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Machine learning brings the hope of finding new biomarkers built from cohorts with rich
biomedical measurements. A good biomarker is one that gives reliable detection of the
corresponding condition. However, biomarkers are often extracted from a cohort that
differs from the target population. Such a mismatch, known as a dataset shift, can
undermine the application of the biomarker to new individuals. Dataset shifts are frequent
in biomedical research, e.g.because of recruitment biases. When a dataset shift occurs,
standard machine-learning techniques do not suffice to extract and validate biomarkers.
This article provides an overview of when and how dataset shifts break machine-learning
extraction of biomarkers, as well as detection and correction strategies.

» ments.

12 Complex biomedical measures may carry

s precious medical information, as with
; Biomarkers are measurements that provide in-., histopathological images or genome sequenc-
. formation about a medical condition or physi-+ ing of biopsy samples in oncology. Building
s ological state [1]. For example, the presence of .« quantitative biomarkers from these requires
s an antibody may indicate an infection; a com-., sophisticated statistical analysis. With large
; plex combination of features extracted from a « datasets becoming accessible, supervised
s medical image can help assess the evolution of v+ machine learning provides new promises as
o a tumor. Biomarkers are important for diag-.. it can optimize the information extracted to
0 nosis, prognosis, and treatment or risk assess-» relate to a specific output variable of interest,
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methods, cornerstones of artificial intelligence, -

such as a cancer diagnosis [2, 3, 4].

are starting to appear in clinical practice: a
machine-learning based radiological tool for
breast-cancer diagnosis has recently been s
approved by the FDA!. 76
Can such biomarkers, built from complex
data processing, be safely used in clinical prac-
tice, beyond the initial research settings? One 2
risk is that there can be a mismatch, or dataset
shift, between the distribution of the individ-
uals used to estimate this statistical link and
that of the target population that should ben-
efit from the biomarker. In this case, the ex-
tracted associations may not apply to the tar-*
get population [5]. Computer aided diagnos-*
tic of thoracic diseases from X-ray images has *
indeed been shown to be unreliable for indi-*
viduals of a given sex if built from a cohort *
More *

generally, biomarkers may fail on data from *

over-representing the other sex [6].

different imaging devices, hospitals, popula-*
tions with a different age distribution, etc..
Dataset biases are frequent in medicine. For
instance selection biases —-eg due to volunteer-
ing self-selection, non-response, dropout...—
[7, 8] may cause cohorts to capture only a s
small range of possible patients and disease s
manifestations in the presence of spectrum ef- »
fects [9, 10]. Dataset shift or dataset bias can »
cause systematic errors that cannot be fixed by
acquiring larger datasets and require specific ,
methodological care. o
In this article, we consider biomarkers built
with supervised machine learning. We charac-,
terize the problem of dataset shift, show how
it can hinder the use of machine learning for
health applications [11, 12], and provide miti-
gation strategies.

103
104
105
106
107
Let us first introduce the principles of machine s
learning used to build biomarkers. Supervised
learning captures from observed data the link
between a set of input measures (features) X
and an output (e.g.a condition) Y: for example
the relation between the absorption spectrum
of oral mucosa and blood glucose concentration b
"

1 https://fda.report/PMN/K192854 14

[13]. A supervised learning algorithm finds a
function f such that f(X) is as close as possible
to the output Y. Following machine-learning
terminology, we call the system’s best guess
f(x) for a value x a prediction, even when it does
not concern a measurement in the future.

Empirical Risk Minimization, central to ma-
chine learning, uses a loss function L to mea-
sure how far a prediction f(x) is from the true
value y, for example the squared difference:

Ly, f(0)) = (v - f())* . (1)

The goal is to find a function f that has a small
risk, which is the expected loss on the true dis-
tribution of X and Y, i.e.on unseen individuals.
The true risk cannot be computed in practice: it
would require having seen all possible patients,
the true distribution of patients. The empiri-
cal risk is used instead: the average error over
available examples,

n
R() = 2 3 L f0x)) 2
i=1

where {(x;,y;), i = 1,...,n} are available (X,Y)
data, called training examples. The statistical
link of interest is then approximated by choos-
ing f within a family of candidate functions as
the one that minimizes the empirical risk R(f).

