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Supplementary Note 3 Results of Sensitivity analyses
Parents and siblings as control group

In total, 24 sites were Bonferroni significant in the EWAS (N=1161) with MZ twins as cases,

non-twins, i.e. parents and siblings, as controls (and all DZ twins excluded).

The effect sizes of the 243 epigenome-wide significant sites detected in NTR with the
primary analysis reported in this paper (MZ twins versus DZ twins, N=1957) correlated
strongly with effect sizes obtained by comparing MZ twins to parents and siblings and 242
sites (99.6%) showed the same direction of effect (r=0.96, p< 2.2e-16, Figure S1A,
Supplementary Data 2).

By contrast, in an EWAS of DZ twins versus non-twins (N= 1270, all MZ twins were
excluded), O sites were Bonferroni significant, the correlation between effect sizes was -0.34
(p-value = 3.6 x 108, figure S1B, Supplementary Data 1) and 90 showed the same
direction of effect as in the comparison of DZ versus MZ twins. These results indicate that
the results from our primary EWAS (mainly) reflect differential DNA methylation in MZ twins.

In the Brisbane System Genetics Study (BSGS), which 125 MZ twins, 194 DZ twins, 95
siblings of twins, and 62 parents of twins, the 243 CpGs detected in NTR showed equally
strong concordance of effects when comparing MZ twins to DZ twins as when comparing MZ
twins to everyone else (DZ twins, siblings and parents; r=0.91, p< 2.2e-16, Figure S2,
Supplementary Data 1).

Complete twin pairs versus single twins

We compared the primary EWAS approach with one randomly excluded MZ twin for each
pair to 1) an EWAS performed in gee with complete MZ pairs and complete DZ pairs
included and 2) an EWAS with a simple linear model (R function Im()) with only one randomly

selected twin of each MZ and one randomly selected twin of each DZ pair included.

In total, 243 sites were epigenome-wide significant in the primary analysis reported in this
paper (N=1957), 258 sites were epigenome-wide significant in the analysis that included all
twins, including complete MZ twin pairs and complete DZ twin pairs, and twins from
incomplete pairs (N=2750), and 130 sites were epigenome-wide significant in the analysis of
single MZ twins and single DZ twins (N=1538).

The effect sizes of the 243 epigenome-wide significant sites detected in NTR with the
primary analysis reported in this paper (single MZ twins and all DZ twins included, thus
including complete DZ pairs and DZ twins from incomplete pairs) correlated strongly with

effect sizes obtained with the analysis with all complete pairs included (r= 0.999, figure S1C)



and with the analysis with only single twins included (r=0.996, figure S1D), and adding the
extra MZ co-twin did not cause a large increase in the number of significant loci (this is
expected if MZ twinning is associated with CpGs whose methylation levels are strongly

correlated between MZ twins), with only 15 extra Bonferroni significant CpGs (6%).
Covariates

The primary EWAS analyses included the following covariates: age, sex, BMI, smoking,
percentage of monocytes, percentage of eosinophils, percentage of neutrophils, sample
plate and array row. We chose to correct for covariates that are known to be strongly
associated with DNA methylation. In NTR, MZ and DZ twins showed small differences in the
proportion of males and females, BMI, age, and sample plate, and no significant differences

in cell counts.

In the analysis of single MZ twins and single DZ twins (N=1538) without any covariates
included in the model, summary statistics showed inflation (lamba=1.35). After adjusting for
inflation, 59 sites were epigenome-wide significant. The effect sizes of the 243 epigenome-
wide significant sites detected in NTR with the primary analysis reported in this paper, with
covariates age, sex, BMI, smoking, white blood cell percentages, sample plate and array
row, correlated strongly with effect sizes obtained in the EWAS of single MZ twins and single
DZ twins without any covariate (r=0.99, figure S1E). All 243 DMPs showed the same

direction of association without adjustment for any covariates.
Sex-stratified EWAS

In male twins and female twins separately, we performed an EWAS with a simple linear
model (R function Im()) to compare female MZ twins to female DZ twins, and male MZ twins
to male DZ twins. Only one randomly selected twin from each MZ pair and each DZ pair was

included in these analyses.

In total, 28 sites were epigenome-wide significant in this analysis of female twins (N=1033)

and 4 sites were epigenome-wide significant in the analysis of male twins (N=505).

The effect sizes of the 243 epigenome-wide significant sites detected in NTR with the
primary analysis reported in this paper (single MZ twin and DZ pairs included) correlated
strongly with effect sizes obtained in the analysis of females only (r= 0.99, figure S1F), and
in the analysis of males only (r=0.97, figure S1G). Effect sizes obtained in the female EWAS
also correlated strongly with the effect sizes obtained in the male EWAS (r=0.94, figure
S1H).

