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Abstract
Machine learning brings the hope of finding new biomarkers built from cohorts with rich
biomedical measurements. A good biomarker is one that gives reliable detection of the
corresponding condition. However, biomarkers are often extracted from a cohort that
differs from the target population. Such a mismatch, known as a dataset shift, can
undermine the application of the biomarker to new individuals. Dataset shifts are frequent
in biomedical research, e.g. because of recruitment biases. When a dataset shift occurs,
standard machine-learning techniques do not suffice to extract and validate biomarkers.
This article provides an overview of when and how dataset shifts break machine-learning
extraction of biomarkers, as well as detection and correction strategies.

1 Introduction: dataset shift1

breaks learned biomarkers2

Biomarkers are measurements that provide in-3

formation about a medical condition or physi-4

ological state [1]. For example, the presence of5

an antibody may indicate an infection; a com-6

plex combination of features extracted from a7

medical image can help assess the evolution of8

a tumor. Biomarkers are important for diag-9

nosis, prognosis, and treatment or risk assess-10

ments.11

Complex biomedical measures may carry12

precious medical information, as with13

histopathological images or genome sequenc-14

ing of biopsy samples in oncology. Building15

quantitative biomarkers from these requires16

sophisticated statistical analysis. With large17

datasets becoming accessible, supervised18

machine learning provides new promises as19

it can optimize the information extracted to20

relate to a specific output variable of interest,21
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such as a cancer diagnosis [2, 3, 4]. These22

methods, cornerstones of artificial intelligence,23

are starting to appear in clinical practice: a24

machine-learning based radiological tool for25

breast-cancer diagnosis has recently been26

approved by the FDA1.27

Can such biomarkers, built from complex28

data processing, be safely used in clinical prac-29

tice, beyond the initial research settings? One30

risk is that there can be a mismatch, or dataset31

shift, between the distribution of the individ-32

uals used to estimate this statistical link and33

that of the target population that should ben-34

efit from the biomarker. In this case, the ex-35

tracted associations may not apply to the tar-36

get population [5]. Computer aided diagnos-37

tic of thoracic diseases from X-ray images has38

indeed been shown to be unreliable for indi-39

viduals of a given sex if built from a cohort40

over-representing the other sex [6]. More41

generally, biomarkers may fail on data from42

different imaging devices, hospitals, popula-43

tions with a different age distribution, etc. .44

Dataset biases are frequent in medicine. For45

instance selection biases –eg due to volunteer-46

ing self-selection, non-response, dropout...–47

[7, 8] may cause cohorts to capture only a48

small range of possible patients and disease49

manifestations in the presence of spectrum ef-50

fects [9, 10]. Dataset shift or dataset bias can51

cause systematic errors that cannot be fixed by52

acquiring larger datasets and require specific53

methodological care.54

In this article, we consider biomarkers built55

with supervised machine learning. We charac-56

terize the problem of dataset shift, show how57

it can hinder the use of machine learning for58

health applications [11, 12], and provide miti-59

gation strategies.60

2 A primer on machine learning61

for biomarkers62

2.1 Empirical Risk Minimization63

Let us first introduce the principles of machine64

learning used to build biomarkers. Supervised65

learning captures from observed data the link66

between a set of input measures (features) X67

and an output (e.g. a condition) Y: for example68

the relation between the absorption spectrum69

of oral mucosa and blood glucose concentration70

1 https://fda.report/PMN/K192854

[13]. A supervised learning algorithm finds a71

function f such that f(X) is as close as possible72

to the output Y. Following machine-learning73

terminology, we call the system’s best guess74

f(x) for a value x a prediction, even when it does75

not concern a measurement in the future.76

Empirical Risk Minimization, central to ma-77

chine learning, uses a loss function L to mea-78

sure how far a prediction f(x) is from the true79

value y, for example the squared difference:80

L(y, f(x)) = (y – f(x))2 . (1)

