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Machine learning brings the hope of finding new biomarkers extracted from cohorts
with rich biomedical measurements. A good biomarker is one that gives reliable
detection of the corresponding condition. However, biomarkers are often extracted
from a cohort that differs from the target population. Such a mismatch, known as a
dataset shift, can undermine the application of the biomarker to new individuals.
Dataset shifts are frequent in biomedical research, e.g. because of recruitment biases.
When a dataset shift occurs, standard machine-learning techniques do not suffice to
extract and validate biomarkers. This article provides an overview of when and how
dataset shifts breaks machine-learning extracted biomarkers, as well as detection and
correction strategies.
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Response to reviewer and editor comments

We thank the editor and the reviewers for their thoughtful comments. We describe below how we have
addressed them in the revised manuscript

1 Editor

Real data In particular, all reviewers feel that an example with real data should be included.

Reply We thank the editor and the reviewers for suggesting an example on real data. We added such
an example, drawing samples with different age distributions from the UKBiobank dataset, and studying
the task of predicting smoking status.

By choosing a large dataset and a classification task with well balanced classes (as opposed to disease
diagnostics where one class is usually much smaller), we ensure that we have plenty of data. This enables us
to subsample it to draw samples with different age distributions, then further divide it into cross-validation
splits, and still obtain test sets that are large enough for the prediction scores to be meaningful.

The results of this experiment illustrate several of the points we discuss in the review and show with
simulated data (please see details in Section 3, Figure 2 and Appendix B):

e in this example the dataset shift does degrade prediction performance

e regressing out age (the variable whose distribution changes) does not help to handle the dataset shift
and is detrimental in all configurations.

e the dataset shift affects the linear model as much as the non-linear model: strong constraints are
not a solution to dataset shift and with sufficient sample size the powerful learner performs much
better with or without dataset shift.

e Importance Weighting seems to improve the scores of the linear model in the presence of dataset
shift.

e However Importance Weighting degrades the performance of the best model (the gradient boosting)
in the presence of dataset shift. Indeed, the non-linear model can already learn flexible bound-
aries and rely on local information to classify individuals of a certain age group. Downweighting
participants from the over-represented age group increases the risk of overfitting without bringing
important benefits, so Importance Weighting degrades performance. Note that we observe a similar
behaviour in the simulated data in Figure 1: IW improves the boundary for the target population
only for the linear model.

e Therefore for this example the best approach is to ensure the whole support of the target distribution
is represented in the training data (even if the distribution is shifted), and rely on a large dataset
and powerful machine-learning model.

public repository On an editorial note, your python files are included as supplemental files at the
moment, I recommend to share them via a code repository instead and cite the repo in the paper. Please
also add license info for the code (OSI-approved licences here: https: //opensource. org/ licenses)).

Reply Thank you for this suggestion. We have created a repository containing all the sources for this pa-
per (and added an MIT license): https://github.com/neurodatascience/dataset_shift_biomarkers.
We have added a paragraph indicating this, “Software and data availability”, at the end of the conclusion.
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2 Reviewer 1

summary This paper addresses a wvery important and often undermined challenge in deriving new
biomarkers for disease using machine learning techniques. Very often, new methods are limited to valida-
tion experiments with cross-validation or using training and testing datasets with similar characteristics.
Also, datasets used in validations are often affected by selection bias. Thus, these experiments may not
provide a realistic evaluation of application to new individuals, e.g. in a clinical setting. The paper de-
scribes possible biases in data used for training and testing, describes the effects of "dataset shift” on the
accuracy of final biomarkers, and presents techniques to deal with dataset shift.

The paper is well written in general. I enjoyed reading it as a tutorial that briefly presents the basic
concepts and then incrementally introduces the main problem. The illustration of the dataset shift prob-
lem wusing toy examples and visualizations is very useful. After a very clear introduction and problem
description, the paper presents a generic tool to address this problem. The proposed solution, importance
weighting, is not novel. However, presenting it in this context was informative. Section 6.1 (covariate
shift) nicely links to importance weighting technique. However, I found that section 6.2 was disconnected,
so maybe it would require a more clear description and a careful discussion.

section 6.2 disconnected However, I found that section 6.2 was disconnected, so maybe it would require
a more clear description and a careful discussion.

Reply Thank you for pointing this out. To include it better to the rest of the paper, we now point to
this section (is now 7.2, "prior probability shift") from the introduction of section 7, and we have expanded
it to include more discussion of class imbalance and highlight that this special case of dataset shift is easy
to correct, which is why we deemed it deserved a special mention.

2.1 A few major comments:

example with real data The paper reads well as a concept paper; however, it does not include any
examples with real data. Toy examples for illustrations are very informative. However, examples on
real datasets with quantitative evaluations would be necessary to show the effects of dataset shift in real
problems, and to show how the proposed approach actually works. I think that this is the magjor missing
part in the paper. Addition of results using real datasets would significantly increase the value of the paper,
particularly if they can be selected in a way that will illustrate the problems mentioned in the paper.