Correction for top cis mQTL



We repeated the primary EWAS analysis in NTR for the DMPs detected in the meta-analysis
adjusting, in addition to the same covariates as before (sex, age, cell counts, BMI, smoking,
array row and sample plate), for genotype at the strongest cis mQTL SNP of each CpG
(Supplementary Note 6) and three principal components (PCs) based on the genotype
data. This analysis was performed in gee on all twins on which the primary EWAS analysis
was performed (one randomly selected MZ twin and complete DZ twin pairs) for whom
genotype data were available (N=1713). The analysis was conducted for 502 methylation

sites with a significant cis mQTL and for which the SNP was available in NTR.

In total, 109 CpGs were associated with MZ versus DZ zygosity after adjusting for the
strongest cis mQTL (plus the above-mentioned covariates) at p < 1x107, and the effect size
of zygosity was unaffected adjusting for the top cis mQTL (Figure S20A). Effect sizes of
zygosity and cis mQTLs did not correlate (Figure S20B). Based on results from the same
model, 251 CpGs were associated with the selected top-SNP in NTR at p < 1x107 (Figure
S20C) confirming the cis mQTL effect in this sample. These results suggest that cis mQTLs
and zygosity are independently associated with methylation level at these CpGs. Histograms
of the effect sizes of zygosity and cis mQTLs (taken from the same model) illustrate that the
methylation differences between MZ and DZ twins are on average about half the effect size

associated with each effect allele of cis mQTLs (Figure S20D and Figure S20F).



Supplementary Note 4 Correlation between MZ-DMPs

We explored whether methylation differences occur across extended stretches of DNA,
which may indicate underlying regulatory mechanisms, and computed the correlation
between DNA methylation levels in data from NTR to examine the extent to which the 834
MZ-DMPs are independent. While the average correlation across all 834 MZ-DMPs was
small (mean=0.09, range=-0.69-0.98), the correlation between DMPs within a window of 1
Mb around each DMP with the most significant p-value was moderate (mean=0.53,
range=0.04-0.98; for 99 windows containing 3 or more DMPs and an average size of 366 kb,

range=7bp-1.4Mb). Examples of large regions are shown in Fig. S3.

We note that correlations between methylation levels at different CpGs may also arise due to
cross-hybridization of probes to multiple locations. We note that we already excluded probes
reported by Chen et al with an overlap of at least 47 bases per probe!, which is the most
commonly used exclusion criterium in EWA studies, from all of our analyses to avoid this
issue. We additionally examined a more stringent definition based on a lower degree of
sequence overlap of 30 bases per probe?, which flagged 18 of the 834 MZ-DMPs (2.1%) as
potentially cross-hybridizing. We have flagged these DMPs in Supplementary Data 3.

The sequence similarity of probes for the 834 MZ-DMPs was generally low. On average, 3.5
bases overlapped, the maximum overlap was 26 bases, and 685 CpGs (82%) are targeted
by probes that show less than 14 bases overlap with probes for other MZ-DMPs. We
examined one region in more detail; the PCDH gene clusters on chromosome 5, because the
genes in this region are known to show large sequence similarity. Our EWAS meta-analysis
identified 79 MZ-DMPs in this region (Fig. S3B). Among the 79 CpGs, the overlap in probe
sequences between probes for different CpGs was on average only 3.5 bases, the
maximum overlap was 21 bases and 77 of the 79 CpGs had less than 14 overlapping
bases. This illustrates that the probes for these 79 CpGs are designed to target largely
distinct sequences within the PCDH gene clusters, however, we note that all 79 CpGs
are targeted by probes that show a small degree of off-target sequence overlap (>=14

bases?®) with other sequences within this genomic region.



Supplementary Note 5 Enrichment analyses EWAS atlas

We performed enrichment analyses against all previously reported associations in EWASs of
diseases and environmental exposures. The strongest enrichment for hypermethylated
DMPs was folic acid supplementation during pregnancy (OR=293, P=7.3x101%%), followed by
neurodevelopmental presentations and congenital anomalies (OR= 65, P =1.2x10°°), and
Immunodeficiency, Centromeric instability, Facial anomalies syndrome (ICF syndrome;
OR=174, P =3.8x107%"), a rare disorder often caused by mutations in one of the DNA
methyltransferase genes (DNMT3B). The strongest enrichment for hypomethylated CpGs
was Kabuki Syndrome (OR=70, P=9.5x10%°), a rare disorder caused by mutations in
KMT2D, which codes for a histone lysine methyltransferase, and KDM6A, which codes for a
histone lysine demethylase. Further enrichment was seen for a whole range of traits and
exposures, including prenatal exposures, congenital anomalies, and preterm birth
(Supplementary Data 6 and 7). The enrichments further confirm that the MZ twinning

epigenetic signature is linked to early-life epigenetic reprogramming.