The crucial assumption underlying this very
popular approach is that the biomarker f will
then be applied to individuals drawn from
the same population as the training examples
{x;,y;}. It can be important to distinguish the
source data, used to fit and evaluate a biomarker
(e.g. a dataset collected for research), from the
target data, on which the biomarker is meant
to be used for clinical applications (e.g. new
visitors of a hospital). Indeed, if the training
examples are not representative of the target
population - if there is a dataset shift - the
empirical risk is a poor estimate of the expected
error, and f will not perform well on individu-
als from the target population.

Once a biomarker has been estimated from
training examples, measuring its error on
these same individuals results in an optimistic
estimate of the risk, the expected error on un-
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seen individuals [14, 15, Sec. 7.4]. To obtaines
valid estimates of the expected performance on
new data, the error is measured on an indepen-is
dent sample held out during training, called the
test set. The most common approach to obtain o
such a test set is to randomly split the available
data. This process is usually repeated with sev-;.
eral splits, a procedure called cross-validation i7;
[16, 15, Sec. 7]. 74
When training and test examples are cho-s
sen uniformly from the same sample, they are s
the
same population): there is no dataset shift..;;

drawn from the same distribution (i.e.

Some studies also measure the error on an in-ws
dependent dataset [e.g. 17, 18]. This helps es-,
tablishing external validity, assessing whether .
the predictor will perform well outside of the s
dataset used to define it [19]. Unfortunately,:s.
the biases in participant recruitment may be s
similar in independently collected datasets. For s,
example if patients with severe symptoms are s
difficult to recruit, this is likely to distortss
all datasets similarly. Testing on a dataset s
collected independently is therefore a useful
check, but no silver bullet to rule out dataset s,
shift issues. 190

191

We now point out some misconceptions and
confusions with problems not directly related,,,
to dataset shift. 195
196
Dataset shift differs from confounding.. Thes;
machine-learning methods we consider here s
capture statistical associations, but do nots
the:zoo
whether zo

target causal effects. For biomarkers,

association itself is interesting,

causal or not. Elevated body temperature:o.
may be the consequence of a condition, but.es
also cause a disorder. It is a clinically useful.o,
measure in both settings. The notion o0faos
confounding is one of causal analysis, and does:os
not relate to predictive analysis, as pointed out o
by seminal textbooks: "if the goal of the data:s
analysis is purely predictive, no adjustment.o,
for confounding is necessary [...] the concept .o
of confounding does not even apply."[20, Sec.n
18.1], or Pearl [21]. In prediction settings,.
applying procedures meant to adjust for.s
confounding generally degrades prediction .,
performance without solving the dataset shift s

issue, as seen in Figure 1. 26

Training examples should not be selected to be ho-
mogeneous.. To obtain valid predictive models
that perform well beyond the training sample,
it is crucial to collect datasets that represent
the whole population and reflect its diversity
as much as possible [5, 23, 24]. Yet clinical re-
search often emphasizes the opposite: very ho-
mogeneous datasets and carefully selected par-
ticipants. While this may help reduce variance
and improve statistical testing, it degrades pre-

diction performance and fairness.

Simpler models are not less sensitive to dataset
shift.. Often, flexible models can be more ro-
bust to dataset shifts, and thus generalize bet-
ter, than linear models [25], as seen in Fig-
ures 1 and 5. Indeed, an over-constrained (ill-
specified) model may only fit well a restricted
region of the feature space, and its perfor-
mance can degrade if the distribution of inputs
changes, even if the relation to the output stays
the same (i.e. when covariate shift occurs, Sec-
tion 6.1).

Dataset shift does not call for simpler mod-
els as it is not a small-sample issue. Collecting
more data will not correct systematic dataset
bias.