Reply Thank you for suggesting such an experiment. We have included an example relying on the
UKBiobank data (predicting the smoking status of participants, and using training and testing sets with
different age distributions). Please see the second paragraph of Section 3, Figure 2, Appendix B, and our
reply to the editor.

data heterogeneity A major challenge in deriving imaging biomarkers is to handle heterogeneity of
imaging data and clinical labels due to various factors, such as scan parameters/protocols and variability
of measuring protocols used. The paper did not discuss how to handle data heterogeneity, which is another
major source for dataset shift. Only in section 3 there is a suggestion to use heterogeneous sets for training
(which I agree), but it’s not clear how to derive robust biomarkers in the presence of heterogeneous datasets
(e.g. there is no mention of data harmonization). I think this is a limitation for the paper.

Reply We agree that changes due to sites, imaging devices, acquisition parameters etc. constitute a
major challenge. We now provide more discussion in the beginning of section 6 and a new dedicated
section, 6.2, "multi-site datasets". We mention possible approaches, such as minimizing the loss on the
worst site or scanner to encourage more robust estimation, or the learning of invariant features. However we



believe that learning robust biomarkers despite the heterogeneity of parameters and measuring protocols
remains an open problem.

2.2 One minor comment that may help to improve the paper:

In section 3, after reading the first sentence, I had the impression that the listed items in italic were the
"misconceptions”, so they are showing what is wrong/incorrect. I had to go back and read them again after
I noticed that it was the opposite. I would suggest the authors to edit this part in a way that will remove
the ambiguity.

Reply Thank you for pointing out this confusing wording. We have reworked the section title and its
wording to remove this ambiguity.

3 Reviewer 2

summary This article covers a vitally important topic in machine learning generally and specifically its
application to healthcare and life science. The mismatching of attributes and properties in training and
testing data is a significant issue. The authors raise these important issues and present some ideas and
methods for how to address what they call ’dataset drift’.

emphasize fig 3 Figure 3 and the corresponding text are of interest and this should be emphasized more
than it s currently.

Reply We agree that the concrete consequences of the causal relations underlying the data on machine
learning models’ generalization is an important and interesting topic. However it is a rather technical and
difficult one, and we wanted to keep the paper very accessible, which is why we chose to simply introduce
the issue very briefly and provide references for interested readers. To emphasize this topic slightly more,
we have added another reference to a publication aiming to exploit causal knowledge to improve domain
adaptation, robustness to dataset shift at the end of Section 4.1.

3.1 major comments

There are several areas where the paper can be improved and given the importance of the topic and target
audience, I would strongly recommend the authors consider these changes.

real data The authors present some examples of dataset drift and possible issues that arise, some from
the literature and some from toy examples. I think this would have much stronger impact if a real dataset
were used in the paper to demonstrate this.

Reply Thank you for suggesting such an experiment. We have included an example relying on the
UKBiobank data (predicting the smoking status of participants, and using training and testing sets with
different age distributions). Please see the second paragraph of Section 3, Figure 2, Appendix B, and our
reply to the editor.

class imbalance The authors refer to ’probability shift’ to refer to the difference in populations sizes in
the training and testing data, commonly referred to as class-imbalance. This is quite brief in the paper
and constitutes one of the biggest issues in machine learning in life sciences and more emphasis should be
devoted to this. Explicit refer to class-imbalance (and some references) is required here as there is a large
area of research devoted to this. Moreover, the authors must be clear what are the disadvantages of training



models on balanced data when the population is tmbalanced, and how using training data that reflects the
population (e.g. with impedance) and then using the proposed methods provide an advantage. Figure 6
could be extended to show this for example. The machine learning community often use balanced training
data to avoid ‘short cuts’ to high accuracies and identify the features need to predict a label given the input.
If you have an appropriate model that identifies robust features in training, then the low frequency of a
class in the testing / real world data (e.g. rare disease) should not degreed performance. This may also
apply to other characteristics / properties in the training data.

Reply We agree that class imbalance is an active area of research in machine learning, and that it is
particularly relevant to the life sciences, where having a very strong imbalance is common (for example
when learning to diagnose a disease). We now explicitly use the term "class-imbalance" in Section 7.2 and
provide a reference to a review on the topic. We also agree that when the classes are well separated, the
shift in prior probabilities does not have a strong impact on the posterior — a good classifier will generalize
well despite the change in class balance. We also added a sentence regarding this fact.

However, class imbalance in general is a problem of its own, and much of the literature on this topic
is not directly related to dataset shift. We therefore prefer to limit our discussion of class imbalance in
the case where it does result in a dataset shift — when the prior probability is voluntarily shifted to make
classes more balanced in the training data. By avoiding a more complete discussion of class imbalance,
we hope to keep our didactic review short and focused on dataset shift.

