥0

𝑔,𝑠
)}  

                             × 𝑃(𝑙1, 𝑥0
𝑒,𝑖,𝑑|𝑅0 = 𝑟0, 𝑥0

𝑔,𝑠
)   

                             × 𝑃(𝑥0
𝑔,𝑠

)  

 
A conditional expression is obtained by removing the integration over 𝑥0

𝑔,𝑠. This is equivalent to the 
expression of VanderWeele, Vansteelandt, and Robins under a stochastic intervention. 
 
Ratio of Mediator Probability Weighting 
 

𝜓𝑟𝑒𝑑 = 𝐸[𝐸[𝑌2 × 𝑤𝑟0
|𝑟0, 𝑚1, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
]|𝑟0] − 𝐸[𝐸[𝑌2 × 𝑤𝑟0

𝑟𝑚𝑝𝑤
|𝑟0, 𝑚1, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
]|𝑟0]   

  

Where   

𝑤𝑟0
=

𝑃(𝑟0)

𝑃(𝑟0|𝑥0
𝑔,𝑠

)
 𝑤𝑟0

𝑟𝑚𝑝𝑤
=

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝑥0

𝑔,𝑠
)

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)
× 𝑤𝑟0

   
 

 
A conditional expression is obtained by conditioning the outer expectation on 𝑥0

𝑔,𝑠
 and setting wr = wr

′ = 1. 
This is equivalent to the approach of VanderWeele, Vansteelandt, and Robins under a stochastic intervention. 

They express 𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝑥0

𝑔,𝑠
) as ∑ 𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0

′, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)
𝑙1,𝑥0

𝑒,𝑖,𝑑 𝑃(𝑙1, 𝑥0
𝑒,𝑖,𝑑|𝑅0 = 𝑟0

′ , 𝑥0
𝑔,𝑠

) to 

emphasize that 𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝑥0

𝑔,𝑠
) represents a marginalization of 𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0

′, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

) 

over 𝑃(𝑙1, 𝑥0
𝑒,𝑖,𝑑|𝑅0 = 𝑟0

′, 𝑥0
𝑔,𝑠

) rather than conditional independence of 𝑀1 and {𝑙1, 𝑥0
𝑒,𝑖,𝑑

} given 𝑅 = 𝑟0
′ and 𝑥0

𝑔,𝑠. 
 
Interventional Analogue of the Path-Specific Indirect Effect II 
 
The simulation-based estimator of the interventional indirect effect of Vansteelandt and Daniel does not 
generally estimate the disparity reduction, but rather a contrast of two interventions. 
 
To see this, consider two stochastic interventions. The first intervention, 𝐺

𝑚1|𝒂𝟏
𝒎𝒂𝟏

𝒚
𝑟0 , assigns treatment 

intensification, the targeted factor, according to its conditional distribution among blacks given the 

allowables 𝑨𝟏
𝒚

 and 𝑨𝟏
𝒎, defined as 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

). The second intervention, 𝐺
𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚

𝑟0
′

, assigns 

treatment intensification, the targeted factor, according to its conditional distribution among whites given the 

allowables 𝑨𝟏
𝒚

 and 𝑨𝟏
𝒎, defined as 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0

′, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
). 

 
According to assumptions A, a slight variant of B1, and C, under the first intervention, the proportion of blacks 
with uncontrolled hypertension, standardized by the outcome-allowable covariates, is:  
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∑ 𝐸 [𝑌2 (𝐺
𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚

𝑟0 = 𝑚1) |𝑅0 = 𝑟0, 𝒂𝟏
𝒚

] 𝑃(𝒂𝟏
𝒚

)𝒂𝟏
𝒚   

 = ∑ 𝐸 [𝑌2(𝑚1)|𝑅0 = 𝑟0, 𝐺
𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚

𝑟0 = 𝑚1, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎 𝑃 (𝐺
𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚

𝑟0 = 𝑚1|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
) 𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

)   

 = ∑ 𝐸[𝑌2(𝑚1)|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎 𝑃 (𝐺
𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚

𝑟0 = 𝑚1|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
) 𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

)   

 = ∑ 𝐸[𝑌2(𝑚1)|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝒂𝟎
𝒎, 𝒂𝟎

𝒚
)𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

)    

 = ∑ 𝐸[𝑌2(𝑚1)|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

)   

 = ∑ 𝐸[𝑌2(𝑚1)|𝑅0 = 𝑟0, 𝑚1, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

)   

 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

)  (9) 

