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Abstract: Machine learning brings the hope of finding new biomarkers extracted from cohorts
with rich biomedical measurements. A good biomarker is one that gives reliable
detection of the corresponding condition. However, biomarkers are often extracted
from a cohort that differs from the target population. Such a mismatch, known as a
dataset shift, can undermine the application of the biomarker to new individuals.
Dataset shifts are frequent in biomedical research, e.g. because of recruitment biases.
When a dataset shift occurs, standard machine-learning techniques do not suffice to
extract and validate biomarkers. This article provides an overview of when and how
dataset shifts breaks machine-learning extracted biomarkers, as well as detection and
correction strategies.
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Response to reviewer and editor comments

We thank the editor and the reviewers for their thoughtful comments. We describe below how we have
addressed them in the revised manuscript

1 Editor

Real data In particular, all reviewers feel that an example with real data should be included.

Reply We thank the editor and the reviewers for suggesting an example on real data. We added such
an example, drawing samples with different age distributions from the UKBiobank dataset, and studying
the task of predicting smoking status.

By choosing a large dataset and a classification task with well balanced classes (as opposed to disease
diagnostics where one class is usually much smaller), we ensure that we have plenty of data. This enables us
to subsample it to draw samples with different age distributions, then further divide it into cross-validation
splits, and still obtain test sets that are large enough for the prediction scores to be meaningful.

The results of this experiment illustrate several of the points we discuss in the review and show with
simulated data (please see details in Section 3, Figure 2 and Appendix B):

• in this example the dataset shift does degrade prediction performance

• regressing out age (the variable whose distribution changes) does not help to handle the dataset shift
and is detrimental in all configurations.

• the dataset shift affects the linear model as much as the non-linear model: strong constraints are
not a solution to dataset shift and with sufficient sample size the powerful learner performs much
better with or without dataset shift.

• Importance Weighting seems to improve the scores of the linear model in the presence of dataset
shift.

• However Importance Weighting degrades the performance of the best model (the gradient boosting)
in the presence of dataset shift. Indeed, the non-linear model can already learn flexible bound-
aries and rely on local information to classify individuals of a certain age group. Downweighting
participants from the over-represented age group increases the risk of overfitting without bringing
important benefits, so Importance Weighting degrades performance. Note that we observe a similar
behaviour in the simulated data in Figure 1: IW improves the boundary for the target population
only for the linear model.

• Therefore for this example the best approach is to ensure the whole support of the target distribution
is represented in the training data (even if the distribution is shifted), and rely on a large dataset
and powerful machine-learning model.

public repository On an editorial note, your python files are included as supplemental files at the
moment, I recommend to share them via a code repository instead and cite the repo in the paper. Please
also add license info for the code (OSI-approved licences here: https: // opensource. org/ licenses ).

Reply Thank you for this suggestion. We have created a repository containing all the sources for this pa-
per (and added an MIT license): https://github.com/neurodatascience/dataset_shift_biomarkers.
We have added a paragraph indicating this, “Software and data availability”, at the end of the conclusion.
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2 Reviewer 1

summary This paper addresses a very important and often undermined challenge in deriving new
biomarkers for disease using machine learning techniques. Very often, new methods are limited to valida-
tion experiments with cross-validation or using training and testing datasets with similar characteristics.
Also, datasets used in validations are often affected by selection bias. Thus, these experiments may not
provide a realistic evaluation of application to new individuals, e.g. in a clinical setting. The paper de-
scribes possible biases in data used for training and testing, describes the effects of "dataset shift" on the
accuracy of final biomarkers, and presents techniques to deal with dataset shift.

The paper is well written in general. I enjoyed reading it as a tutorial that briefly presents the basic
concepts and then incrementally introduces the main problem. The illustration of the dataset shift prob-
lem using toy examples and visualizations is very useful. After a very clear introduction and problem
description, the paper presents a generic tool to address this problem. The proposed solution, importance
weighting, is not novel. However, presenting it in this context was informative. Section 6.1 (covariate
shift) nicely links to importance weighting technique. However, I found that section 6.2 was disconnected,
so maybe it would require a more clear description and a careful discussion.

section 6.2 disconnected However, I found that section 6.2 was disconnected, so maybe it would require
a more clear description and a careful discussion.

Reply Thank you for pointing this out. To include it better to the rest of the paper, we now point to
this section (is now 7.2, "prior probability shift") from the introduction of section 7, and we have expanded
it to include more discussion of class imbalance and highlight that this special case of dataset shift is easy
to correct, which is why we deemed it deserved a special mention.

2.1 A few major comments:

example with real data The paper reads well as a concept paper; however, it does not include any
examples with real data. Toy examples for illustrations are very informative. However, examples on
real datasets with quantitative evaluations would be necessary to show the effects of dataset shift in real
problems, and to show how the proposed approach actually works. I think that this is the major missing
part in the paper. Addition of results using real datasets would significantly increase the value of the paper,
particularly if they can be selected in a way that will illustrate the problems mentioned in the paper.

Reply Thank you for suggesting such an experiment. We have included an example relying on the
UKBiobank data (predicting the smoking status of participants, and using training and testing sets with
different age distributions). Please see the second paragraph of Section 3, Figure 2, Appendix B, and our
reply to the editor.

data heterogeneity A major challenge in deriving imaging biomarkers is to handle heterogeneity of
imaging data and clinical labels due to various factors, such as scan parameters/protocols and variability
of measuring protocols used. The paper did not discuss how to handle data heterogeneity, which is another
major source for dataset shift. Only in section 3 there is a suggestion to use heterogeneous sets for training
(which I agree), but it’s not clear how to derive robust biomarkers in the presence of heterogeneous datasets
(e.g. there is no mention of data harmonization). I think this is a limitation for the paper.

Reply We agree that changes due to sites, imaging devices, acquisition parameters etc. constitute a
major challenge. We now provide more discussion in the beginning of section 6 and a new dedicated
section, 6.2, "multi-site datasets". We mention possible approaches, such as minimizing the loss on the
worst site or scanner to encourage more robust estimation, or the learning of invariant features. However we
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believe that learning robust biomarkers despite the heterogeneity of parameters and measuring protocols
remains an open problem.

2.2 One minor comment that may help to improve the paper:

In section 3, after reading the first sentence, I had the impression that the listed items in italic were the
"misconceptions", so they are showing what is wrong/incorrect. I had to go back and read them again after
I noticed that it was the opposite. I would suggest the authors to edit this part in a way that will remove
the ambiguity.

Reply Thank you for pointing out this confusing wording. We have reworked the section title and its
wording to remove this ambiguity.

3 Reviewer 2

summary This article covers a vitally important topic in machine learning generally and specifically its
application to healthcare and life science. The mismatching of attributes and properties in training and
testing data is a significant issue. The authors raise these important issues and present some ideas and
methods for how to address what they call ’dataset drift’.

emphasize fig 3 Figure 3 and the corresponding text are of interest and this should be emphasized more
than it is currently.

Reply We agree that the concrete consequences of the causal relations underlying the data on machine
learning models’ generalization is an important and interesting topic. However it is a rather technical and
difficult one, and we wanted to keep the paper very accessible, which is why we chose to simply introduce
the issue very briefly and provide references for interested readers. To emphasize this topic slightly more,
we have added another reference to a publication aiming to exploit causal knowledge to improve domain
adaptation, robustness to dataset shift at the end of Section 4.1.

3.1 major comments

There are several areas where the paper can be improved and given the importance of the topic and target
audience, I would strongly recommend the authors consider these changes.

real data The authors present some examples of dataset drift and possible issues that arise, some from
the literature and some from toy examples. I think this would have much stronger impact if a real dataset
were used in the paper to demonstrate this.