Transforming input data Similarity, the authors have not discussed the notion of transforming the
data distributions prior to application of a model, e.g. optimal transport. What are the benefits of the
proposed methods over these?

Reply Indeed our discussion was too heavily focused on sample weighting, skimming over other ap-
proaches. We now discuss other possibilities in Section 6, including transforming features (possibly relying
on optimal transport), learning features that do not discriminate source and target domains with adver-
sarial methods, and data augmentation.

homogeneous training data The authors state on Line 166 Training examples should not be selected
to be homogeneous. This maybe conflating issues from each of the healthcare and ML domains and may
not be a general recommendation for all problems, the authors should expand this discussion to justify this
recommendation.

Reply Thank you for pointing out this imprecision. Indeed this was not meant to be a general rec-
ommendation for all problems, as in this paper we discuss strictly the predictive setting — and not, for
example, statistical testing nor causal inference. To make this clearer, we have added the following sentence
to this paragraph:

Therefore in predictive settings, when we want to ensure a good generalization of machine-
learning models, large and diverse datasets are desirable.

Moreover, the paragraph already contained this phrase:
While this may help reduce variance and improve statistical testing

which we hope indicates that there may be motivations to carefully select homogeneous participants on
some settings — but not in the case where the goal is accurate out-of-sample prediction.



biomarker terminology The authors often refer to the f(x) as the biomarker, this is not correct. F(z) is
the model and the biomarkers are the inputs x. The model finds a combination of these to differentiate the
classes through f(x). This leads to data (i.e. biomarker) vs model considerations which are not discussed.
That is, models will be sensitive to ’dataset shifts’, but if biomarkers are robust then they should be invariant
to such shifts (at least in theory) with a ’good’ model. Additionally, you do not ’build biomarkers’, the
model identifies them in the data.

Reply Thank you for pointing out this inaccuracy in terminology. We have now edited the text to refer
to "machine-learning models" and "biomarkers identified through machine-learning" rather than referring
to a machine-learning model as a biomarker. We now use "identifying a biomarker" rather than "building
a biomarker"

IW in main article Section 5 why has the precise definition and overview in the appendiz? This section
required more detail as it is currently conceptual only. Further details can be in the appendiz, but more
are required here.

Reply We chose to keep the precise description of importance weighting to keep the main text at a
conceptual level and focussed on a description of the dataset shift problem rather than the details of a
particular solution.

From the reviews we perceived that the paper focussed too heavily on importance weighting, thus we
chose to keep the details of importance weighting in the appendix, and add a richer discussion of other
solutions in the main text.

3.2 Some minor comments to the authors

notation Section 2.1 you use lower case z and y but have not defined them (as individual instances in
X and Y). one small sentence will suffice, you do this in line 89 but this should be earlier. You also use X
and Y for the seen and unseen data on line 83.

Reply Thank you for pointing out this omission. To keep the discussion conceptual and avoid introducing
extra notation, we have now decided to use X and Y only, which are defined at the beginning of Section
2.1.

wording The first entice in section 2.2 line 111 does not read well and the citation doesn’t relate to a
statement clearly. Training performance only is not just an ’optimistic’ estimate it is potentially meaning-
less due to what you are calling data shit and the fact that some ML methods (eg neural nets) can fit any
arbitrary data and hence overfit.

Reply We have now reworded that sentence (beginning of section 2.2) and added more details to explain
in what overfitting consists. Moreover, we have specified more precisely to which section of the Poldrack
et al. paper we refer. It does describe the phenomenon of overfitting:

For this reason, a model will usually fit better to the sample used to estimate it than it will to
a new sample, a phenomenon known in machine learning as overfitting

The Section 7.4 of "the elements of statistical learning", titled “Optimism of the training error rate” also
discusses exactly that topic. We consider that these references are complementary because the Poldrack
et al provides an intuition of the problem without any mathematical formalism, while the Hastie et al
provides a complete explanation.



fig 1 Fig 1 caption. Age is indicated by shade not colour. Healthy and disease are indicated by colour.
Also I assume blue corresponds ‘unhealthy’ patients as this is not stated and needs to be. It seems that the
RBF-SVM could be improved for the source data (for younger patients)

Reply Thank you for pointing out these imprecisions. The caption now makes it clear that blue circles
correspond to unhealthy subjects and we have replaced the erroneous "color" with "shade of gray".

Regarding the rbf SVM performance, our goal was not to find the best possible performance for this toy
data but to qualitatively illustrate the different generalization properties of a linear and non-linear model.
Therefore we may not have selected the best hyperparameter for this data. In fact, we have selected a
rather strong regularization in order to have a simple boundary and more readable figure. As you can see
on the figure obtained with a smaller regularization term (below), the learned boundary improves but the
conclusions drawn from the figure as a whole do not change.

No correction Regressing age out Reweighting samples

PP

Source data

VS

Target data
shifted age distribution

fig 2 Fig 2 the caption needs more information. what is the shade of the arrows representing? A gradient
between younger and older? What to the arrows (and their width represent?) what is the joining arrow
indicating?