In 2017, competitors in the million-dollar-
prize data science bowl used machine learn-
ing to predict if individuals would be diagnosed
with lung cancer within one year, based on a
CT scan. Assuming that the winning model
achieves satisfying accuracy on left-out exam-
ples from this dataset, is it ready to be deployed
in hospitals? Most likely not. Selection criteria
may make this dataset not representative of the
potential lung cancer patients general popula-
tion. Selected participants verified many cri-
teria, including being a smoker and not hav-
ing recent medical problems such as pneumo-
nia. How would the winning predictor per-
form on a more diverse population? For exam-
ple, another disease could present features that
the classifier could mistakenly take for signs
of lung cancer. Beyond explicit selection cri-
teria, many factors such as age, ethnicity, or
socioeconomic status influence participation in
biomedical studies [26, 27, 22, 28]. Not only
can these shifts reduce overall predictive per-
formance, they can also lead to discriminative


https://www.kaggle.com/c/data-science-bowl-2017/overview

No correction Regressing age out Reweighting samples

Source data

A

Target data:
shifted age distribution

Figure 1. Classification with dataset shift - regressing out a correlate of the shift does not help generalization. We learn
to classify patients (blue circles) from healthy subjects (orange circles), using 2-dimensional features. Age, indicated by
color, influences both the features and the probability of disease (fig. 2). In a second dataset (bottom row), the process
generating the data is the same but the age distribution is shifted: subjects tend to be older. This situation is often met in
practice as the elderly are less likely to participate in clinical studies [22]. First column: no correction is applied. As the
situation is close to a covariate shift (Section 6.1), a powerful learner (RBF-SVM) generalizes well to the second dataset. A
misspecified model - Linear-SVM - generalizes poorly. Second column: wrong approach. To remove associations with age,
features are replaced by the residuals after regressing them on age. This destroys the signal and results in poor performance
for both models and datasets. Third column: Features are not modified but samples are weighted to give more importance
to those that are more likely in the target distribution. Small circles indicate younger subjects, with less influence on the
classifier estimation. This reweighting yields a better prediction for the older population.

a7 clinical decisions for poorly represented popu-

Older »s lations [29, 30, 31, 32, 33].
Younger

219 The examples above are instances of prefer-

20 ential selection, which happens when members

.» of the population of interest do not have equal

22 probabilities of being included in the source

23 dataset: the selection S is not independent of

Diseased 2 (X,Y). Preferential sample selection is ubiqui-

25 tous and cannot always be prevented by careful

Age 26 study design [34]). It is therefore a major chal-

27 lenge to the construction of reliable and fair

28 biomarkers. Beyond preferential sample selec-

29 tion, there are many other sources of dataset

;0 shifts, e.g. population changes over time or

»n  interventions such as the introduction of new

Y &> X ;2 diagnostic codes in Electronic Health Records
= [35].

Y := g(Age) (3)
X := h(Age,Y) (4)

For some g, h.

. . . ;6 The correction for a dataset shift depends
Figure 2. Generative process for data in Figure 1. Age

influences both the target Y and the features X, and Y also=» 0N the nature of this shift, characterized by

has an effect on X. Between the source and target datasets,238 which and how distributions are modified [25]
the distribution of age changes. X .
29 Knowledge of the mechanism producing the

2o dataset shift helps formulate hypotheses about
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distributions that remain unchanged in the tar-
get data [36, 37, Chap. 5].

Figure 3 illustrates this process with a simu-
lated example of preferential sample selection.
We consider the problem of predicting the vol-
ume Y of a tumor from features X extracted
from contrast CT images. These features can
be influenced not only by the tumor size, but
also by the dosage of a contrast agent M. The
first panel of Figure 3 shows a selection of data
independent of the image and tumor volume:
there is no dataset shift. In the second panel,
selection depends on the CT image itself (for
example images with a low signal-to-noise ra-
tio are discarded). As selection is independent
of the tumor volume Y given the image X, the
distribution of images changes but the condi-
tional distribution P(Y | X) stays the same: we
face a covariate shift (Section 6.1). The learned
association remains valid. Moreover, reweight-
ing examples to give more importance to those
less likely to be selected can improve biomark-
ers for a target data (Section 5), and it can
be done with only unlabelled examples from
the target data. In the third panel, subjects
who received a low contrast agent dose are less
likely to enter the training dataset. Selection
is therefore not independent of tumor volume
(the output) given the image values (the input
features). Therefore we have sample selection
bias: the relation P(Y | X) is different in source
and target data, which will affect the perfor-
mance of the prediction.