The goal is to find a function f that has a small81

risk, which is the expected loss on the true dis-82

tribution of X and Y, i.e. on unseen individuals.83

The true risk cannot be computed in practice: it84

would require having seen all possible patients,85

the true distribution of patients. The empiri-86

cal risk is used instead: the average error over87

available examples,88

R̂(f) = 1
n

n∑
i=1
L(yi, f(xi)) , (2)

where {(xi, yi) , i = 1, . . . ,n} are available (X, Y)89

data, called training examples. The statistical90

link of interest is then approximated by choos-91

ing f within a family of candidate functions as92

the one that minimizes the empirical risk R̂(f).93

The crucial assumption underlying this very94

popular approach is that the biomarker f will95

then be applied to individuals drawn from96

the same population as the training examples97

{xi, yi}. It can be important to distinguish the98

source data, used to fit and evaluate a biomarker99

(e.g. a dataset collected for research), from the100

target data, on which the biomarker is meant101

to be used for clinical applications (e.g. new102

visitors of a hospital). Indeed, if the training103

examples are not representative of the target104

population – if there is a dataset shift – the105

empirical risk is a poor estimate of the expected106

error, and f will not perform well on individu-107

als from the target population.108

2.2 Evaluation: Independent test set109

and cross-validation110

Once a biomarker has been estimated from111

training examples, measuring its error on112

these same individuals results in an optimistic113

estimate of the risk, the expected error on un-114

https://fda.report/PMN/K192854
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seen individuals [14, 15, Sec. 7.4]. To obtain115