Reply Indeed the caption of Figure 2 was too terse. We have added paragraphs to describe the meaning
of the arrows, their shade and width, and the small arrow that represents a jump from a Healthy to a
Diseased trajectory. As the reviewer assumed, the shade of the arrows represents a gradient from younger
to older (as it also does in Figure 1). We have also added color, and merged figures 1 and 2.

figure order The text should refer to figures in order, currently it refers to figures 1,5,3 ... and figure
2 is first referred in figure 1’s caption.

Reply Thank you for noting this awkard order. The figures are now referred to in the correct order.

mention of reviews on transfer learning line 288-289 are not relevant to the rest of the paragraph.
You have not mentioned anything to do with transfer learning.

Reply We agree that the connection of these references with the rest of the paragraph was not clear
enough. The reviews on transfer learning are now mentioned in Section 6, "other approaches to dataset
shift". We consider that they are relevant because they describe some of the solutions we mention in more
detail, as well as other methods. Dataset shift is a subset of transfer learning, and is therefore discussed



in these reviews, which are relevant for readers who want a deeper and more formal discussion of the
concepts exposed in our paper.

Mentioning the term "transfer learning" also provides another useful keyword that readers can use to
search more information on these topics.

fig 4 Figure 4 is unnecessary as this is described in the text clearly.

Reply We agree that Figure 4 is not absolutely essential. However, we feel that the point that all
segments of the population must be represented in the training data is crucial, and that emphasizing
it with a small illustration may be beneficial, especially to readers who are reading the paper quickly.
Moreover, this figure takes very little space and we hope it can be understood quickly.

4 Reviewer 3:

summary This manuscript presents a didactic review which discusses the implications of dataset shift
when designing and evaluating machine learning-based biomarkers. The review covers some basic machine
learning concepts (empirical risk minimization, evaluation practices, etc), points out common miscon-
ceptions, characterizes different types of dataset shift, and discusses importance weighting as a potential
solution to this problem.

The paper is nicely written, didactic and clear. I feel it is also timely since currently many researchers
who are not coming from the fields of statistics or machine learning are using such methods to analyze
their own datasets and derive biomarkers for various pathologies. QOuverall, the manuscript is interesting
but I think it would benefit from including a few more concrete examples, linking the theoretical concepts
to applications in the context of biomarkers (see some of my comments below).

4.1 major comments

I have some recommendations that may help to improve the quality of the paper:

scanner differences One common source of dataset shift in the context of image-derived biomarkers is
related to the equipment brand or configuration parameters used to capture such images (e.g. the MR or
CT machine used to perform the studies). I would like the authors to discuss this fact and link it to the
concepts introduced in the review.

Reply Indeed differences between scanners can be an important challenge. We have added Section
6.2 which mentions potential approaches such as learning on multi-site or multi-scanner datasets while
minimizing the loss on the worst site and also mention learning invariant representations (beginning of
Section 6).

additional concepts to define To me, the target audience for this didactic review is mostly health-
care and biomedical researchers, who are using machine learning and data analysis tools to produce novel
btomarkers. In that sense, I would not take for granted the fact that the audience is familiar with basic
concepts like ’confounding’ for example, which are used but not defined. Another important term which is
used but not discussed is 'fairness’ (line 176). Since this is an educational review, I recommend the authors
to devote a few lines to introduce such concepts and discuss them in the context of predictive models.



Reply Indeed this comment is very relevant as our review is mostly intended for healthcare and biomed-
ical researchers. We now provide a brief definition of confounding at the beginning of section 3 and in
the Glossary (Appendix C). Fairness in the general context of machine learning has several tentative def-
initions and we prefer not to dive into details to avoid diluting the focus of the paper, but we did try to
clarify what we mean by it in the context of biomarkers’ prediction performance in the second paragraph
of Section 3.

fig 2 The thick arrows in Figure 2 are a bit confusing. What does the direction of the thick arrows
indicate?. Also, g and h are not specified. The Figure just indicates "for some g,h". What do g and h
represent? What is their actual form?

Reply The direction of the thick arrows represents increasing age — the arrows schematize the trajectory
of ageing subjects across the 2-dimensional feature plane. Their width represents the size of each group
(Healthy and Diseased): the Healthy group is large at young ages, and the Healthy group diminishes and
the Diseased group grows as age increases. We have reworked the figures and expanded the caption to
better describe the meaning of the arrows, their width, and the grayscale gradient. (Note figures 1 and 2
have been merged).

The goal of the equations with g and h was only to explain that Y depends only on age, and X
depends on both Y and age. As the actual form of these dependencies is not important and we realized
these equations added ore confusion than clarity, we removed them.

concrete scenarios for IW  The authors focus on importance weighting as a tool to deal with dataset
shift, and dedicate a complete appendix to its definition. However, as discussed in section 7, importance
weighting needs a clear definition of the targeted population and access to a diverse dataset, which may not
be the case in real scenarios. Since this review is related to biomarkers, I think it would be important to
discuss a few more concrete and real scenarios (beyond the examples shown in the figures) where importance
weighting could be used to mitigate dataset shift in the context of machine-learning based biomarkers.