As these examples illustrate, the causal
structure of the data helps identify the type of
dataset shift and what information is needed to
correct it.

We now describe a solution to dataset shift
that applies to many situations and can be
easy to implement. We will not detail other
approaches (e.g. invariant representations [39],
data augmentation, adversarial methods), be-
cause they require implementing new learning
algorithms or only apply to specific situations.
Weiss et al. [40] and Pan and Yang [41] give
systematic reviews of transfer learning.
Dataset shift occurs when the joint distri-
bution of the features and outputs is different
in the source (data used to fit the biomarker)

Uniform selection

c‘,‘

Selection based on M

N

Y S|

Figure 3. Sample selection bias: three examples. On the
right are graphs giving conditional independence relations
[38]. Y is the lesion volume to predict (output). M are the
imaging parameters, e.g.contrast agent dosage. X is the
image, and depends both on Y and M (in this toy example
X is computed as X := Y + M + €, where e is additive noise.
S indicates that data is selected to enter the source dataset
(orange points) or not (blue points). The symbol 1L means
independence between variables. Preferentially selecting
samples results in a dataset shift (middle and bottom row).
Depending on whether Y 1L S|X, the conditional distribu-
tion of Y | X - lesion volume given the image - estimated
on the selected data may be biased or not.
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and in the target data. Informally, importance
weighting consists in reweighting or resampling
the available data to create a pseudo-sample
that follows the same distribution as the target
population.

To do so, examples are reweighted by their
importance weights — the ratio of their likeli-
hood in target data over source data. Examples
that are rare in the source data but are likely
in the target data are more relevant and there-
fore receive higher weights. Many statistical
learning algorithms - including Support Vector
Machines, decision trees, random forests, neu-
ral networks - naturally support weighting the
training examples. Therefore, the challenge re-
lies mostly in the estimation of the appropriate
sample weights and the learning algorithm it-
self does not need to be modified.

To successfully use importance weighting,
no part of the target distribution should be
completely unseen. For example, if we use sex
(among other features) to predict heart failure
and our dataset only includes men, importance s;
weighting cannot transform this dataset and s,
make its sex distribution similar to that of the ;;
general population (Figure 4). Conversely, the 5
source distribution may be broader than thes;
target distribution (as seen for example in Fig-;s
ure 1). 339

340

341

OK Hopeless

1

? ? 344

346

Men Women Men Women,,

348

Figure 4. Left: distribution of sex can be balanced by down-s49
weighting men and upweighting women. Right: women
are completely missing; the dataset shift cannot be fixed
by importance weighting. 351

352

In Appendix A, we provide a more precise
definition of the importance weights, as well
as an overview of how they can be estimated
and used. e

355
356
357
358
Storkey [25] and Moreno-Torres et al. [42] pro—ss
vide a comprehensive categorization of datasetsso
shifts. We summarize two frequently-met sce-s«

narios that can call for different adjustments:ss.

Uniform weights Importance weighting

o/
° d‘
°
o0
ofo,
‘.-’l\,p"/
/
4
N\ ¢ ¢
N\
N
\
S~ sy Pl -/j/

Best fit on source data ‘

Target dataset Source dataset
'

Degree 1

=== Degree 4 Importance weighting function

Figure 5. Covariate shift: P(Y | X) stays the same but the
feature space is sampled differently in the source and tar-
get datasets. A powerful learner may generalize well as
P(Y | X) is correctly captured [25]. Thus the polynomial fit
of degree 4 performs well on the new dataset. However, an
overconstrained learner such as the linear fit can benefit
from reweighting training examples to give more impor-
tance to the most relevant region of the feature space.

covariate shift and prior probability shift.