valid estimates of the expected performance on116

new data, the error is measured on an indepen-117

dent sample held out during training, called the118

test set. The most common approach to obtain119

such a test set is to randomly split the available120

data. This process is usually repeated with sev-121

eral splits, a procedure called cross-validation122

[16, 15, Sec. 7].123

When training and test examples are cho-124

sen uniformly from the same sample, they are125

drawn from the same distribution (i.e. the126

same population): there is no dataset shift.127

Some studies also measure the error on an in-128

dependent dataset [e.g. 17, 18]. This helps es-129

tablishing external validity, assessing whether130

the predictor will perform well outside of the131

dataset used to define it [19]. Unfortunately,132

the biases in participant recruitment may be133

similar in independently collected datasets. For134

example if patients with severe symptoms are135

difficult to recruit, this is likely to distort136

all datasets similarly. Testing on a dataset137

collected independently is therefore a useful138

check, but no silver bullet to rule out dataset139

shift issues.140

3 Common misconceptions on141

tackling dataset shift142

We now point out some misconceptions and143

confusions with problems not directly related144

to dataset shift.145

Dataset shift differs from confounding.. The146

machine-learning methods we consider here147

capture statistical associations, but do not148

target causal effects. For biomarkers, the149

association itself is interesting, whether150

causal or not. Elevated body temperature151

may be the consequence of a condition, but152

also cause a disorder. It is a clinically useful153

measure in both settings. The notion of154

confounding is one of causal analysis, and does155

not relate to predictive analysis, as pointed out156

by seminal textbooks: "if the goal of the data157

analysis is purely predictive, no adjustment158

for confounding is necessary [...] the concept159

of confounding does not even apply."[20, Sec.160

18.1], or Pearl [21]. In prediction settings,161

applying procedures meant to adjust for162

confounding generally degrades prediction163

performance without solving the dataset shift164

issue, as seen in Figure 1.165

Training examples should not be selected to be ho-166

mogeneous.. To obtain valid predictive models167

that perform well beyond the training sample,168

it is crucial to collect datasets that represent169

the whole population and reflect its diversity170

as much as possible [5, 23, 24]. Yet clinical re-171

search often emphasizes the opposite: very ho-172

mogeneous datasets and carefully selected par-173

ticipants. While this may help reduce variance174

and improve statistical testing, it degrades pre-175

diction performance and fairness.176

Simpler models are not less sensitive to dataset177

shift.. Often, flexible models can be more ro-178

bust to dataset shifts, and thus generalize bet-179

ter, than linear models [25], as seen in Fig-180

ures 1 and 5. Indeed, an over-constrained (ill-181

specified) model may only fit well a restricted182

region of the feature space, and its perfor-183

mance can degrade if the distribution of inputs184

changes, even if the relation to the output stays185

the same (i.e. when covariate shift occurs, Sec-186

tion 6.1).187

Dataset shift does not call for simpler mod-188

els as it is not a small-sample issue. Collecting189

more data will not correct systematic dataset190

bias.191

4 Preferential sample selection:192

a common source of shift193

In 2017, competitors in the million-dollar-194

prize data science bowl used machine learn-195

ing to predict if individuals would be diagnosed196

with lung cancer within one year, based on a197

CT scan. Assuming that the winning model198

achieves satisfying accuracy on left-out exam-199

ples from this dataset, is it ready to be deployed200

in hospitals? Most likely not. Selection criteria201

may make this dataset not representative of the202

potential lung cancer patients general popula-203

tion. Selected participants verified many cri-204

teria, including being a smoker and not hav-205

ing recent medical problems such as pneumo-206

nia. How would the winning predictor per-207

form on a more diverse population? For exam-208

ple, another disease could present features that209

the classifier could mistakenly take for signs210

of lung cancer. Beyond explicit selection cri-211

teria, many factors such as age, ethnicity, or212

socioeconomic status influence participation in213

biomedical studies [26, 27, 22, 28]. Not only214

can these shifts reduce overall predictive per-215

formance, they can also lead to discriminative216

https://www.kaggle.com/c/data-science-bowl-2017/overview
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Figure 1. Classification with dataset shift – regressing out a correlate of the shift does not help generalization. We learn
to classify patients (blue circles) from healthy subjects (orange circles), using 2-dimensional features. Age, indicated by
color, influences both the features and the probability of disease (fig. 2). In a second dataset (bottom row), the process
generating the data is the same but the age distribution is shifted: subjects tend to be older. This situation is often met in
practice as the elderly are less likely to participate in clinical studies [22]. First column: no correction is applied. As the
situation is close to a covariate shift (Section 6.1), a powerful learner (RBF-SVM) generalizes well to the second dataset. A
misspecified model – Linear-SVM – generalizes poorly. Second column: wrong approach. To remove associations with age,
features are replaced by the residuals after regressing them on age. This destroys the signal and results in poor performance
for both models and datasets. Third column: Features are not modified but samples are weighted to give more importance
to those that are more likely in the target distribution. Small circles indicate younger subjects, with less influence on the
classifier estimation. This reweighting yields a better prediction for the older population.

Age

XY

Y := g(Age) (3)
X := h(Age, Y) (4)
For some g, h.

Figure 2. Generative process for data in Figure 1. Age
influences both the target Y and the features X, and Y also
has an effect on X. Between the source and target datasets,
the distribution of age changes.