Reply Thank you for suggesting such an experiment. We have included an example relying on the
UKBiobank data (predicting the smoking status of participants, and using training and testing sets with
different age distributions). Please see the second paragraph of Section 3, Figure 2, Appendix B, and our
reply to the editor.

class imbalance The authors refer to ’probability shift’ to refer to the difference in populations sizes in
the training and testing data, commonly referred to as class-imbalance. This is quite brief in the paper
and constitutes one of the biggest issues in machine learning in life sciences and more emphasis should be
devoted to this. Explicit refer to class-imbalance (and some references) is required here as there is a large
area of research devoted to this. Moreover, the authors must be clear what are the disadvantages of training
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models on balanced data when the population is imbalanced, and how using training data that reflects the
population (e.g. with impedance) and then using the proposed methods provide an advantage. Figure 6
could be extended to show this for example. The machine learning community often use balanced training
data to avoid ’short cuts’ to high accuracies and identify the features need to predict a label given the input.
If you have an appropriate model that identifies robust features in training, then the low frequency of a
class in the testing / real world data (e.g. rare disease) should not degreed performance. This may also
apply to other characteristics / properties in the training data.

Reply We agree that class imbalance is an active area of research in machine learning, and that it is
particularly relevant to the life sciences, where having a very strong imbalance is common (for example
when learning to diagnose a disease). We now explicitly use the term "class-imbalance" in Section 7.2 and
provide a reference to a review on the topic. We also agree that when the classes are well separated, the
shift in prior probabilities does not have a strong impact on the posterior – a good classifier will generalize
well despite the change in class balance. We also added a sentence regarding this fact.

However, class imbalance in general is a problem of its own, and much of the literature on this topic
is not directly related to dataset shift. We therefore prefer to limit our discussion of class imbalance in
the case where it does result in a dataset shift – when the prior probability is voluntarily shifted to make
classes more balanced in the training data. By avoiding a more complete discussion of class imbalance,
we hope to keep our didactic review short and focused on dataset shift.

Transforming input data Similarity, the authors have not discussed the notion of transforming the
data distributions prior to application of a model, e.g. optimal transport. What are the benefits of the
proposed methods over these?

Reply Indeed our discussion was too heavily focused on sample weighting, skimming over other ap-
proaches. We now discuss other possibilities in Section 6, including transforming features (possibly relying
on optimal transport), learning features that do not discriminate source and target domains with adver-
sarial methods, and data augmentation.

homogeneous training data The authors state on Line 166 Training examples should not be selected
to be homogeneous. This maybe conflating issues from each of the healthcare and ML domains and may
not be a general recommendation for all problems, the authors should expand this discussion to justify this
recommendation.

Reply Thank you for pointing out this imprecision. Indeed this was not meant to be a general rec-
ommendation for all problems, as in this paper we discuss strictly the predictive setting – and not, for
example, statistical testing nor causal inference. To make this clearer, we have added the following sentence
to this paragraph:

Therefore in predictive settings, when we want to ensure a good generalization of machine-
learning models, large and diverse datasets are desirable.

Moreover, the paragraph already contained this phrase:

While this may help reduce variance and improve statistical testing

which we hope indicates that there may be motivations to carefully select homogeneous participants on
some settings – but not in the case where the goal is accurate out-of-sample prediction.
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biomarker terminology The authors often refer to the f(x) as the biomarker, this is not correct. F(x) is
the model and the biomarkers are the inputs x. The model finds a combination of these to differentiate the
classes through f(x). This leads to data (i.e. biomarker) vs model considerations which are not discussed.
That is, models will be sensitive to ’dataset shifts’, but if biomarkers are robust then they should be invariant
to such shifts (at least in theory) with a ’good’ model. Additionally, you do not ’build biomarkers’, the
model identifies them in the data.

Reply Thank you for pointing out this inaccuracy in terminology. We have now edited the text to refer
to "machine-learning models" and "biomarkers identified through machine-learning" rather than referring
to a machine-learning model as a biomarker. We now use "identifying a biomarker" rather than "building
a biomarker"

IW in main article Section 5 why has the precise definition and overview in the appendix? This section
required more detail as it is currently conceptual only. Further details can be in the appendix, but more
are required here.

Reply We chose to keep the precise description of importance weighting to keep the main text at a
conceptual level and focussed on a description of the dataset shift problem rather than the details of a
particular solution.

From the reviews we perceived that the paper focussed too heavily on importance weighting, thus we
chose to keep the details of importance weighting in the appendix, and add a richer discussion of other
solutions in the main text.

3.2 Some minor comments to the authors

notation Section 2.1 you use lower case x and y but have not defined them (as individual instances in
X and Y). one small sentence will suffice, you do this in line 89 but this should be earlier. You also use X
and Y for the seen and unseen data on line 83.

Reply Thank you for pointing out this omission. To keep the discussion conceptual and avoid introducing
extra notation, we have now decided to use X and Y only, which are defined at the beginning of Section
2.1.

wording The first entice in section 2.2 line 111 does not read well and the citation doesn’t relate to a
statement clearly. Training performance only is not just an ’optimistic’ estimate it is potentially meaning-
less due to what you are calling data shit and the fact that some ML methods (eg neural nets) can fit any
arbitrary data and hence overfit.

Reply We have now reworded that sentence (beginning of section 2.2) and added more details to explain
in what overfitting consists. Moreover, we have specified more precisely to which section of the Poldrack
et al. paper we refer. It does describe the phenomenon of overfitting:

For this reason, a model will usually fit better to the sample used to estimate it than it will to
a new sample, a phenomenon known in machine learning as overfitting

The Section 7.4 of "the elements of statistical learning", titled “Optimism of the training error rate” also
discusses exactly that topic. We consider that these references are complementary because the Poldrack
et al provides an intuition of the problem without any mathematical formalism, while the Hastie et al
provides a complete explanation.
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fig 1 Fig 1 caption. Age is indicated by shade not colour. Healthy and disease are indicated by colour.
Also I assume blue corresponds ’unhealthy’ patients as this is not stated and needs to be. It seems that the
RBF-SVM could be improved for the source data (for younger patients)

Reply Thank you for pointing out these imprecisions. The caption now makes it clear that blue circles
correspond to unhealthy subjects and we have replaced the erroneous "color" with "shade of gray".

Regarding the rbf SVM performance, our goal was not to find the best possible performance for this toy
data but to qualitatively illustrate the different generalization properties of a linear and non-linear model.
Therefore we may not have selected the best hyperparameter for this data. In fact, we have selected a
rather strong regularization in order to have a simple boundary and more readable figure. As you can see
on the figure obtained with a smaller regularization term (below), the learned boundary improves but the
conclusions drawn from the figure as a whole do not change.
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fig 2 Fig 2 the caption needs more information. what is the shade of the arrows representing? A gradient
between younger and older? What to the arrows (and their width represent?) what is the joining arrow
indicating?

Reply Indeed the caption of Figure 2 was too terse. We have added paragraphs to describe the meaning
of the arrows, their shade and width, and the small arrow that represents a jump from a Healthy to a
Diseased trajectory. As the reviewer assumed, the shade of the arrows represents a gradient from younger
to older (as it also does in Figure 1). We have also added color, and merged figures 1 and 2.

figure order The text should refer to figures in order, currently it refers to figures 1,5,3 . . . and figure
2 is first referred in figure 1’s caption.

Reply Thank you for noting this awkard order. The figures are now referred to in the correct order.

mention of reviews on transfer learning line 288-289 are not relevant to the rest of the paragraph.
You have not mentioned anything to do with transfer learning.