Covariate shift occurs when the marginal dis-
tribution of X changes between the source and
target datasets (i.e. p;(x) # ps(x)), but P(Y |X)
stays the same. This happens for example in
the second scenario in Figure 3, where sam-
ple selection based on X (but not Y) changes
the distribution of the inputs. If the model is
correctly specified, an estimator trained with
uniform weights will lead to optimal predic-
tions given sufficient training data [prediction
consistency 43, Lemma 4]. However the usual
(unweighted) estimator is not consistent for
an over-constrained (misspecified) model. In-
deed, a misspecified model may be able to fit
the data well only in some regions of the input
feature space (Figure 1). In this case reweight-
ing training examples to give more importance
to those that are more representative of the tar-
get data is beneficial (25, 36]. Figure 5 illus-
trates covariate shift.

With prior probability shift (a.k.a.label shift
or target shift), the distribution of Y changes
but not P(X|Y).
if one rare class is over-represented in the

This happens for example

training data so that the dataset is more bal-
anced, as when extracting a biomarker from
a case-control cohort, or when disease preva-
lence changes in the target population but man-
ifests itself in the same way. Prior probability
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Balanced dataset 390

398

399

400

401

402

Decision boundary
—— Original fit
=== Corrected for label shift

Figure 6. Prior probability shift: when P(Y) changes but
P(X | Y) stays the same. This can happen for example when *”’
participants are selected based on Y - possibly to have a,,
dataset with a balanced number of patients and healthy

8

participants: X « Y — . When we know the prior
probability (marginal distribution of Y) in the target popu-4°2
lation, this is easily corrected by applying Bayes’ rule. The ,
output Y is typically low-dimensional and discrete (often
it is a single binary value), so P(Y) can often be estimated 4"

precisely from few examples. w2

413

shift can be corrected without extracting a new
biomarker, simply by adjusting a model’s pre-"*
dicted probabilities using Bayes’ rule [as noted **
for example in 25, 36]. Figure 6 illustrates prior“6
probability shift.

420

Ideally, machine learning biomarkers would be .
designed and trained using datasets carefully:u
collected to be representative of the targeted .
population - as in Liu et al. [44]. To be trusted,4 ’
the biomarker ultimately needs to be evaluated424
rigorously on an independent and representa-
tive sample. However, such data collection is*”
expensive. It is therefore useful to exploit exist-
ing datasets in an opportunistic way as much as
possible in the early stages of biomarker devel-
opment. When doing so, correctly accounting
for dataset shift can prevent wasting important ,,
resources on machine-learning predictors that,,,
have little chance of performing well outside of ,,
one particular dataset. -
We gave an overview of importance weight-;.
ing, an effective tool against dataset shift. Im-.;
portance weighting needs a clear definition the s,
targeted population and access to a diverses;
training dataset. When this is not possible, dis-ss
tributionally robust optimization is a promis-,

ing alternative [see 45, for a review]. It con-
sists in defining an ambiguity set - a set of
distributions to which the target distribution
might belong - then minimizing the worse risk
across all distributions in this set. A related
approach consists in ensuring the learner per-
forms well for all inputs by penalizing the vari-
ance of the training error (loss) [46, 47]. These
methods can help improve performance homo-
geneity across sub-populations and thus fair-
ness [48, 49]. Even with distributionally ro-
bust optimization, a rich, diverse training set
and any information about the target popula-
tion remain extremely valuable. This technique
is, to date, quite recent and more difficult to im-
plement than importance weighting, as it re-
quires adapting or designing new learning al-
gorithms.

We conclude with some recommendations:

+ collect diverse, representative data

- use importance weighting to correct biases
in the data collection

- do not adjust for confounding in a predictive
setting.