clinical decisions for poorly represented popu-217

lations [29, 30, 31, 32, 33].218

The examples above are instances of prefer-219

ential selection, which happens when members220

of the population of interest do not have equal221

probabilities of being included in the source222

dataset: the selection S is not independent of223

(X, Y). Preferential sample selection is ubiqui-224

tous and cannot always be prevented by careful225

study design [34]. It is therefore a major chal-226

lenge to the construction of reliable and fair227

biomarkers. Beyond preferential sample selec-228

tion, there are many other sources of dataset229

shifts, e.g. population changes over time or230

interventions such as the introduction of new231

diagnostic codes in Electronic Health Records232

[35].233

4.1 The selection mechanism influ-234

ences the type of dataset shift235

The correction for a dataset shift depends236

on the nature of this shift, characterized by237

which and how distributions are modified [25].238

Knowledge of the mechanism producing the239

dataset shift helps formulate hypotheses about240



| 5

distributions that remain unchanged in the tar-241

get data [36, 37, Chap. 5].242

Figure 3 illustrates this process with a simu-243

lated example of preferential sample selection.244

We consider the problem of predicting the vol-245

ume Y of a tumor from features X extracted246

from contrast CT images. These features can247

be influenced not only by the tumor size, but248

also by the dosage of a contrast agent M. The249

first panel of Figure 3 shows a selection of data250

independent of the image and tumor volume:251

there is no dataset shift. In the second panel,252

selection depends on the CT image itself (for253

example images with a low signal-to-noise ra-254

tio are discarded). As selection is independent255

of the tumor volume Y given the image X, the256

distribution of images changes but the condi-257

tional distribution P(Y |X) stays the same: we258

face a covariate shift (Section 6.1). The learned259

association remains valid. Moreover, reweight-260

ing examples to give more importance to those261

less likely to be selected can improve biomark-262

ers for a target data (Section 5), and it can263

be done with only unlabelled examples from264

the target data. In the third panel, subjects265

who received a low contrast agent dose are less266

likely to enter the training dataset. Selection267

is therefore not independent of tumor volume268

(the output) given the image values (the input269

features). Therefore we have sample selection270

bias: the relation P(Y |X) is different in source271

and target data, which will affect the perfor-272

mance of the prediction.273

As these examples illustrate, the causal274

structure of the data helps identify the type of275

dataset shift and what information is needed to276

correct it.277

5 Importance weighting: a278

generic tool against dataset279

shift280

We now describe a solution to dataset shift281

that applies to many situations and can be282

easy to implement. We will not detail other283

approaches (e.g. invariant representations [39],284

data augmentation, adversarial methods), be-285

cause they require implementing new learning286

algorithms or only apply to specific situations.287

Weiss et al. [40] and Pan and Yang [41] give288

systematic reviews of transfer learning.289

Dataset shift occurs when the joint distri-290

bution of the features and outputs is different291

in the source (data used to fit the biomarker)292

Y

Uniform selection
M

X

Y

S

S ⊥⊥ X , Y
Y

Selection based on X

S

M

X

Y

Y ⊥⊥ S |X

X

Y

Selection based on M

S

M

X

Y

Y 6⊥⊥ S |X

Figure 3. Sample selection bias: three examples. On the
right are graphs giving conditional independence relations
[38]. Y is the lesion volume to predict (output). M are the
imaging parameters, e.g. contrast agent dosage. X is the
image, and depends both on Y and M (in this toy example
X is computed as X := Y + M + ε, where ε is additive noise.
S indicates that data is selected to enter the source dataset
(orange points) or not (blue points). The symbol ⊥⊥ means
independence between variables. Preferentially selecting
samples results in a dataset shift (middle and bottom row).
Depending on whether Y ⊥⊥ S | X, the conditional distribu-
tion of Y | X – lesion volume given the image – estimated
on the selected data may be biased or not.
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and in the target data. Informally, importance293

weighting consists in reweighting or resampling294

the available data to create a pseudo-sample295

that follows the same distribution as the target296

population.297

To do so, examples are reweighted by their298

importance weights – the ratio of their likeli-299

hood in target data over source data. Examples300

that are rare in the source data but are likely301

in the target data are more relevant and there-302

fore receive higher weights. Many statistical303

learning algorithms – including Support Vector304

Machines, decision trees, random forests, neu-305

ral networks – naturally support weighting the306

training examples. Therefore, the challenge re-307

lies mostly in the estimation of the appropriate308

sample weights and the learning algorithm it-309

self does not need to be modified.310

To successfully use importance weighting,311

no part of the target distribution should be312

completely unseen. For example, if we use sex313

(among other features) to predict heart failure314

and our dataset only includes men, importance315

weighting cannot transform this dataset and316

make its sex distribution similar to that of the317

general population (Figure 4). Conversely, the318

source distribution may be broader than the319

target distribution (as seen for example in Fig-320

ure 1).

Men Women
0

1
OK

Men Women

??

Hopeless

Figure 4. Left: distribution of sex can be balanced by down-
weighting men and upweighting women. Right: women
are completely missing; the dataset shift cannot be fixed
by importance weighting.

321

In Appendix A, we provide a more precise322

definition of the importance weights, as well323

as an overview of how they can be estimated324

and used.325

6 Special cases of dataset shift326

Storkey [25] and Moreno-Torres et al. [42] pro-327

vide a comprehensive categorization of dataset328

shifts. We summarize two frequently-met sce-329

narios that can call for different adjustments:330

So
ur

ce
da

ta
se

t

Uniform weights Importance weighting

Ta
rg

et
da

ta
se

t

Best fit on source data

Degree 1

Degree 4 Importance weighting function

Figure 5. Covariate shift: P(Y | X) stays the same but the
feature space is sampled differently in the source and tar-
get datasets. A powerful learner may generalize well as
P(Y | X) is correctly captured [25]. Thus the polynomial fit
of degree 4 performs well on the new dataset. However, an
overconstrained learner such as the linear fit can benefit
from reweighting training examples to give more impor-
tance to the most relevant region of the feature space.