Reply We agree that the connection of these references with the rest of the paragraph was not clear
enough. The reviews on transfer learning are now mentioned in Section 6, "other approaches to dataset
shift". We consider that they are relevant because they describe some of the solutions we mention in more
detail, as well as other methods. Dataset shift is a subset of transfer learning, and is therefore discussed
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in these reviews, which are relevant for readers who want a deeper and more formal discussion of the
concepts exposed in our paper.

Mentioning the term "transfer learning" also provides another useful keyword that readers can use to
search more information on these topics.

fig 4 Figure 4 is unnecessary as this is described in the text clearly.

Reply We agree that Figure 4 is not absolutely essential. However, we feel that the point that all
segments of the population must be represented in the training data is crucial, and that emphasizing
it with a small illustration may be beneficial, especially to readers who are reading the paper quickly.
Moreover, this figure takes very little space and we hope it can be understood quickly.

4 Reviewer 3:

summary This manuscript presents a didactic review which discusses the implications of dataset shift
when designing and evaluating machine learning-based biomarkers. The review covers some basic machine
learning concepts (empirical risk minimization, evaluation practices, etc), points out common miscon-
ceptions, characterizes different types of dataset shift, and discusses importance weighting as a potential
solution to this problem.

The paper is nicely written, didactic and clear. I feel it is also timely since currently many researchers
who are not coming from the fields of statistics or machine learning are using such methods to analyze
their own datasets and derive biomarkers for various pathologies. Overall, the manuscript is interesting
but I think it would benefit from including a few more concrete examples, linking the theoretical concepts
to applications in the context of biomarkers (see some of my comments below).

4.1 major comments

I have some recommendations that may help to improve the quality of the paper:

scanner differences One common source of dataset shift in the context of image-derived biomarkers is
related to the equipment brand or configuration parameters used to capture such images (e.g. the MR or
CT machine used to perform the studies). I would like the authors to discuss this fact and link it to the
concepts introduced in the review.

Reply Indeed differences between scanners can be an important challenge. We have added Section
6.2 which mentions potential approaches such as learning on multi-site or multi-scanner datasets while
minimizing the loss on the worst site and also mention learning invariant representations (beginning of
Section 6).

additional concepts to define To me, the target audience for this didactic review is mostly health-
care and biomedical researchers, who are using machine learning and data analysis tools to produce novel
biomarkers. In that sense, I would not take for granted the fact that the audience is familiar with basic
concepts like ’confounding’ for example, which are used but not defined. Another important term which is
used but not discussed is ’fairness’ (line 176). Since this is an educational review, I recommend the authors
to devote a few lines to introduce such concepts and discuss them in the context of predictive models.
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Reply Indeed this comment is very relevant as our review is mostly intended for healthcare and biomed-
ical researchers. We now provide a brief definition of confounding at the beginning of section 3 and in
the Glossary (Appendix C). Fairness in the general context of machine learning has several tentative def-
initions and we prefer not to dive into details to avoid diluting the focus of the paper, but we did try to
clarify what we mean by it in the context of biomarkers’ prediction performance in the second paragraph
of Section 3.

fig 2 The thick arrows in Figure 2 are a bit confusing. What does the direction of the thick arrows
indicate?. Also, g and h are not specified. The Figure just indicates "for some g,h". What do g and h
represent? What is their actual form?

Reply The direction of the thick arrows represents increasing age – the arrows schematize the trajectory
of ageing subjects across the 2-dimensional feature plane. Their width represents the size of each group
(Healthy and Diseased): the Healthy group is large at young ages, and the Healthy group diminishes and
the Diseased group grows as age increases. We have reworked the figures and expanded the caption to
better describe the meaning of the arrows, their width, and the grayscale gradient. (Note figures 1 and 2
have been merged).

The goal of the equations with g and h was only to explain that Y depends only on age, and X
depends on both Y and age. As the actual form of these dependencies is not important and we realized
these equations added ore confusion than clarity, we removed them.

concrete scenarios for IW The authors focus on importance weighting as a tool to deal with dataset
shift, and dedicate a complete appendix to its definition. However, as discussed in section 7, importance
weighting needs a clear definition of the targeted population and access to a diverse dataset, which may not
be the case in real scenarios. Since this review is related to biomarkers, I think it would be important to
discuss a few more concrete and real scenarios (beyond the examples shown in the figures) where importance
weighting could be used to mitigate dataset shift in the context of machine-learning based biomarkers.

Reply We agree that importance weighting may not be applicable, or may not improve prediction, in a
variety of scenarios. We have expanded the section on importance weighting and the conclusion to insist
more on the limitations of importance weighting (see the last paragraph of Section 5 in particular).

However, importance weighting can be helpful in the case of a covariate shift when the learner underfits
– when the model is misspecified, eg when a linear model is used to approximate a non-linear function.
We think that this situation does happen in practice, as in the left panel of the new Figure 2, or the cited
examples on UCI datasets for breast cancer and heart disease prediction (although we realize these are
illustrations on small datasets rather than genuine biomedical studies).

Another reason why we chose to give special treatment to importance weighting is that, unlike many
other approaches, it is conceptually simple, easy to implement, and usually does not incur an important
computational cost. It is therefore particularly relevant to healthcare and biomedical researchers who are
interested in solutions that can readily be deployed on datasets of a realistic size. Our recommendation
is to include an importance-weighted estimator in the set of candidates to be tested (and compared to a
baseline without any dataset shift adaptation) on real data from the target distribution, when feasible.
We state the recommendation of using a non-weighted baseline in the second paragraph of Section 6.

complete section for other solutions As previously discussed, importance weighting is somehow
limited in situations where we do not have a clear definition of the targeted population. In fact, the authors
discuss in the Conclusions section alternative approaches that may be used when this is not possible (e.g.
distributionally robust optimization). Why not devoting a complete section to discuss alternative approaches
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useful in the absence of information about the target population? I am not sure if the Conclusions section
is the right place to introduce them.

Reply We have now added Section 6, "other approaches to dataset shift". It does not provide technical
details but gives an overview of other solutions, including invariant features and adversarial domain adap-
tation, data augmentation, robust optimization, and loss variance reduction. It also discusses the case of
datasets collected across several sites or imaging devices.

experiments with real data As far as I understand, all the examples provided in the manuscript are
coming from synthetic data. I think for a didactic review like this one, and specially for a journal like
Gigascience, it would be nice to provide a case study using real data, which reflects a dataset shift between
source and target, that can be corrected using the discussed importance weighting strategy. It doesn’t have
to be a huge dataset, just a simple case with concrete features X and labels Y. Maybe using some public
database of tabulated samples which illustrates a real scenario?

Reply Thank you for suggesting such an experiment. We have included an example relying on the
UKBiobank data (predicting the smoking status of participants, and using training and testing sets with
different age distributions). Please see the second paragraph of Section 3, Figure 2, Appendix B, and our
reply to the editor.

note General Note: I think it is important to acknowledge the fact that I am coming from the com-
puter vision and medical image computing community, not from statistics or causal analysis, and thus my
comments in that regard may be limited.

4.2 Minor comment:

typo Line 385: "Importance weighting needs a clear definition the targeted population". It should be
"Importance weighting needs a clear definition of the targeted population".

Reply Thank you for pointing this out; we have corrected that typo.
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Abstract
Machine learning brings the hope of finding new biomarkers extracted from cohorts with rich biomedical measurements. A
good biomarker is one that gives reliable detection of the corresponding condition. However, biomarkers are often extracted
from a cohort that differs from the target population. Such a mismatch, known as a dataset shift, can undermine the
application of the biomarker to new individuals. Dataset shifts are frequent in biomedical research, e.g. because of
recruitment biases. When a dataset shift occurs, standard machine-learning techniques do not suffice to extract and
validate biomarkers. This article provides an overview of when and how dataset shifts breaks machine-learning extracted
biomarkers, as well as detection and correction strategies.