Reply We agree that importance weighting may not be applicable, or may not improve prediction, in a
variety of scenarios. We have expanded the section on importance weighting and the conclusion to insist
more on the limitations of importance weighting (see the last paragraph of Section 5 in particular).

However, importance weighting can be helpful in the case of a covariate shift when the learner underfits
— when the model is misspecified, eg when a linear model is used to approximate a non-linear function.
We think that this situation does happen in practice, as in the left panel of the new Figure 2, or the cited
examples on UCI datasets for breast cancer and heart disease prediction (although we realize these are
illustrations on small datasets rather than genuine biomedical studies).

Another reason why we chose to give special treatment to importance weighting is that, unlike many
other approaches, it is conceptually simple, easy to implement, and usually does not incur an important
computational cost. It is therefore particularly relevant to healthcare and biomedical researchers who are
interested in solutions that can readily be deployed on datasets of a realistic size. Our recommendation
is to include an importance-weighted estimator in the set of candidates to be tested (and compared to a
baseline without any dataset shift adaptation) on real data from the target distribution, when feasible.
We state the recommendation of using a non-weighted baseline in the second paragraph of Section 6.

complete section for other solutions As previously discussed, importance weighting is somehow
limited in situations where we do not have a clear definition of the targeted population. In fact, the authors
discuss in the Conclusions section alternative approaches that may be used when this is not possible (e.g.
distributionally robust optimization). Why not devoting a complete section to discuss alternative approaches



useful in the absence of information about the target population? I am not sure if the Conclusions section
1s the right place to introduce them.

Reply We have now added Section 6, "other approaches to dataset shift". It does not provide technical
details but gives an overview of other solutions, including invariant features and adversarial domain adap-
tation, data augmentation, robust optimization, and loss variance reduction. It also discusses the case of
datasets collected across several sites or imaging devices.

experiments with real data As far as I understand, all the examples provided in the manuscript are
coming from synthetic data. I think for a didactic review like this one, and specially for a journal like
Gigascience, it would be nice to provide a case study using real data, which reflects a dataset shift between
source and target, that can be corrected using the discussed importance weighting strategy. It doesn’t have
to be a huge dataset, just a simple case with concrete features X and labels Y. Maybe using some public
database of tabulated samples which illustrates a real scenario?

Reply Thank you for suggesting such an experiment. We have included an example relying on the
UKBiobank data (predicting the smoking status of participants, and using training and testing sets with
different age distributions). Please see the second paragraph of Section 3, Figure 2, Appendix B, and our
reply to the editor.

note General Note: I think it is important to acknowledge the fact that I am coming from the com-
puter vision and medical image computing community, not from statistics or causal analysis, and thus my
comments in that regard may be limited.

4.2 Minor comment:

typo Line 385: "Importance weighting needs a clear definition the targeted population”. It should be
"Importance weighting needs a clear definition of the targeted population”.

Reply Thank you for pointing this out; we have corrected that typo.
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Machine learning brings the hope of finding new biomarkers extracted from cohorts with rich biomedical measurements. A
good biomarker is one that gives reliable detection of the corresponding condition. However, biomarkers are often extracted
from a cohort that differs from the target population. Such a mismatch, known as a dataset shift, can undermine the
application of the biomarker to new individuals. Dataset shifts are frequent in biomedical research, e.g. because of
recruitment biases. When a dataset shift occurs, standard machine-learning techniques do not suffice to extract and
validate biomarkers. This article provides an overview of when and how dataset shifts breaks machine-learning extracted

biomarkers, as well as detection and correction strategies.

Biomarkers are measurements that provide information about a
medical condition or physiological state [1]. For example, the
presence of an antibody may indicate an infection; a complex
combination of features extracted from a medical image can help
assess the evolution of a tumor. Biomarkers are important for
diagnosis, prognosis, and treatment or risk assessments.

Complex biomedical measures may carry precious medical
information, as with histopathological images or genome se-
quencing of biopsy samples in oncology. Identifying quantitative
biomarkers from these requires sophisticated statistical analy-
sis. With large datasets becoming accessible, supervised ma-
chine learning provides new promises by optimizing the infor-
mation extracted to relate to a specific output variable of interest,
such as a cancer diagnosis [2, 3, 4]. These methods, cornerstones
of artificial intelligence, are starting to appear in clinical practice:
a machine-learning based radiological tool for breast-cancer di-
agnosis has recently been approved by the FDA!.