covariate shift and prior probability shift.331

6.1 Covariate shift332

Covariate shift occurs when the marginal dis-333

tribution of X changes between the source and334

target datasets (i.e. pt(x) 6= ps(x)), but P(Y |X)335

stays the same. This happens for example in336

the second scenario in Figure 3, where sam-337

ple selection based on X (but not Y) changes338

the distribution of the inputs. If the model is339

correctly specified, an estimator trained with340

uniform weights will lead to optimal predic-341

tions given sufficient training data [prediction342

consistency 43, Lemma 4]. However the usual343

(unweighted) estimator is not consistent for344

an over-constrained (misspecified) model. In-345

deed, a misspecified model may be able to fit346

the data well only in some regions of the input347

feature space (Figure 1). In this case reweight-348

ing training examples to give more importance349

to those that are more representative of the tar-350

get data is beneficial [25, 36]. Figure 5 illus-351

trates covariate shift.352

6.2 Prior probability shift353

With prior probability shift (a.k.a. label shift354

or target shift), the distribution of Y changes355

but not P(X | Y). This happens for example356

if one rare class is over-represented in the357

training data so that the dataset is more bal-358

anced, as when extracting a biomarker from359

a case-control cohort, or when disease preva-360

lence changes in the target population but man-361

ifests itself in the same way. Prior probability362
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Balanced dataset

Target dataset

Decision boundary

Original fit

Corrected for label shift

Figure 6. Prior probability shift: when P(Y) changes but
P(X | Y) stays the same. This can happen for example when
participants are selected based on Y – possibly to have a
dataset with a balanced number of patients and healthy
participants: X ← Y → S . When we know the prior
probability (marginal distribution of Y) in the target popu-
lation, this is easily corrected by applying Bayes’ rule. The
output Y is typically low-dimensional and discrete (often
it is a single binary value), so P(Y) can often be estimated
precisely from few examples.

shift can be corrected without extracting a new363

biomarker, simply by adjusting a model’s pre-364

dicted probabilities using Bayes’ rule [as noted365

for example in 25, 36]. Figure 6 illustrates prior366

probability shift.367

7 Conclusion368

Ideally, machine learning biomarkers would be369

designed and trained using datasets carefully370

collected to be representative of the targeted371

population – as in Liu et al. [44]. To be trusted,372

the biomarker ultimately needs to be evaluated373

rigorously on an independent and representa-374

tive sample. However, such data collection is375

expensive. It is therefore useful to exploit exist-376

ing datasets in an opportunistic way as much as377

possible in the early stages of biomarker devel-378

opment. When doing so, correctly accounting379

for dataset shift can prevent wasting important380

resources on machine-learning predictors that381

have little chance of performing well outside of382

one particular dataset.383

We gave an overview of importance weight-384

ing, an effective tool against dataset shift. Im-385

portance weighting needs a clear definition the386

targeted population and access to a diverse387

training dataset. When this is not possible, dis-388

tributionally robust optimization is a promis-389

ing alternative [see 45, for a review]. It con-390

sists in defining an ambiguity set – a set of391

distributions to which the target distribution392

might belong – then minimizing the worse risk393

across all distributions in this set. A related394

approach consists in ensuring the learner per-395

forms well for all inputs by penalizing the vari-396

ance of the training error (loss) [46, 47]. These397

methods can help improve performance homo-398

geneity across sub-populations and thus fair-399

ness [48, 49]. Even with distributionally ro-400

bust optimization, a rich, diverse training set401

and any information about the target popula-402

tion remain extremely valuable. This technique403

is, to date, quite recent and more difficult to im-404

plement than importance weighting, as it re-405

quires adapting or designing new learning al-406

gorithms.407

We conclude with some recommendations:408

• collect diverse, representative data409

• use importance weighting to correct biases410

in the data collection411

• do not adjust for confounding in a predictive412

setting.413

Following these recommendations should max-414

imize building fair biomarkers and their effi-415

cient application on new cohorts.416
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A Definition and estimation of700

importance weights701

We will implicitly assume that all the random702

variables we consider admit densities and de-703

note ps and pt the density of the joint distribu-704

tion of (X, Y) applied to the source and target705

populations respectively. If the support of pt706

is included in that of ps (meaning that ps > 0707

wherever pt > 0), we have:708

Esource[ L(Y, f(X)) ] = Etarget
[ pt(X, Y)
ps(X, Y) L(Y, f(X))