1 Introduction: dataset shift breaks learned
biomarkers

Biomarkers are measurements that provide information about a
medical condition or physiological state [1]. For example, the
presence of an antibody may indicate an infection; a complex
combination of features extracted from a medical image can help
assess the evolution of a tumor. Biomarkers are important for
diagnosis, prognosis, and treatment or risk assessments.

Complex biomedical measures may carry precious medical
information, as with histopathological images or genome se-
quencing of biopsy samples in oncology. Identifying quantitative
biomarkers from these requires sophisticated statistical analy-
sis. With large datasets becoming accessible, supervised ma-
chine learning provides new promises by optimizing the infor-
mation extracted to relate to a specific output variable of interest,
such as a cancer diagnosis [2, 3, 4]. These methods, cornerstones
of artificial intelligence, are starting to appear in clinical practice:
a machine-learning based radiological tool for breast-cancer di-
agnosis has recently been approved by the FDA1.

Can such predictive biomarkers, extracted through complex

1 https://fda.report/PMN/K192854

data processing, be safely used in clinical practice, beyond the
initial research settings? One risk is the potential mismatch, or
dataset shift, between the distribution of the individuals used to
estimate this statistical link and that of the target population
that should benefit from the biomarker. In this case, the ex-
tracted associations may not apply to the target population [5].
Computer aided diagnostic of thoracic diseases from X-ray im-
ages has indeed been shown to be unreliable for individuals of
a given sex if built from a cohort over-representing the other
sex [6]. More generally, machine-learning systems may fail on
data from different imaging devices, hospitals, populations with
a different age distribution, etc. . Dataset biases are in fact fre-
quent in medicine. For instance selection biases –eg due to vol-
unteering self-selection, non-response, dropout...– [7, 8] may
cause cohorts to capture only a small range of possible patients
and disease manifestations in the presence of spectrum effects
[9, 10]. Dataset shift or dataset bias can cause systematic errors
that cannot be fixed by acquiring larger datasets and require spe-
cific methodological care.

In this article, we consider predictive biomarkers identified
with supervised machine learning. We characterize the problem
of dataset shift, show how it can hinder the use of machine learn-
ing for health applications [11, 12], and provide mitigation strate-
gies.
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2 A primer on machine learning for biomark-
ers

2.1 Empirical Risk Minimization

Let us first introduce the principles of machine learning used
to identify biomarkers. Supervised learning captures, from ob-
served data, the link between a set of input measures (features)
X and an output (e.g. a condition) Y: for example the relation
between the absorption spectrum of oral mucosa and blood glu-
cose concentration [13]. A supervised learning algorithm finds a
function f such that f(X) is as close as possible to the output Y.
Following machine-learning terminology, we call the system’s
best guess f(X) for a value X a prediction, even when it does not
concern a measurement in the future.

Empirical Risk Minimization, central to machine learning,
uses a loss function L to measure how far a prediction f(X) is
from the true value Y, for example the squared difference:

L(Y, f(X)) = (Y – f(X))2 . (1)
The goal is to find a function f that has a small risk, which is the
expected loss on the true distribution of X and Y, i.e. on unseen in-
dividuals. The true risk cannot be computed in practice: it would
require having seen all possible patients, the true distribution
of patients. The empirical risk is used instead: the average error
over available examples,

R̂(f) = 1
n

n∑
i=1

L(yi, f(xi)) , (2)

where {(xi, yi) , i = 1, . . . , n} are available (X, Y) data, called train-
ing examples. The statistical link of interest is then approxi-
mated by choosing f within a family of candidate functions as
the one that minimizes the empirical risk R̂(f).

The crucial assumption underlying this very popular ap-
proach is that the prediction function f will then be applied to
individuals drawn from the same population as the training ex-
amples {xi, yi}. It can be important to distinguish the source data,
used to fit and evaluate a machine-learning model (e.g. a dataset
collected for research), from the target data, on which predictions
are meant to be used for clinical applications (e.g. new visitors
of a hospital). Indeed, if the training examples are not represen-
tative of the target population – if there is a dataset shift – the
empirical risk is a poor estimate of the expected error, and f will
not perform well on individuals from the target population.

2.2 Evaluation: Independent test set and cross-
validation

Once a model has been estimated from training examples, mea-
suring its error on these same individuals results in a (sometimes
wildly) optimistic estimate of the expected error on unseen indi-
viduals (Friedman et al. [14, Sec. 7.4], Poldrack et al. [15, Sec. 1,
“Association vs Prediction”]). Indeed, predictors chosen from a
rich family of functions are very flexible and can learn rules that
fit tightly the training examples but fail to generalize to new in-
dividuals. This is called overfitting.

To obtain valid estimates of the expected performance on new
data, the error is measured on an independent sample held out
during training, called the test set. The most common approach
to obtain such a test set is to randomly split the available data.
This process is usually repeated with several splits, a procedure
called cross-validation [16, 14, Sec. 7].

When training and test examples are chosen uniformly from
the same sample, they are drawn from the same distribution (i.e.
the same population): there is no dataset shift. Some studies also

measure the error on an independent dataset [e.g. 17, 18]. This
helps establishing external validity, assessing whether the pre-
dictor will perform well outside of the dataset used to define it
[19]. Unfortunately, the biases in participant recruitment may be
similar in independently collected datasets. For example if pa-
tients with severe symptoms are difficult to recruit, this is likely
to distort all datasets similarly. Testing on a dataset collected
independently is therefore a useful check, but no silver bullet to
rule out dataset shift issues.

3 False solutions to tackling dataset shift

We now discuss some misconceptions and confusions with prob-
lems not directly related to dataset shift.
“Deconfounding” does not correct dataset shift for predictive models.
Dataset shift is sometimes confused with the notion of confound-
ing, as both settings arise from an undesired effect in the data.
Confounding comes from causal analysis, estimating the effect of
a treatment –an intervention, sometimes fictional– on an out-
come. A confounder is a third variable –for example age, or a
comorbidity– that influences both the treatment and the out-
come. It can produce a non-causal association between the two
[See 21, Chap. 7, for a precise definition]. However, the machine-
learning methods we consider here capture statistical associa-
tions, but do not target causal effects. Indeed, for biomarkers, the
association itself is interesting, whether causal or not. Elevated
body temperature may be the consequence of a condition, but
also cause a disorder. It is a clinically useful measure in both
settings.

Tools for causal analysis are not all useful for prediction, as
pointed out by seminal textbooks: “if the goal of the data anal-
ysis is purely predictive, no adjustment for confounding is nec-
essary [...] the concept of confounding does not even apply.”[21,
Sec. 18.1], or Pearl [22]. In prediction settings, applying proce-
dures meant to adjust for confounding generally degrades pre-
diction performance without solving the dataset shift issue. Fig-
ure 1 demonstrates the detrimental effect of “deconfounding”
on simulated data: while the target population is shifted due
to a different age distribution, removing the effect of age also
removes the separation between the two outcomes of interest.
The same behavior is visible on real epidemiologic data with age
shifts, such as predicting the smoking status of participants in
the UKBiobank study [23], as shown in Figure 2. Drawing train-
ing and testing samples with different age distributions high-
lights the effect of these age shifts on prediction performance
(see Appendix B for details on the procedure). For a given learner
and test population, training on a different population degrades
prediction. For example, predictions on the old population are
degraded when the model is trained on the young population. A
flexible model (Gradient Boosting) outperforms the linear model
with or without dataset shift. “Regressing out” the age (as in the
second column of Figure 1, “+ regress-out” strategy in Figure 2)
degrades the predictions in all configurations.