Can such predictive biomarkers, extracted through complex

1 https://fda.report/PMN/K192854

data processing, be safely used in clinical practice, beyond the
initial research settings? One risk is the potential mismatch, or
dataset shift, between the distribution of the individuals used to
estimate this statistical link and that of the target population
that should benefit from the biomarker. In this case, the ex-
tracted associations may not apply to the target population [5].
Computer aided diagnostic of thoracic diseases from X-ray im-
ages has indeed been shown to be unreliable for individuals of
a given sex if built from a cohort over-representing the other
sex [6]. More generally, machine-learning systems may fail on
data from different imaging devices, hospitals, populations with
a different age distribution, etc.. Dataset biases are in fact fre-
quent in medicine. For instance selection biases -eg due to vol-
unteering self-selection, non-response, dropout...— [7, 8] may
cause cohorts to capture only a small range of possible patients
and disease manifestations in the presence of spectrum effects
[9, 10]. Dataset shift or dataset bias can cause systematic errors
that cannot be fixed by acquiring larger datasets and require spe-
cific methodological care.

In this article, we consider predictive biomarkers identified
with supervised machine learning. We characterize the problem
of dataset shift, show how it can hinder the use of machine learn-
ing for health applications [11, 12], and provide mitigation strate-
gies.
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Let us first introduce the principles of machine learning used
to identify biomarkers. Supervised learning captures, from ob-
served data, the link between a set of input measures (features)
X and an output (e.g.a condition) Y: for example the relation
between the absorption spectrum of oral mucosa and blood glu-
cose concentration [13]. A supervised learning algorithm finds a
function f such that f(X) is as close as possible to the output Y.
Following machine-learning terminology, we call the system’s
best guess f(X) for a value X a prediction, even when it does not
concern a measurement in the future.

Empirical Risk Minimization, central to machine learning,
uses a loss function L to measure how far a prediction f(X) is
from the true value Y, for example the squared difference:

L(Y, f(X)) = (Y - f(X))* . ®

The goal is to find a function f that has a small risk, which is the
expected loss on the true distribution of X and Y, i.e. on unseen in-
dividuals. The true risk cannot be computed in practice: it would
require having seen all possible patients, the true distribution
of patients. The empirical risk is used instead: the average error
over available examples,

1 n
R() = 5 3~ LU fGa) (2)
i=1
where {(x;,y;), 1 =1,...,n} are available (X, Y) data, called train-

ing examples. The statistical link of interest is then approxi-
mated by choosing f within a family of candidate functions as
the one that minimizes the empirical risk R(f).

The crucial assumption underlying this very popular ap-
proach is that the prediction function f will then be applied to
individuals drawn from the same population as the training ex-
amples {x;, y;}. It can be important to distinguish the source data,
used to fit and evaluate a machine-learning model (e.g. a dataset
collected for research), from the target data, on which predictions
are meant to be used for clinical applications (e.g. new visitors
of a hospital). Indeed, if the training examples are not represen-
tative of the target population - if there is a dataset shift - the
empirical risk is a poor estimate of the expected error, and f will
not perform well on individuals from the target population.

Once a model has been estimated from training examples, mea-
suring its error on these same individuals results in a (sometimes
wildly) optimistic estimate of the expected error on unseen indi-
viduals (Friedman et al. [14, Sec. 7.4], Poldrack et al. [15, Sec. 1,
“Association vs Prediction”]). Indeed, predictors chosen from a
rich family of functions are very flexible and can learn rules that
fit tightly the training examples but fail to generalize to new in-
dividuals. This is called overfitting.

To obtain valid estimates of the expected performance on new
data, the error is measured on an independent sample held out
during training, called the test set. The most common approach
to obtain such a test set is to randomly split the available data.
This process is usually repeated with several splits, a procedure
called cross-validation [16, 14, Sec. 7].

When training and test examples are chosen uniformly from
the same sample, they are drawn from the same distribution (i.e.
the same population): there is no dataset shift. Some studies also

measure the error on an independent dataset [e.g. 17, 18]. This
helps establishing external validity, assessing whether the pre-
dictor will perform well outside of the dataset used to define it
[19]. Unfortunately, the biases in participant recruitment may be
similar in independently collected datasets. For example if pa-
tients with severe symptoms are difficult to recruit, this is likely
to distort all datasets similarly. Testing on a dataset collected
independently is therefore a useful check, but no silver bullet to
rule out dataset shift issues.

We now discuss some misconceptions and confusions with prob-
lems not directly related to dataset shift.

“Deconfounding” does not correct dataset shift for predictive models.
Dataset shift is sometimes confused with the notion of confound-
ing, as both settings arise from an undesired effect in the data.
Confounding comes from causal analysis, estimating the effect of
a treatment -an intervention, sometimes fictional- on an out-
come. A confounder is a third variable -for example age, or a
comorbidity- that influences both the treatment and the out-
come. It can produce a non-causal association between the two
[See 21, Chap. 7, for a precise definition]. However, the machine-
learning methods we consider here capture statistical associa-
tions, but do not target causal effects. Indeed, for biomarkers, the
association itself is interesting, whether causal or not. Elevated
body temperature may be the consequence of a condition, but
also cause a disorder. It is a clinically useful measure in both
settings.