 
According to equation (1), under assumptions A, B1, B2, and C, under the second intervention, the proportion 
of blacks with uncontrolled hypertension, standardized by the outcome-allowable covariates, is:  
 

∑ 𝐸 [𝑌2 (𝐺
𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚

𝑟0
′

= 𝑚1) |𝑅0 = 𝑟0, 𝒂𝟏
𝒚

] 𝑃(𝒂𝟏
𝒚

)𝒂𝟏
𝒚   

 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0

′, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒎|𝑅0 = 𝑟0, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒚
)   

 
The difference in uncontrolled hypertension among blacks comparing the two interventions is: 
 

∑ 𝐸 [𝑌2 (𝐺
𝑚1|𝒂𝟏

𝒎𝒂𝟏
𝒚

𝑟0 = 𝑚1) |𝑅0 = 𝑟0, 𝒂𝟏
𝒚

] 𝑃(𝒂𝟏
𝒚

)𝒂𝟏
𝒚 − ∑ 𝐸 [𝑌2 (𝐺

𝑚1|𝒂𝟏
𝒎𝒂𝟏

𝒚
𝑟0

′

= 𝑚1) |𝑅0 = 𝑟0, 𝒂𝟏
𝒚

] 𝑃(𝒂𝟏
𝒚

)𝒂𝟏
𝒚   

  = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
]𝑚1,𝒂𝟏

𝒚
,𝒂𝟏

𝒎,𝒏𝟏
  

                              × {𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
) − 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0

′, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)} 

                              × 𝑃(𝒏𝟏|𝑅0 = 𝑟0, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
)𝑃(𝒂𝟏

𝒎|𝑅0 = 𝑟0, 𝒂𝟏
𝒚

)𝑃(𝒂𝟏
𝒚

) (10) 

 
Note that (10) does not generally equal to the disparity reduction (2) minus (1) because the first intervention 
𝐺

𝑚1|𝒂𝟏
𝒎𝒂𝟏

𝒚
𝑟0  , within levels of the allowables 𝑨𝟏

𝒚
 and 𝑨𝟏

𝒎 breaks any dependence of treatment intensification 𝑀1 on 

non-allowables 𝑵𝟏, whereas in the observed scenario (2) this dependence is present. They are equivalent 
when 
𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝒂𝟏

𝒎, 𝒂𝟏
𝒚

) = 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝒏𝟏, 𝒂𝟏
𝒎, 𝒂𝟏

𝒚
). 

 

Suppose we estimate this difference where 𝑨𝟏
𝒚

, the covariates deemed both outcome- and target-allowable 

include 𝑋0
𝑔,𝑠

. 𝑨𝟏
𝒎 is left empty so that no additional variables are considered target-allowable, and 𝑵𝟏 includes 

all other variables needed to establish conditional exchangeability for 𝑀1  (i.e., 𝐿1, 𝑋0
𝑒,𝑖,𝑑). Now, under these 

allowability choices, the difference between the first and second interventions is: 
 

∑ 𝐸 [𝑌2 (𝐺
𝑚1|𝑥0

𝑔,𝑠
𝑟0 = 𝑚1) |𝑅0 = 𝑟0, 𝑥0

𝑔,𝑠
] 𝑃(𝑥0

𝑔,𝑠
)𝒂𝟏

𝒚 − ∑ 𝐸 [𝑌2 (𝐺
𝑚1|𝑥0

𝑔,𝑠
𝑟0

′

= 𝑚1) |𝑅0 = 𝑟0, 𝑥0
𝑔,𝑠

] 𝑃(𝑥0
𝑔,𝑠

)𝒂𝟏
𝒚   

  = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

]
𝑚1,𝑙1,𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑   

                              × {𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝑥0
𝑔,𝑠

) − 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0
′, 𝑥0

𝑔,𝑠
)} 

                              × 𝑃(𝑙1, 𝑥0
𝑒,𝑖,𝑑|𝑅0 = 𝑟0, 𝑥0

𝑔,𝑠
)𝑃(𝑥0

𝑔,𝑠
)  

  
This last expression is equivalent to the identification formula for the interventional indirect effect of 
Vansteelandt and Daniel for the terminal mediator when applied to our motivating example. Again, this does 

not estimate the disparity reduction because 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝑥0
𝑔,𝑠

) ≠ 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

). 
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Interventional Analogue of the Path-Specific Indirect Effect III 
 

Suppose we estimate the disparity reduction where 𝑨𝟏
𝒚

, the covariates deemed both outcome- and target-

allowable, include 𝑋𝑔,𝑠. 𝑨𝟏
𝒎, the additional covariates deemed target allowable, includes all other covariates 

(i.e.,𝐿1, 𝑋0
𝑒,𝑖,𝑑). 𝑵𝟏 is left empty since in this specific case conditional exchangeability among blacks has been 

established for 𝑀1 given 𝑨𝟏
𝒎 and 𝑨𝟏

𝒚
. The disparity reduction is identified by the non-parametric expressions 

and weighting approaches of Zheng and van der Laan and also Miles et al. 
 