For both illustrations on simulated and real data (Figure 1
and 2), we also demonstrate an approach suitable for predictive
models: reweighting training examples giving more importance
to those more likely in the test population. This approach im-
proves the predictions of the overconstrained (misspecified) lin-
ear model in the presence of dataset shift, but degrades the pre-
dictions of the powerful learner. The non-linear model already
captures the correct separation for both young and old individ-
uals, thus reweighting examples does not bring any benefit but
only increases the variance of the empirical risk. A more detailed
discussion of this approach, called importance weighting, is pro-
vided in Section 5.
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Figure 1. Classification with dataset shift – regressing out a correlate of the shift does not help generalization. The task is to classify patients (orange) from healthy
controls (blue), using 2-dimensional features. Age, indicated by the shade of gray, influences both the features and the probability of disease. Left: generative process
for the simulated data. Age influences both the target Y and the features X, and Y also has an effect on X. Between the source and target datasets, the distribution of
age changes. The two arrows point towards increasing age and represent the Healthy and Diseased populations, corresponding to the orange and blue clouds of points
in the right panel. The grayscale gradient in the arrows represents the increasing age of the individuals (older individuals correspond to a darker shade). Throughout
their life, individuals can jump from the Healthy trajectory to the Diseased trajectory, which is slightly offset in this 2-dimensional feature space. As age increases, the
prevalence of the disease increases, hence the Healthy trajectory contains more individuals of young ages (its wide end), and less at older ages (its narrow end) – and
vice-versa for the Diseased trajectory. Right: predictive models In the target data (bottom row), the age distribution is shifted: individuals tend to be older. Elderly
are indeed often less likely to participate in clinical studies [20]. First column: no correction is applied. As the situation is close to a covariate shift (Section 7.1), a
powerful learner (RBF-SVM) generalizes well to the target data. An over-constrained model – Linear-SVM – generalizes poorly. Second column: wrong approach.
To remove associations with age, features are replaced by the residuals after regressing them on age. This destroys the signal and results in poor performance for
both models and datasets. Third column: Samples are weighted to give more importance to those more likely in the target distribution. Small circles indicate younger
individuals, with less influence on the classifier estimation. This reweighting improves prediction for the linear model on the older population.

young  young

old  young

SVC
SVC + reweighting
SVC + regress-out

GB
GB + reweighting
GB + regress-out

.66 .67 .68 .69 .7 .71
AUC for linear SVC

old  old

young  old

.76 .77 .78 .79 .8 .81 .82
AUC for Gradient Boosting

Predicting smoking status in the UKBiobank (10-fold CV, n train = 90K, n test = 9K)

Figure 2. Predicting the smoking status of UKBiobank participants. Different predictive models are trained on 90K UKBiobank participants and tested on 9K
participants with a possibly shifted age distribution. “young → old” means the training set was drawn from a younger sample than the testing set. Models perform
better when trained on a sample drawn from the same population as the testing set. Reweighting examples that are more likely in the test distribution (“+ reweighting”
strategy, known as Importance Weighting, Section 5) alleviates the issue for the simple linear model, but is detrimental for the Gradient Boosting. Regressing out the
age (“+ regress-out” strategy) is a bad idea and degrades prediction performance in all configurations.

Training examples should not be selected to be homogeneous. To ob-
tain valid predictive models that perform well beyond the train-
ing sample, it is crucial to collect datasets that represent the
whole population and reflect its diversity as much as possible
[5, 24, 25]. Yet clinical research often emphasizes the oppo-
site: very homogeneous datasets and carefully selected partici-
pants. While this may help reduce variance and improve statisti-
cal testing, it degrades prediction performance and fairness. In
other words, the machine-learning system may perform worse
for segments of the population that are under-represented in
the dataset, resulting in uneven quality of care if it is deployed
in clinical settings. Therefore in predictive settings, where the
goal is machine-learning models that generalize well, large and
diverse datasets are desirable.

Simpler models are not less sensitive to dataset shift. Often, flexible
models can be more robust to dataset shifts, and thus generalize

better, than linear models [26], as seen in Figures 1 and 2. In-
deed, an over-constrained (ill-specified) model may only fit well
a restricted region of the feature space, and its performance can
degrade if the distribution of inputs changes, even if the relation
to the output stays the same (i.e. when covariate shift occurs,
Section 7.1).

Dataset shift does not call for simpler models as it is not a
small-sample issue. Collecting more data from the same sources
will not correct systematic dataset bias.

4 Preferential sample selection: a common
source of shift

In 2017, competitors in the million-dollar-prize data science
bowl used machine learning to predict if individuals would be
diagnosed with lung cancer within one year, based on a CT scan.

https://www.kaggle.com/c/data-science-bowl-2017/overview
https://www.kaggle.com/c/data-science-bowl-2017/overview
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Assuming that the winning model achieves satisfying accuracy
on left-out examples from this dataset, is it ready to be deployed
in hospitals? Most likely not. Selection criteria may make this
dataset not representative of the potential lung cancer patients
general population. Selected participants verified many criteria,
including being a smoker and not having recent medical prob-
lems such as pneumonia. How would the winning predictor per-
form on a more diverse population? For example, another disease
could present features that the classifier could mistakenly take
for signs of lung cancer. Beyond explicit selection criteria, many
factors such as age, ethnicity, or socioeconomic status influence
participation in biomedical studies [27, 28, 20, 29]. Not only can
these shifts reduce overall predictive performance, they can also
lead to discriminative clinical decisions for poorly represented
populations [30, 31, 32, 33, 34].

The examples above are instances of preferential selection,
which happens when members of the population of interest
do not have equal probabilities of being included in the source
dataset: the selection S is not independent of (X, Y). Preferential
sample selection is ubiquitous and cannot always be prevented
by careful study design [35]. It is therefore a major challenge to
the identification of reliable and fair biomarkers. Beyond prefer-
ential sample selection, there are many other sources of dataset
shifts, e.g. population changes over time, interventions such
as the introduction of new diagnostic codes in Electronic Health
Records [36], and the use of different acquisition devices.

4.1 The selection mechanism influences the type of
dataset shift

The correction for a dataset shift depends on the nature of this
shift, characterized by which and how distributions are modified
[26]. Knowledge of the mechanism producing the dataset shift
helps formulate hypotheses about distributions that remain un-
changed in the target data [37, 38, Chap. 5].

Figure 3 illustrates this process with a simulated example of
preferential sample selection. We consider the problem of pre-
dicting the volume Y of a tumor from features X extracted from
contrast CT images. These features can be influenced not only by
the tumor size, but also by the dosage of a contrast agent M. The
first panel of Figure 3 shows a selection of data independent of
the image and tumor volume: there is no dataset shift. In the sec-
ond panel, selection depends on the CT image itself (for example
images with a low signal-to-noise ratio are discarded). As selec-
tion is independent of the tumor volume Y given the image X, the
distribution of images changes but the conditional distribution
P(Y | X) stays the same: we face a covariate shift (Section 7.1). The
learned association remains valid. Moreover, reweighting exam-
ples to give more importance to those less likely to be selected
can improve predictions for target data (Section 5), and it can be
done with only unlabelled examples from the target data. In the
third panel, individuals who received a low contrast agent dose
are less likely to enter the training dataset. Selection is therefore
not independent of tumor volume (the output) given the image
values (the input features). Therefore we have sample selection
bias: the relation P(Y | X) is different in source and target data,
which will affect the performance of the prediction.