Tools for causal analysis are not all useful for prediction, as
pointed out by seminal textbooks: “if the goal of the data anal-
ysis is purely predictive, no adjustment for confounding is nec-
essary [...] the concept of confounding does not even apply.”[21,
Sec. 18.1], or Pearl [22]. In prediction settings, applying proce-
dures meant to adjust for confounding generally degrades pre-
diction performance without solving the dataset shift issue. Fig-
ure 1 demonstrates the detrimental effect of “deconfounding”
on simulated data: while the target population is shifted due
to a different age distribution, removing the effect of age also
removes the separation between the two outcomes of interest.
The same behavior is visible on real epidemiologic data with age
shifts, such as predicting the smoking status of participants in
the UKBiobank study [23], as shown in Figure 2. Drawing train-
ing and testing samples with different age distributions high-
lights the effect of these age shifts on prediction performance
(see Appendix B for details on the procedure). For a given learner
and test population, training on a different population degrades
prediction. For example, predictions on the old population are
degraded when the model is trained on the young population. A
flexible model (Gradient Boosting) outperforms the linear model
with or without dataset shift. “Regressing out” the age (as in the
second column of Figure 1, “+ regress-out” strategy in Figure 2)
degrades the predictions in all configurations.

For both illustrations on simulated and real data (Figure 1
and 2), we also demonstrate an approach suitable for predictive
models: reweighting training examples giving more importance
to those more likely in the test population. This approach im-
proves the predictions of the overconstrained (misspecified) lin-
ear model in the presence of dataset shift, but degrades the pre-
dictions of the powerful learner. The non-linear model already
captures the correct separation for both young and old individ-
uals, thus reweighting examples does not bring any benefit but
only increases the variance of the empirical risk. A more detailed
discussion of this approach, called importance weighting, is pro-
vided in Section 5.
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Figure 1. Classification with dataset shift - regressing out a correlate of the shift does not help generalization. The task is to classify patients (orange) from healthy
controls (blue), using 2-dimensional features. Age, indicated by the shade of gray, influences both the features and the probability of disease. Left: generative process
for the simulated data. Age influences both the target Y and the features X, and Y also has an effect on X. Between the source and target datasets, the distribution of
age changes. The two arrows point towards increasing age and represent the Healthy and Diseased populations, corresponding to the orange and blue clouds of points
in the right panel. The grayscale gradient in the arrows represents the increasing age of the individuals (older individuals correspond to a darker shade). Throughout
their life, individuals can jump from the Healthy trajectory to the Diseased trajectory, which is slightly offset in this 2-dimensional feature space. As age increases, the
prevalence of the disease increases, hence the Healthy trajectory contains more individuals of young ages (its wide end), and less at older ages (its narrow end) - and
vice-versa for the Diseased trajectory. Right: predictive models In the target data (bottom row), the age distribution is shifted: individuals tend to be older. Elderly
are indeed often less likely to participate in clinical studies [20]. First column: no correction is applied. As the situation is close to a covariate shift (Section 7.1), a
powerful learner (RBF-SVM) generalizes well to the target data. An over-constrained model - Linear-SVM - generalizes poorly. Second column: wrong approach.
To remove associations with age, features are replaced by the residuals after regressing them on age. This destroys the signal and results in poor performance for
both models and datasets. Third column: Samples are weighted to give more importance to those more likely in the target distribution. Small circles indicate younger
individuals, with less influence on the classifier estimation. This reweighting improves prediction for the linear model on the older population.

Predicting smoking status in the UKBiobank (10-fold CV, n train = 90K, n test = 9K)
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Figure 2. Predicting the smoking status of UKBiobank participants. Different predictive models are trained on 90K UKBiobank participants and tested on 9K
participants with a possibly shifted age distribution. “young — old” means the training set was drawn from a younger sample than the testing set. Models perform
better when trained on a sample drawn from the same population as the testing set. Reweighting examples that are more likely in the test distribution (“+ reweighting”
strategy, known as Importance Weighting, Section 5) alleviates the issue for the simple linear model, but is detrimental for the Gradient Boosting. Regressing out the
age (“+ regress-out” strategy) is a bad idea and degrades prediction performance in all configurations.

Training examples should not be selected to be homogeneous. To ob-
tain valid predictive models that perform well beyond the train-
ing sample, it is crucial to collect datasets that represent the
whole population and reflect its diversity as much as possible
[5, 24, 25]. Yet clinical research often emphasizes the oppo-
site: very homogeneous datasets and carefully selected partici-
pants. While this may help reduce variance and improve statisti-
cal testing, it degrades prediction performance and fairness. In
other words, the machine-learning system may perform worse
for segments of the population that are under-represented in
the dataset, resulting in uneven quality of care if it is deployed
in clinical settings. Therefore in predictive settings, where the
goal is machine-learning models that generalize well, large and
diverse datasets are desirable.