]
,

(5)
where L is the cost function and f is a prediction709

function, Esource (resp. Etarget) the expectation710

on the source (resp. target) data. The risk (on711

target data) can therefore be computed as an712

expectation on the source distribution where713

the loss function is reweighted by the impor-714

tance weights:715

w(x, y) = pt(x, y)
ps(x, y) . (6)

If we have empirical estimates ŵ of the im-716

portance weights w, we can compute the717

reweighted empirical risk:718

R̂ŵ(f) = n∑
i=1
ŵ(xi, yi) L(yi, f(xi)) . (7)

Rather than weighting examples we can719

also perform importance or rejection sampling720

[50, 51]. Importances can also be taken into721

account for model selection – for example in722

Sugiyama et al. [52] examples of the test set723

are also reweighted when computing cross-724

validation scores. Cortes et al. [53] study how725

errors in the estimation of the weights affect726

the prediction performance.727

A.1 Preferential Sample selection and728

Inverse Probability weighting729

In the case of preferential sample selection730

(Section 4), the condition that requires for the731

support of pt to be included in the support of ps732

translates to a requirement that all individuals733

have a non-zero probability of being selected:734

P(S = 1 | x, y) > 0 for all (x, y) in the support of pt.735

When this is verified, by applying Bayes’ rule736

the definition of importance weights in Equa-737

tion (6) can be reformulated [see 53, Sec. 2.3]:738

739

w(x, y) = P(S = 1)
P(S = 1 |X = x, Y = y) (8)

These weights are sometimes called Inverse740

Probability weights [54] or Inverse Propensity741
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scores [55]. Training examples that had a742

low probability of being selected receive higher743

weights, because they have to account for sim-744

ilar individuals who were not selected.745

A.2 Computing importance weights746

In practice we do not know pt(x, y), which is747

the joint density of (X, Y) in the target data.748

However, we do not need it to estimate pt/ps.749

More efficient estimation hinges on two obser-750

vations: we do not need to estimate both den-751

sities separately to estimate their ratio, and we752

can factor out variables that have the same dis-753

tribution in source and target data.754

Here we describe methods that estimate the755

true importance weights pt/ps, but we point out756

that reweighting the training examples reduces757

the bias of the empirical risk but increases758

the variance of the estimated model parame-759

ters. Even when the importances are perfectly760

known, it can therefore be beneficial to regu-761

larize the weights [43].762

Computing importance weights does not require763

distributions densities estimation764

Importance weights can be computed by mod-765

elling separately ps and pt and then computing766

their ratio [56, Sec. 4.1]. However, distribu-767

tion density estimation is notoriously difficult;768

non-parametric methods suffer from the curse769

of dimensionality and parametric methods de-770

pend heavily on the correct specification of a771

parametric form.772

But estimating both densities is more in-773

formation than we need to compute the sam-774

ple weights. Instead, we can directly opti-775

mize importance weights in order to make776

the reweighted sample similar to the target777

distribution, by matching moments [57] or778

mean embeddings [58, 59], minimizing the KL-779

divergence [60], solving a least-squares esti-780

mation problem [61] or with optimal transport781

[62].782

Alternatively, a discriminative model can be783

trained to distinguish source and target exam-784

ples. In the specific case of preferential sam-785

ple selection, this means estimating directly786

the probability of selection P(S = 1) (cf Equa-787

tion (8)). In general, the shift is not always788

due to selection: the source data is not neces-789

sarily obtained by subsampling the target pop-790

ulation. In this case we denote T = 1 if a subject791

comes from the target data and T = 0 if it comes792

from the source data. Then, a classifier can be793

trained to predict from which dataset (source or794

target) a sample is drawn, and the importance795

weights obtained from the predicted probabili-796

ties [56, Sec. 4.3]:797

w(x, y) = P(T = 1 |X = x, Y = y) P(T = 0)
P(T = 0 |X = x, Y = y) P(T = 1) , (9)