As these examples illustrate, the causal structure of the data
helps identify the type of dataset shift and what information
is needed to correct it. When such information is available, it
may be possible to leverage it in order to improve robustness to
dataset shift [e.g. 40].

Y

Uniform selection
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Figure 3. Sample selection bias: three examples. On the right are graphs giving
conditional independence relations [39]. Y is the lesion volume to be predicted
(i.e. the output). M are the imaging parameters, e.g. contrast agent dosage. X
is the image, and depends both on Y and M (in this toy example X is computed
as X := Y + M + ε, where ε is additive noise. S indicates that data is selected
to enter the source dataset (orange points) or not (blue points). The symbol ⊥⊥
means independence between variables. Preferentially selecting samples results
in a dataset shift (middle and bottom row). Depending on whether Y ⊥⊥ S | X, the
conditional distribution of Y | X – here lesion volume given the image – estimated
on the selected data may be biased or not.

5 Importance weighting: a generic tool
against dataset shift

Importance weighting is a simple approach to dataset shift that
applies to many situations and can be easy to implement.

Dataset shift occurs when the joint distribution of the fea-
tures and outputs is different in the source (data used to fit the
machine-learning model) and in the target data. Informally, im-
portance weighting consists in reweighting the available data to
create a pseudo-sample that follows the same distribution as the
target population.

To do so, examples are reweighted by their importance weights
– the ratio of their likelihood in target data over source data. Ex-
amples that are rare in the source data but are likely in the target
data are more relevant and therefore receive higher weights. A
related approach is importance sampling – resampling the train-
ing data according to the importance weights. Many statistical
learning algorithms – including Support Vector Machines, deci-
sion trees, random forests, neural networks – naturally support
weighting the training examples. Therefore, the challenge relies
mostly in the estimation of the appropriate sample weights and
the learning algorithm itself does not need to be modified.

To successfully use importance weighting, no part of the tar-
get distribution should be completely unseen. For example, if sex
(among other features) is used to predict heart failure and the
dataset only includes men, importance weighting cannot trans-
form this dataset and make its sex distribution similar to that of
the general population (Figure 4). Conversely, the source distri-
bution may be broader than the target distribution (as seen for
example in Figure 1).

Importance weights can also be applied to validation exam-
ples, which may produce a more accurate estimation of general-
ization error on target data.

Importance weighting is a well-known approach and an im-
portant body of literature focuses on its application and the esti-
mation of importance weights. It is illustrated on small datasets
for the prediction of breast cancer in Dudík et al. [41] and heart
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Figure 4. Dataset shifts that may or may not be compensated by reweighting –
Left: distribution of sex can be balanced by downweighting men and upweighting
women. Right: women are completely missing; the dataset shift cannot be fixed
by importance weighting.

disease in Kouw and Loog [42]. However, it cannot always be ap-
plied: some knowledge of the target distribution is required, and
the source distribution must cover its support. Moreover, impor-
tance weighting can increase the variance of the empirical risk
estimate, and thus sometimes degrades performance – as seen in
Figure 2. It is therefore a straightforward and popular approach
to consider, but not a complete solution. It is particularly bene-
ficial when using a simple learning model which cannot capture
the full complexity of the data, such as the linear models in Fig-
ure 1. Indeed, simple models are often prefered in biomedical
applications because they are easy to interpret and audit.

In Appendix A, we provide a more precise definition of the
importance weights, as well as an overview of how they can be
estimated and used.

6 Other approaches to dataset shift

Beyond importance weighting, many other solutions to dataset
shift have been proposed. They are typically more difficult to
implement, as they require adapting or desiging new learning
algorithms. However, they may be more effective, or applicable
when information about the target distribution is lacking. We
summarize a few of these approaches here. A more systematic
review can be found in Kouw and Loog [42]. Weiss et al. [43] and
Pan and Yang [44] give systematic reviews of transfer learning (a
wider family of learning problems which includes dataset shift).

The most obvious solution is to do nothing – ignoring the
dataset shift. This approach should be included as a baseline
when testing on a sample of target data – which is a prerequisite
to clinical use of a biomarker [26, 11]. With flexible models, this
is a strong baseline that can outperform importance weighting,
as in the right panel of Figure 2.

Another approach is to learn representations–
transformations of the signal— that are invariant to the
shift [45]. Some deep-learning methods strive to extract
features that are predictive of the target while having similar
distributions in the source and target domains [e.g. 46],
or while preventing an adversary to distinguish source and
target data [“domain-adversarial” learning, e.g. 47]. When
considering such methods, one must be aware of the fallacy
shown in Figure 1: making the features invariant to the effect
driving the dataset shift can remove valuable signal if this effect
is not independent of the outcome of interest.

It may also be possible to explicitly model the mapping from
source to target domains, e.g. by training a neural network to
translate images from one modality or imaging device to another,
or by relying on optimal transport [48].

Finally, synthetic data augmentation sometimes helps – re-
lying on known invariances e.g. for images by applying affine
transformations, resampling, etc. . or with learned generative
models [e.g. 49].

6.1 Performance heterogeneity and fairness

It can be useful not to target a specific population, but rather
find a predictor robust to certain dataset shifts. Distributionally
robust optimization tackles this goal by defining an ambiguity,
or uncertainty set – a set of distributions to which the target dis-
tribution might belong – then minimizing the worse risk across
all distributions in this set [see 50, for a review]. The uncertainty
set is often chosen centered on the empirical (source) distribu-
tion for some divergence between distributions. Popular choices
for this divergence are the Wasserstein distance, f-divergences
(e.g. the KL divergence) [51], and the Maximum Mean Discrep-
ancy [52]. If information about the target distribution is avail-
able, it can be incorportated in the definition of the uncertainty
set. An approach related to robust optimization is to strive not
only to minimize the empirical loss L(Y, f(X)) but also its variance
[53, 54].

It is also useful to assess model performance across values
of demographic variables such as age, socioeconomic status or
ethnicity. Indeed, a good overall prediction performance can be
achieved despite a poor performance on a minority group. Ensur-
ing that a predictor performs well for all subpopulations reduces
sensitivity to potential shifts in demographics and is essential to
ensure fairness [33]. For instance, there is a risk that machine-
learning analysis of dermoscopic images under-diagnoses malig-
nant moles on skin tones that are typically under-represented
in the training set [55]. Fairness is especially relevant when
the model output could be used to grant access to some treat-
ment. As similar issues arise in many applications of machine
learning, there is a growing literature on fairness [see e.g. 32,
for an overview]. For instance, Duchi and Namkoong [51] show
that distributionally robust optimization can help performance
on under-represented subpopulations.

6.2 Multi-site datasets

Often datasets are collected across several sites or hospitals, or
with different measurement devices. This heterogeneity pro-
vides an opportunity to train models that generalize to unseen
sites or devices. Some studies attempt to remove site effects
by regressing all features on the site indicator variable. For the
same reasons that regressing out age is detrimental in Figure 1,
this strategy often gives worse generalization across sites.

Data harmonization, such as compensating differences across
measurement devices, is crucial, but remains very difficult and
cannot correct these differences perfectly [56]. Removing too
much inter-site variance can lead to loss of informative signal.
Rather, it is important to model it well, accounting for the two
sources of variance, across participants and across sites. A good
model strives to yield good results on all sites. One solution is to
adapt ideas from robust optimization: on data drawn from dif-
ferent distributions (e.g. from several sites), Krueger et al. [57]
show the benefits of minimizing the empirical risk on the worse
site or adding penalties on the variance of the loss across sites.