Simpler models are not less sensitive to dataset shift. Often, flexible
models can be more robust to dataset shifts, and thus generalize

better, than linear models [26], as seen in Figures 1 and 2. In-
deed, an over-constrained (ill-specified) model may only fit well
a restricted region of the feature space, and its performance can
degrade if the distribution of inputs changes, even if the relation
to the output stays the same (i.e.when covariate shift occurs,
Section 7.1).

Dataset shift does not call for simpler models as it is not a
small-sample issue. Collecting more data from the same sources
will not correct systematic dataset bias.

In 2017, competitors in the million-dollar-prize data science
bowl used machine learning to predict if individuals would be
diagnosed with lung cancer within one year, based on a CT scan.


https://www.kaggle.com/c/data-science-bowl-2017/overview
https://www.kaggle.com/c/data-science-bowl-2017/overview

Assuming that the winning model achieves satisfying accuracy
on left-out examples from this dataset, is it ready to be deployed
in hospitals? Most likely not. Selection criteria may make this
dataset not representative of the potential lung cancer patients
general population. Selected participants verified many criteria,
including being a smoker and not having recent medical prob-
lems such as pneumonia. How would the winning predictor per-
form on a more diverse population? For example, another disease
could present features that the classifier could mistakenly take
for signs of lung cancer. Beyond explicit selection criteria, many
factors such as age, ethnicity, or socioeconomic status influence
participation in biomedical studies [27, 28, 20, 29]. Not only can
these shifts reduce overall predictive performance, they can also
lead to discriminative clinical decisions for poorly represented
populations [30, 31, 32, 33, 34].

The examples above are instances of preferential selection,
which happens when members of the population of interest
do not have equal probabilities of being included in the source
dataset: the selection S is not independent of (X,Y). Preferential
sample selection is ubiquitous and cannot always be prevented
by careful study design [35]. It is therefore a major challenge to
the identification of reliable and fair biomarkers. Beyond prefer-
ential sample selection, there are many other sources of dataset
shifts, e.g. population changes over time, interventions such
as the introduction of new diagnostic codes in Electronic Health
Records [36], and the use of different acquisition devices.

The correction for a dataset shift depends on the nature of this
shift, characterized by which and how distributions are modified
[26]. Knowledge of the mechanism producing the dataset shift
helps formulate hypotheses about distributions that remain un-
changed in the target data [37, 38, Chap. 5].

Figure 3 illustrates this process with a simulated example of
preferential sample selection. We consider the problem of pre-
dicting the volume Y of a tumor from features X extracted from
contrast CT images. These features can be influenced not only by
the tumor size, but also by the dosage of a contrast agent M. The
first panel of Figure 3 shows a selection of data independent of
the image and tumor volume: there is no dataset shift. In the sec-
ond panel, selection depends on the CT image itself (for example
images with a low signal-to-noise ratio are discarded). As selec-
tion is independent of the tumor volume Y given the image X, the
distribution of images changes but the conditional distribution
P(Y | X) stays the same: we face a covariate shift (Section 7.1). The
learned association remains valid. Moreover, reweighting exam-
ples to give more importance to those less likely to be selected
can improve predictions for target data (Section 5), and it can be
done with only unlabelled examples from the target data. In the
third panel, individuals who received a low contrast agent dose
are less likely to enter the training dataset. Selection is therefore
not independent of tumor volume (the output) given the image
values (the input features). Therefore we have sample selection
bias: the relation P(Y | X) is different in source and target data,
which will affect the performance of the prediction.

As these examples illustrate, the causal structure of the data
helps identify the type of dataset shift and what information
is needed to correct it. When such information is available, it
may be possible to leverage it in order to improve robustness to
dataset shift [e.g. 40].
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Figure 3. Sample selection bias: three examples. On the right are graphs giving
conditional independence relations [39]. Y is the lesion volume to be predicted
(i.e. the output). M are the imaging parameters, e.g.contrast agent dosage. X
is the image, and depends both on Y and M (in this toy example X is computed
as X := Y + M + ¢, where e is additive noise. S indicates that data is selected
to enter the source dataset (orange points) or not (blue points). The symbol 1L
means independence between variables. Preferentially selecting samples results
in a dataset shift (middle and bottom row). Depending on whether Y 1L S|X, the
conditional distribution of Y | X - here lesion volume given the image - estimated
on the selected data may be biased or not.

Importance weighting is a simple approach to dataset shift that
applies to many situations and can be easy to implement.

Dataset shift occurs when the joint distribution of the fea-
tures and outputs is different in the source (data used to fit the
machine-learning model) and in the target data. Informally, im-
portance weighting consists in reweighting the available data to
create a pseudo-sample that follows the same distribution as the
target population.

To do so, examples are reweighted by their importance weights
- the ratio of their likelihood in target data over source data. Ex-
amples that are rare in the source data but are likely in the target
data are more relevant and therefore receive higher weights. 