Following these recommendations should max-
imize building fair biomarkers and their effi-
cient application on new cohorts.
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We will implicitly assume that all the random
variables we consider admit densities and de—..
note ps and p; the density of the joint distribu-.

tion of (X,Y) applied to the source and target
populations respectively. If the support of p;
is included in that of ps (meaning that ps > 0
wherever p; > 0), we have:

X, Y
Esourcel L(Y, f(X))1 = Etarget s;gxz Y;
(5)

where L is the cost function and f is a prediction
function, Esource (resp. Etarget) the expectation
on the source (resp. target) data. The risk (on
target data) can therefore be computed as an
expectation on the source distribution where
the loss function is reweighted by the impor-

tance weights:

Pt(X:)’)

ps(x,y) 6)

w(x,y) =

If we have empirical estimates W of the im-
portance weights w, we can compute the
reweighted empirical risk:

n
Rp(f) = 3w, y) L fO) . (7)

i=1

Rather than weighting examples we can
also perform importance or rejection sampling
[50, 51]. Importances can also be taken into
account for model selection - for example in
Sugiyama et al. [52] examples of the test set
are also reweighted when computing cross-
validation scores. Cortes et al. [53] study how
errors in the estimation of the weights affect
the prediction performance.

In the case of preferential sample selection
(Section 4), the condition that requires for the
support of p; to be included in the support of ps
translates to a requirement that all individuals
have a non-zero probability of being selected:
P(S =1]x,y) > o forall (x,y) in the support of p;.
When this is verified, by applying Bayes’ rule
the definition of importance weights in Equa-
tion (6) can be reformulated [see 53, Sec. 2.3]:

P(S=1)

P(S=1lX=x,Y=y) ®)

w(x,y) =

These weights are sometimes called Inverse
Probability weights [54] or Inverse Propensity

o5 LY, fRO) |
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745

scores [55]. Training examples that had a:s
low probability of being selected receive highero.
weights, because they have to account for sim-yss
ilar individuals who were not selected. 796

797

In practice we do not know p(x,y), which is
the joint density of (X,Y) in the target data.
However, we do not need it to estimate p;/ps.”
More efficient estimation hinges on two obser-"’
vations: we do not need to estimate both den-"
sities separately to estimate their ratio, and we ™"
can factor out variables that have the same dis-""
tribution in source and target data. 5
Here we describe methods that estimate the”
true importance weights p;/ps, but we point out””
that reweighting the training examples reduces’
the bias of the empirical risk but increases’
the variance of the estimated model parame—808
ters. Even when the importances are perfectly809
known, it can therefore be beneficial to regu-"

8n

larize the weights [43].

812

81
Computing importance weights does not require ’

81,
distributions densities estimation )

815
Importance weights can be computed by mod-

elling separately ps and p; and then computing "
their ratio [56, Sec. 4.1]. However, distribu-
tion density estimation is notoriously difficult; "
non-parametric methods suffer from the curse o
of dimensionality and parametric methods de-""
pend heavily on the correct specification of a™
parametric form.

But estimating both densities is more in-
formation than we need to compute the sam-
ple weights. Instead, we can directly opti-m‘
mize importance weights in order to make
the reweighted sample similar to the target
distribution, by matching moments [57] orm
mean embeddings [58, 59], minimizing the KL—825
divergence [60], solving a least-squares eSti_m
mation problem [61] or with optimal transport o
[62].

Alternatively, a discriminative model can be
trained to distinguish source and target exam-
ples. In the specific case of preferential sam-
ple selection, this means estimating directlys:
the probability of selection P(S = 1) (cf Equa-s»
tion (8)). In general, the shift is not alwaysss
due to selection: the source data is not neces-ss
sarily obtained by subsampling the target pop-s:
ulation. In this case we denote T = 1 if a subject s;;
comes from the target dataand T = 0 if it comes s,

from the source data. Then, a classifier can be
trained to predict from which dataset (source or
target) a sample is drawn, and the importance
weights obtained from the predicted probabili-
ties [56, Sec. 4.3]:

P(T=11X=xY=y)P(T = 0)

T-0lX=x Y= PT=1'

w(x,y) =

The classifier must be calibrated (i.e. pro-
duce accurate probability estimates, not only
a correct decision), see Niculescu-Mizil and
Caruana [63]. Note that constant factors such
as P(T = 0)/P(T = 1) usually do not matter and
are easy to estimate if needed. This discrimi-
native approach is effective because the distri-
bution of (T|X = x,Y = y) is much easier to
estimate than the distribution of (X,Y|T = t)
: T is a single binary variable whereas (X,Y) is
high-dimensional and often continuous.