Measures of prediction performance should aggregate scores
at the site level (not pooling all individuals), and check the vari-
ance across sites and the performance on the worse site. Cross-
validation schemes should hold out entire sites [11, 58].

7 Special cases of dataset shift

Categorizing dataset shift helps finding the best approach to
tackle it [26, 59]. We summarize two frequently-met scenar-
ios that are easier to handle than the general case and can call
for different adjustments: covariate shift (Section 7.1) and prior
probability shift (Section 7.2).
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Figure 5. Covariate shift: P(Y | X) stays the same but the feature space is sampled
differently in the source and target datasets. A powerful learner may generalize
well as P(Y | X) is correctly captured [26]. Thus the polynomial fit of degree 4
performs well on the new dataset. However, an overconstrained learner such
as the linear fit can benefit from reweighting training examples to give more
importance to the most relevant region of the feature space.

7.1 Covariate shift

Covariate shift occurs when the marginal distribution of X
changes between the source and target datasets (i.e. pt(x) 6=
ps(x)), but P(Y | X) stays the same. This happens for example
in the second scenario in Figure 3, where sample selection based
on X (but not Y) changes the distribution of the inputs. If the
model is correctly specified, an estimator trained with uniform
weights will lead to optimal predictions given sufficient training
data [prediction consistency 60, Lemma 4]. However the usual
(unweighted) estimator is not consistent for an over-constrained
(misspecified) model. Indeed, a over-constrained model may be
able to fit the data well only in some regions of the input fea-
ture space (Figure 1). In this case reweighting training exam-
ples (Section 5) to give more importance to those that are more
representative of the target data is beneficial [26, 37]. Figure 5
illustrates covariate shift.

7.2 Prior probability shift

Another relatively simple case of dataset shift is prior probabil-
ity shift. With prior probability shift (a.k.a. label shift or target
shift), the distribution of Y changes but not P(X | Y). This hap-
pens for example when disease prevalence changes in the tar-
get population but manifests itself in the same way. Even more
frequently, prior probability shift arises when one rare class is
over-represented in the training data so that the dataset is more
balanced, as when extracting a biomarker from a case-control
cohort, or when the dataset is resampled as a strategy to handle
the class imbalance problem [61]. Prior probability shift can be
corrected without extracting a new biomarker, simply by adjust-
ing a model’s predicted probabilities using Bayes’ rule [as noted
for example in 26, 37]. When the classes are well separated, the
effect of this correction may be small, i.e. the uncorrected classi-
fier may generalize well without correction. Figure 6 illustrates
prior probability shift.

8 Conclusion

Ideally, machine learning biomarkers would be designed and
trained using datasets carefully collected to be representative of
the targeted population – as in Liu et al. [62]. To be trusted,
biomarkers ultimately need to be evaluated rigorously on one or
several independent and representative samples. However, such
data collection is expensive. It is therefore useful to exploit ex-
isting datasets in an opportunistic way as much as possible in

Balanced dataset

Target dataset

Decision boundary
Original fit
Corrected for label shift

Figure 6. Prior probability shift: when P(Y) changes but P(X | Y) stays the same.
This can happen for example when participants are selected based on Y – possibly
to have a dataset with a balanced number of patients and healthy participants:
X ← Y → S . When the prior probability (marginal distribution of Y) in the
target population is known, this is easily corrected by applying Bayes’ rule. The
output Y is typically low-dimensional and discrete (often it is a single binary
value), so P(Y) can often be estimated precisely from few examples.

the early stages of biomarker development. When doing so, cor-
rectly accounting for dataset shift can prevent wasting important
resources on machine-learning predictors that have little chance
of performing well outside of one particular dataset.

We gave an overview of importance weighting, a simple tool
against dataset shift. Importance weighting needs a clear defini-
tion of the targeted population and access to a diverse training
dataset. When this is not possible, distributionally robust opti-
mization may be promising alternative, though it is a more re-
cent approach and more difficult to implement. Despite much
work and progress, dataset shift remains a difficult problem.
Characterizing its impact and the effectiveness of existing so-
lutions for biomarker discovery will be important for machine
learning models to become more reliable in healthcare applica-
tions.

We conclude with the following recommendations:
• be aware of the dataset shift problem and the difficulty of

out-of-dataset generalization. Do not treat cross-validation
scores on one dataset as a guarantee that a model will perform
well on clinical data.

• collect diverse, representative data.
• use powerful machine-learning models and large datasets.
• consider using importance weighting to correct biases in the

data collection, especially if the learning model may be over-
constrained (e.g. when using a linear model).

• look for associations between prediction performance and de-
mographic variables in the validation set to detect potential
generalization or fairness issues.

• do not remove confounding signal in a predictive setting.
These recommendations should help designing fair biomarkers
and their efficient application on new cohorts.
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A Definition and estimation of importance
weights

We will implicitly assume that all the random variables we con-
sider admit densities and denote ps and pt the density of the joint
distribution of (X, Y) applied to the source and target populations
respectively. If the support of pt is included in that of ps (mean-
ing that ps > 0 wherever pt > 0), we have:

Esource[ L(Y, f(X)) ] = Etarget
[ pt(X, Y)

ps(X, Y) L(Y, f(X))
]

, (3)

where L is the cost function and f is a prediction function, Esource(resp. Etarget) the expectation on the source (resp. target) data.
The risk (on target data) can therefore be computed as an ex-
pectation on the source distribution where the loss function is
reweighted by the importance weights:

w(x, y) = pt(x, y)
ps(x, y) . (4)
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If ŵ are empirical estimates of the importance weights w, it is
possible to compute the reweighted empirical risk:

R̂ŵ(f) = n∑
i=1

ŵ(xi, yi) L(yi, f(xi)) . (5)

Rather than being weighted, examples can also be resampled
with importance or rejection sampling [63, 64]. Importances can
also be taken into account for model selection – for example in
Sugiyama et al. [65] examples of the test set are also reweighted
when computing cross-validation scores. Cortes et al. [66] study
how errors in the estimation of the weights affect the prediction
performance.

A.1 Preferential Sample selection and Inverse Probabil-
ity weighting

In the case of preferential sample selection (Section 4), the condi-
tion that requires for the support of pt to be included in the sup-
port of ps translates to a requirement that all individuals have
a non-zero probability of being selected: P(S = 1 | x, y) > 0 for
all (x, y) in the support of pt. When this is verified, by applying
Bayes’ rule the definition of importance weights in Equation (4)
can be reformulated [see 66, Sec. 2.3]:

w(x, y) = P(S = 1)
P(S = 1 | X = x, Y = y) (6)

These weights are sometimes called Inverse Probability weights
[67] or Inverse Propensity scores [68]. Training examples that
had a low probability of being selected receive higher weights,
because they have to account for similar individuals who were
not selected.

A.2 Computing importance weights

In practice pt(x, y), which is the joint density of (X, Y) in the target
data, is not known. However, it is not needed for the estimation
of pt/ps. More efficient estimation hinges on two observations:
estimation of both densities separately is not necessary to esti-
mate their ratio, and variables that have the same distribution
in source and target data can be factored out.

Here we describe methods that estimate the true importance
weights pt/ps, but we point out that reweighting the training ex-
amples reduces the bias of the empirical risk but increases the
variance of the estimated model parameters. Even when the im-
portances are perfectly known, it can therefore be beneficial to
regularize the weights [60].
Computing importance weights does not require distributions densi-
ties estimation
Importance weights can be computed by modelling separately
ps and pt and then computing their ratio [69, Sec. 4.1]. How-
ever, distribution density estimation is notoriously difficult; non-
parametric methods suffer from the curse of dimensionality and
parametric methods depend heavily on the correct specification
of a parametric form.