Non-parametric 
 

𝜓𝑟𝑒𝑑 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

]
𝑚1,𝑙1,𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑    

                             × {𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝑚1, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

) − 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0
′, 𝑚1, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
)}  

                             × 𝑃(𝑙1, 𝑥0
𝑒,𝑖,𝑑|𝑅0 = 𝑟0, 𝑥0

𝑔,𝑠
)   

                             × 𝑃(𝑥0
𝑔,𝑠

)  

 
A conditional expression is obtained by removing the integration over 𝑥0

𝑔,𝑠. This is equivalent to the non-
parametric expression of a path-specific effect discussed in Jackson 2018. 
 
Ratio of Mediator Probability Weighting 
 

𝜓𝑟𝑒𝑑 = 𝐸[𝐸[𝑌2 × 𝑤𝑟0
|𝑟0, 𝑚1, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
]|𝑟0] − 𝐸[𝐸[𝑌2 × 𝑤𝑟0

𝑟𝑚𝑝𝑤
|𝑟0, 𝑚1, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
]|𝑟0]   

  

Where   

𝑤𝑟0
=

𝑃(𝑟0)

𝑃(𝑟0|𝑥0
𝑔,𝑠

)
 𝑤𝑟0

𝑟𝑚𝑝𝑤
=

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
)

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)
× 𝑤𝑟0

   
 

 
A conditional expression is obtained by conditioning the outer expectation on 𝑥0

𝑔,𝑠 and setting wr = wr
′ = 1. 

This is related to the weighting approach of Zheng and Van der Laan (2017). 
 
Inverse Odds Ratio Weighting 
 
 

𝜓𝑟𝑒𝑑 = 𝐸[𝐸[𝑌2 × 𝑤𝑟0
|𝑟0, 𝑚1, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
]|𝑟0] − 𝐸[𝐸[𝑌2 × 𝑤𝑟0

𝑖𝑜𝑟𝑤|𝑟0, 𝑚1, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

]|𝑟0]   

  

Where   

𝑤𝑟0
=

𝑃(𝑟0)

𝑃(𝑟0|𝑥0
𝑔,𝑠

)
 

𝑤𝑟0

𝑖𝑜𝑟𝑤 =

𝑃(𝑅 = 𝑟0
′

|𝑚1𝑗 , 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)

𝑃(𝑅 = 𝑟0|𝑚1𝑗 , 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)

𝑃(𝑅 = 𝑟0
′

|𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)

𝑃(𝑅 = 𝑟0|𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)

× 𝑤𝑟0
    

 

 
A conditional expression is obtained by conditioning the outer expectation on 𝑥0

𝑔,𝑠 and setting wr = wr
′ = 1. 

This is equivalent to the “m-ratio” weighting approach proposed by Miles et al. albeit under an alternate 
coding for race 𝑅0. (Note that the specification by Miles et al. would code blacks as 𝑅0 = 𝑟0

′ and whites as 𝑅0 =
𝑟0, mapping to a path-specific effect whose analog imagines an intervention upon whites by fixing the 
conditional distribution of the target to match that of blacks). Our coding scheme maps to an identification 
formula for a path-specific effect discussed in Jackson 2018, wherein blacks are intervened upon by fixing the 
conditional distribution of the target to match that of whites. 
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“Detailed” Oaxaca-Blinder Decomposition 
 
Suppose we estimate the disparity reduction where no covariates are deemed outcome- or target-allowable. 
All covariates are included in 𝑵𝟏 to establish exchangeability for 𝑀1. The disparity reduction is identified by a 
“detailed” Oaxaca-Blinder Decomposition implemented with linear models. 
 