The classifier does not need to distinguish
source and target examples with high accuracy.
In the ideal situation of no dataset shift, the
classifier will perform at chance level. On the
contrary, a high accuracy means that there is
little overlap between the source and target dis-
tributions and the biomarker will probably not
generalize well.

What distributions differ in source and target data?
We may exploit prior information telling us
that some distributions are left unchanged in
the target data. For example,

pe(x,y) _ Py %) pe(x)
ps(x,¥)  ps(y 1x)ps(x)

(10)

Imagine we know that the marginal distri-
bution of input X differs in source and target
data, but the conditional distribution of the out-
put Y given the input stays the same: p;(x) #
ps(x) but pi(v 1 x) = ps(y | x) (a setting known as
covariate shift). Then, the importance weights
simplify to

pe(x)
ps(x)

w(x,y) = (11)

In this case, importance weights can be esti-
mated using only unlabelled examples (individ-
uals for whom we do not know Y) from the tar-
get distribution.

Often, the variables that influence selec-
tion (e.g.demographic variables such as age)
are lower-dimensional than the full features
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(e.g.high-dimensional images), and dataset
shift can be corrected with limited informa-
tion on the target distribution, with impor-
tance weights or otherwise. Moreover, even
if we have access to additional information Z
that predicts selection but is independent of
(X,Y), we should not use it to compute the im-
portance weights. Indeed, this would only in-
crease the weights’ variance without reducing
the bias due to the dataset shift [20, Sec. 15.5].

Here we provide a summary of some terms and
notations used in the paper.

Target population the population on which
the biomarker (machine-learning model)
will be applied.

Source population the population from which
the sample used to train the machine-
learning model is drawn.

Selection in the case that source data are
drawn (with non-uniform probabilities)
from the target population, we denote by
S = 1the fact that an individual is selected
to enter the source data (e.g. to participate
in a medical study).

Provenance of an individual when we are
provided with samples from both the
source and the target populations
(e.g.Appendix A.2), we also denote T = 1
if an individual comes from the target
population and T = o if they come from
the source population.
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Dear editors of GigaScience,

we would like to submit a didactic review on dataset shift when defining biomark-
ers with machine learning, a major threat to external validity of these biomark-
ers.

Machine-learning techniques are increasingly used to define biomarkers from
complex measurements. They hold strong promises for biology and healthcare,
such as improving clinical practice and precision medicine with early detection of
diseases, or defining intermediate outcomes in epidemiology. However, medical
research cohorts often fail to faithfully represent the target population, due
to biases such as sample selection biases — the sampling distribution of these
datasets is shifted with respect to the population that might benefit from the
biomarker. This external-validity challenge is seldom discussed in the context
of machine-learning practice. Yet, such settings can break standard machine-
learning tools: the extracted biomarker may not perform well on the target
population.

We think that a didactic review on this topic is important and timely given
the increasing number of publications that opportunistically apply machine-
learning techniques to biomedical datasets. While machine-learning methods
carry great promises for medicine and public health, they are often developed
without properly taking dataset shift into account, applied without measuring
how much this shift limits their validity, or discarded without resorting to appro-
priate techniques to make them more robust. In addition, the literature contains
some misunderstanding regarding the solutions to dataset shift, as intuitions do
not carry over from inferential statistics to predictive modeling. The specific fo-
cus of our proposed review is to explain progress in mathematical techniques to
non specialists who can most benefit from them, namely healthcare researchers.

Best regards,

Jérome Dockes, Gaél Varoquaux, Jean-Baptiste Poline.
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