The classifier must be calibrated (i.e. pro-798

duce accurate probability estimates, not only799

a correct decision), see Niculescu-Mizil and800

Caruana [63]. Note that constant factors such801

as P(T = 0)/P(T = 1) usually do not matter and802

are easy to estimate if needed. This discrimi-803

native approach is effective because the distri-804

bution of (T |X = x, Y = y) is much easier to805

estimate than the distribution of (X, Y | T = t)806

: T is a single binary variable whereas (X, Y) is807

high-dimensional and often continuous.808

The classifier does not need to distinguish809

source and target examples with high accuracy.810

In the ideal situation of no dataset shift, the811

classifier will perform at chance level. On the812

contrary, a high accuracy means that there is813

little overlap between the source and target dis-814

tributions and the biomarker will probably not815

generalize well.816

What distributions differ in source and target data?817

We may exploit prior information telling us818

that some distributions are left unchanged in819

the target data. For example,820

pt(x, y)
ps(x, y) = pt(y | x) pt(x)

ps(y | x) ps(x) . (10)

Imagine we know that the marginal distri-821

bution of input X differs in source and target822

data, but the conditional distribution of the out-823

put Y given the input stays the same: pt(x) 6=824

ps(x) but pt(y | x) = ps(y | x) (a setting known as825

covariate shift). Then, the importance weights826

simplify to827

w(x, y) = pt(x)
ps(x) . (11)

In this case, importance weights can be esti-828

mated using only unlabelled examples (individ-829

uals for whom we do not know Y) from the tar-830

get distribution.831

Often, the variables that influence selec-832

tion (e.g. demographic variables such as age)833

are lower-dimensional than the full features834
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(e.g. high-dimensional images), and dataset835

shift can be corrected with limited informa-836

tion on the target distribution, with impor-837

tance weights or otherwise. Moreover, even838

if we have access to additional information Z839

that predicts selection but is independent of840

(X, Y), we should not use it to compute the im-841

portance weights. Indeed, this would only in-842

crease the weights’ variance without reducing843

the bias due to the dataset shift [20, Sec. 15.5].844

B Glossary845

Here we provide a summary of some terms and846

notations used in the paper.847

Target population the population on which848

the biomarker (machine-learning model)849

will be applied.850

Source population the population from which851

the sample used to train the machine-852

learning model is drawn.853

Selection in the case that source data are854

drawn (with non-uniform probabilities)855

from the target population, we denote by856

S = 1 the fact that an individual is selected857

to enter the source data (e.g. to participate858

in a medical study).859

Provenance of an individual when we are860

provided with samples from both the861

source and the target populations862

(e.g. Appendix A.2), we also denote T = 1863

if an individual comes from the target864

population and T = 0 if they come from865

the source population.866
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Dear editors of GigaScience,

we would like to submit a didactic review on dataset shift when defining biomark-
ers with machine learning, a major threat to external validity of these biomark-
ers.

Machine-learning techniques are increasingly used to define biomarkers from
complex measurements. They hold strong promises for biology and healthcare,
such as improving clinical practice and precision medicine with early detection of
diseases, or defining intermediate outcomes in epidemiology. However, medical
research cohorts often fail to faithfully represent the target population, due
to biases such as sample selection biases – the sampling distribution of these
datasets is shifted with respect to the population that might benefit from the
biomarker. This external-validity challenge is seldom discussed in the context
of machine-learning practice. Yet, such settings can break standard machine-
learning tools: the extracted biomarker may not perform well on the target
population.

We think that a didactic review on this topic is important and timely given
the increasing number of publications that opportunistically apply machine-
learning techniques to biomedical datasets. While machine-learning methods
carry great promises for medicine and public health, they are often developed
without properly taking dataset shift into account, applied without measuring
how much this shift limits their validity, or discarded without resorting to appro-
priate techniques to make them more robust. In addition, the literature contains
some misunderstanding regarding the solutions to dataset shift, as intuitions do
not carry over from inferential statistics to predictive modeling. The specific fo-
cus of our proposed review is to explain progress in mathematical techniques to
non specialists who can most benefit from them, namely healthcare researchers.

Best regards,

Jérôme Dockès, Gaël Varoquaux, Jean-Baptiste Poline.
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