But estimating both densities is more information than is
needed to compute the sample weights. Instead, one can directly
optimize importance weights in order to make the reweighted
sample similar to the target distribution, by matching mo-
ments [70] or mean embeddings [71, 72], minimizing the KL-
divergence [73], solving a least-squares estimation problem [74]
or with optimal transport [48].

Alternatively, a discriminative model can be trained to distin-
guish source and target examples. In the specific case of prefer-

ential sample selection, this means estimating directly the prob-
ability of selection P(S = 1) (cf Equation (6)). In general, the
shift is not always due to selection: the source data is not nec-
essarily obtained by subsampling the target population. In this
case we denote T = 1 if an individual comes from the target data
and T = 0 if it comes from the source data. Then, a classifier
can be trained to predict from which dataset (source or target) a
sample is drawn, and the importance weights obtained from the
predicted probabilities [69, Sec. 4.3]:

w(x, y) = P(T = 1 | X = x, Y = y) P(T = 0)
P(T = 0 | X = x, Y = y) P(T = 1) , (7)

The classifier must be calibrated (i.e. produce accurate prob-
ability estimates, not only a correct decision), see Niculescu-
Mizil and Caruana [75]. Note that constant factors such as
P(T = 0)/P(T = 1) usually do not matter and are easy to estimate
if needed. This discriminative approach is effective because the
distribution of (T | X = x, Y = y) is much easier to estimate than
the distribution of (X, Y | T = t) : T is a single binary variable
whereas (X, Y) is high-dimensional and often continuous.

The classifier does not need to distinguish source and target
examples with high accuracy. In the ideal situation of no dataset
shift, the classifier will perform at chance level. On the contrary,
a high accuracy means that there is little overlap between the
source and target distributions and the model will probably not
generalize well.
What distributions differ in source and target data?
When computing importance weights, it is possible to exploit
prior knowledge that some distributions are left unchanged in
the target data. For example,

pt(x, y)
ps(x, y) = pt(y | x) pt(x)

ps(y | x) ps(x) . (8)

Imagine that the marginal distribution of input X differs in
source and target data, but the conditional distribution of the
output Y given the input stays the same: pt(x) 6= ps(x) but
pt(y | x) = ps(y | x) (a setting known as covariate shift). Then, the
importance weights simplify to

w(x, y) = pt(x)
ps(x) . (9)

In this case, importance weights can be estimated using only
unlabelled examples (individuals for whom Y is unkown) from
the target distribution.

Often, the variables that influence selection
(e.g. demographic variables such as age) are lower-dimensional
than the full features (e.g. high-dimensional images), and
dataset shift can be corrected with limited information on
the target distribution, with importance weights or otherwise.
Moreover, even if additional information Z that predicts selec-
tion but is independent of (X, Y) is available, it should not be
used to compute the importance weights. Indeed, this would
only increase the weights’ variance without reducing the bias
due to the dataset shift [21, Sec. 15.5].

B Tobacco smoking prediction in the UK-
Biobank

We consider predicting the smoking status of participants in the
UKBiobank study to illustrate the effect of dataset shift on pre-
diction performance.

6,000 participants are used in a preliminary step to identify
the 29 most relevant predictive features (listed in appendix B.1),
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by cross-validating a gradient boosting model and computing
permutation feature importances. We then draw two samples of
100K individuals from the rest of the dataset, that have different
age distributions. In the young sample, 90% of individuals come
from the youngest 20% of the dataset, and the remaining 10%
are sampled from the oldest 20% of the dataset. In the old sam-
ple, these proportions are reversed. We then perform 10-fold
cross validation. For each fold, both the training and testing set
can be drawn from either the young or the old population, result-
ing in four tasks on which several machine-learning estimators
are evaluated. We use this experiment to compare 2 machine-
learning models: a simple one – regularized linear Support Vec-
tor Classifier, and a flexible one – Gradient Boosting. For each
classifier, 3 strategies are considered to handle the dataset shift:
(i) baseline – the generic algorithm without modifications, (ii)
Importance Weighting (Section 5), and (iii) the (unfortunately
popular) non-solution: “regressing out the confounder” – re-
gressing the predictive features on the age and using the residu-
als as inputs to the classifier.

The results are similar to those seen with simulated data in
Figure 1. For a given learner and test population, training on a
different population degrades the prediction score. For exam-
ple, if the learner is to be tested on the young population, it
performs best when trained on the young population. Gradient
Boosting vastly outperforms the linear model in all configura-
tions. Regressing out the age always degrades the prediction; it
is always worse than the unmodified baseline, whether a dataset
shift is present or not. Finally, Importance Weighting (Section 5)
improves the predictions of the over-constrained (misspecified)
linear model in the presence of dataset shift, but degrades the
prediction of the powerful learner used in this experiment. This
is due to the fact that the Gradient Boosting already captures
the correct separation for both young and old individuals, and
therefore Importance Weighting does not bring any benefit but
only reduces the effective training sample size by increasing the
variance of the empirical risk.

B.1 Features used for tobacco smoking status predic-
tion

The 30 most important features were identified in a preliminary
experiment with 6,000 participants (that were not used in the
subsequent analysis). One of these features, “Date F17 first re-
ported (mental and behavioural disorders due to use of tobacco)”,
was deemed trivial – too informative, as it directly implies that
the participant does smoke tobacco, and removed. The remain-
ing 29 features were used for the experiment described in Sec-
tion 3.
• Forced expiratory volume in 1-second (FEV1), predicted per-

centage
• Lifetime number of sexual partners
• Age first had sexual intercourse
• Age when last took cannabis
• Ever taken cannabis
• Forced expiratory volume in 1-second (FEV1), predicted
• Acceptability of each blow result
• Mouth/teeth dental problems
• Coffee intake
• FEV1/ FVC ratio Z-score
• Alcohol intake frequency.
• Date J44 first reported (other chronic obstructive pulmonary

disease)
• Former alcohol drinker
• Average weekly spirits intake
• Year of birth
• Acceptability of each blow result

• Date of chronic obstructive pulmonary disease report
• Leisure/social activities
• Morning/evening person (chronotype)
• Mean sphered cell volume
• Lymphocyte count
• Townsend deprivation index at recruitment
• Age hay fever, rhinitis or eczema diagnosed
• Age started oral contraceptive pill
• White blood cell (leukocyte) count
• Age completed full time education
• Age at recruitment
• Workplace had a lot of cigarette smoke from other people

smoking
• Wheeze or whistling in the chest in last year

C Glossary

Here we provide a summary of some terms and notations used
in the paper.
Target population the population on which the biomarker

(machine-learning model) will be applied.
Source population the population from which the sample used

to train the machine-learning model is drawn.
Selection in the case that source data are drawn (with non-

uniform probabilities) from the target population, we de-
note by S = 1 the fact that an individual is selected to enter
the source data (e.g. to participate in a medical study).

Provenance of an individual when samples from both the
source and the target populations (e.g. Appendix A.2) are
available, we also denote T = 1 if an individual comes from
the target population and T = 0 if they come from the source
population.

Confounding in causal inference, when estimating the effect of
a treatment on an outcome, confounding occurs if a third
variable (e.g. age, a comorbidity, the seriousness of a condi-
tion) influences both the treatment and the outcome, pos-
sibly producing a spurious statistical association between
the two. This notion is not directly relevant to dataset shift,
and we mention it only to insist that it is a different prob-
lem. See Hernán and Robins [21], Chap. 7, for a more pre-
cise definition.

Domain adaptation the task of designing machine-learning
methods that are resilient to dataset shift – essentially a
synonym for dataset shift, i.e. another useful search term
for readers looking for further information on this problem.