The non-parametric formula is: 
 

𝜓𝑟𝑒𝑑 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

]
𝑚1,𝑙1,𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑    

                             × {𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

) − 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0
′)}  

                             × 𝑃(𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

|𝑅0 = 𝑟0)   

 
Consider the following linear models: 
 

𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1𝑗, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

] = 𝛽0
𝑟0 + ∑ 𝛽1𝑗

𝑟0𝐼(𝑀1 = 𝑚1𝑗) + 𝛽2
𝑟0𝐿1 + ∑ 𝛽3

𝑘𝑋𝑘
𝑘  𝑗≠𝑟𝑒𝑓   

 

𝐸[𝑌2|𝑅0 = 𝑟0
′, 𝑚1𝑗 , 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
] = 𝛽0

𝑟0
′

+ ∑ 𝛽1𝑗

𝑟0
′

𝐼(𝑀1 = 𝑚1𝑗) + 𝛽2
𝑟0

′

𝐿1 + ∑ 𝛽3
𝑘𝑋𝑘

𝑘  𝑗≠𝑟𝑒𝑓   

 
where, with a slight abuse of notation, 𝑋𝑘 is the kth element of 𝑋0

𝑔,𝑠,𝑒,𝑖,𝑑
.  

 
It follows from the arguments of Jackson and VanderWeele 2018 we that: 
 

𝜓𝑟𝑒𝑑 = ∑ 𝛽1𝑗
𝑟0{𝑃(𝑀 = 𝑚1𝑗|𝑅0 = 𝑟0) − 𝑃(𝑀 = 𝑚1𝑗|𝑅0 = 𝑟0

′)}𝑗≠𝑟𝑒𝑓   

 
This is the typical formulation of a detailed Oaxaca-Blinder Decomposition under linear models. Alternate 
implementations of the Oaxaca-Blinder Decomposition make different allowability choices. For example, 
suppose we estimate the disparity reduction where no covariates are deemed outcome-allowable but all 
covariates are considered target-allowable, leaving 𝑵𝟏 empty. The disparity reduction is identified by the 
following non-parametric formula which leads to adaptations of the weighting estimators of Dinardo et al. (a 
form of ratio of mediator probability weighting) and Barsky et al. (a form of inverse odds ratio weighting). 
 
Non-parametric 
 

𝜓𝑟𝑒𝑑 = ∑ 𝐸[𝑌2|𝑅0 = 𝑟0, 𝑚1, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

]
𝑚1,𝑙1,𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑    

                             × {𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

) − 𝑃(𝑀1 = 𝑚1|𝑅0 = 𝑟0
′, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
)}  

                             × 𝑃(𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

|𝑅0 = 𝑟0)   

 
Ratio of Mediator Probability Weighting 
 

𝜓𝑟𝑒𝑑 = 𝐸[𝐸[𝑌2 × 𝑤𝑟0
|𝑟0, 𝑚1, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
]|𝑟0] − 𝐸[𝐸[𝑌2 × 𝑤𝑟0

𝑟𝑚𝑝𝑤
|𝑟0, 𝑚1, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
]|𝑟0]   

  

Where   

𝑤𝑟0
= 1 𝑤𝑟0

𝑟𝑚𝑝𝑤
=

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0
′, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
)

𝑃(𝑀1 = 𝑚1𝑗|𝑅0 = 𝑟0, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)
× 𝑤𝑟0

 
 

 
 
This is equivalent to an extension of the weighting approach proposed by Dinardo, Fortin and Lemieux where 
the conditioning events of the numerator and denominator of 𝑤𝑟0

𝑟𝑚𝑝𝑤
 include all covariates. 
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Inverse Odds Ratio Weighting 
 

𝜓𝑟𝑒𝑑 = 𝐸[𝐸[𝑌2 × 𝑤𝑟0
|𝑟0, 𝑚1, 𝑙1, 𝑥0

𝑔,𝑠,𝑒,𝑖,𝑑
]|𝑟0] − 𝐸[𝐸[𝑌2 × 𝑤𝑟0

𝑖𝑜𝑟𝑤|𝑟0, 𝑚1, 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

]|𝑟0]   

  

Where   

𝑤𝑟0
= 1 𝑤𝑟0

𝑖𝑜𝑟𝑤 =

𝑃(𝑅 = 𝑟0
′

|𝑚1𝑗 , 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)

𝑃(𝑅 = 𝑟0|𝑚1𝑗 , 𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)

𝑃(𝑅 = 𝑟0
′

|𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)

𝑃(𝑅 = 𝑟0|𝑙1, 𝑥0
𝑔,𝑠,𝑒,𝑖,𝑑

)

× 𝑤𝑟0
    

 

 
This is equivalent to an extension of the weighting approach proposed by Barsky et al., and also one discussed 
by Dinardo, Fortin and Lemieux, where the conditioning events of the numerator and denominator of 𝑤𝑟0

𝑖𝑜𝑟𝑤  

include all covariates. 
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