Supplementary Note 6 Methylation QTL analyses

We obtained methylation QTL (mQTL) results for the 834 DMPs (497 hypomethylated, and
337 hypermethylated; Supplementary Data 10 and 11) from our EWAS in the largest mQTL
catalogue to date; the whole blood mQTL results from the Genetics of DNA Methylation
Consortium (GoDMC, N= 27,750)*. This revealed 108,241 significant cis associations
between 365 hypo-DMPs and 61,823 genetic variants and 77,988 significant cis associations
between 196 hyper-DMPs and 35,899 variants. In addition, there were 8,197 significant trans
associations between 4,166 variants and 73 hypo-DMPs and 2,890 significant trans
associations between 2,116 variants and 52 hyper-DMPs. Trans mQTLs were associated
with up to 15 CpGs (average=1.8). Among the genes annotated to trans mQTLs were key
epigenetic modifiers including TRIM28 (trans mQTL for hypomethylated DMPs) and the de
novo methyltransferase DNMT3B (trans mQTL for hypomethylated DMPs), and a large
number of zinc finger genes (for both hypomethylated and hypermethylated DMPs). SNPs
with the largest number of trans effects were annotated to the ZNF gene cluster on
chromosome 19 (up to 15 CpGs), and DPPA4%¢, which encodes a key regulator of
developmental pluripotency that interacts with the Polycomb Repressor Complex’ (SNPs
rs1044266, rs1163441, and rs2930074, each associated with 11 CpGs in trans). Dppa4
forms a heterodimer with DppaZ28. In line with the enrichment of hypomethylated DMPs within
polycomb-repressed chromatin states, DPPA2 and DPPA4 are trans mQTLs for
hypomethylated DMPs.

In line with the previously reported influence of genetic variants on MEs®, 53 (77%) of the
putative MEs associated with zygosity were associated with at least one mQTL in cis, and 14

(19%) were associated with at least one mQTL in trans.

We note that hypermethylated CpGs were significantly enriched in regions containing
repeats; the effect of such repeats on DNA methylation is not fully captured in mQTL
analyses. Thus, we cannot rule out that repeat variation might contribute to this DNA

methylation signature.

In NTR, we examined whether association with zygosity remained after adjusting for the
strongest cis mQTL at each site; results remained unchanged (Supplementary Note 3,
Figure S20), illustrating that zygosity and cis mQTLs are independently associated with

these methylation sites.



Supplementary Note 7 DNA methylation predictor of MZ twinning

We compared models based on two input sets (genome-wide methylation sites versus meta-
analysis DMPs), and trained on two phenotypes (MZ versus DZ twins, and MZ twins versus
everyone else (including DZ twins and family members of twins). Regressions returned
predictors based on 232-1867 methylation sites (Supplementary Data 12). In NTR test data
from blood (which were left out of the training dataset), the area under the curve (AUC)
ranged from 0.69 to 0.77, with up to 84% of MZ twins correctly classified, up to 57% of DZ
twins correctly classified, and up to 63% of family members correctly classified as non-MZ.
We tested prediction in two independent datasets (Table 1): BSGS (blood from MZ twins, DZ
twins, and family members, 450k array) and NTR children (buccal from MZ and DZ twins,
EPIC array). AUCs ranged from 0.67 to 0.80 in BSGS, and from 0.63 to 0.76 in buccal data
from NTR children. The predictors performed best when trained on genome-wide significant
CpGs from the meta-analysis (rather than genome-wide methylation data). Weights of these

scores are provided in Supplementary Data 13 and Supplementary Data 14.

In the group of NTR children with buccal methylation data and information on chorionicity
available, we compared the performance of the predictor for MZ twins with different
chorionicities. The performance was similar across chorionicities. For the predictor that
performed best on data from buccal (trained to distinguish MZ versus DZ twins, on genome-
wide significant CpGs), the percentage of correctly predicted MZ twins were: 76% for
monochorionic monoamniotic twins, 72% for monochorionic diamniotic twins, and 75% for

dichorionic twins.
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Supplementary Figures

Figure S1 Comparison of effect sizes in NTR for 243 DMPs across the primary EWAS of MZ
versus DZ twins in NTR and sensitivity analyses.
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Scatterplots showing the estimates (methylation beta-value difference between MZ twins and
controls). X-axis: results from the primary EWAS in NTR (N=1957; controls=DZ twins,
participants included: complete DZ pairs and one randomly selected MZ pair). y-axis:
Estimate (methylation beta-value difference between MZ twins and controls) from a) Analysis
comparing MZ twins to non-twins (parents and siblings), N=1161. b) Analysis comparing non-
twins (parents and siblings) to DZ twins, N=1270. c) Analysis in complete MZ pairs and
complete DZ pairs (N=2750). c) Analysis in single MZ twins and single DZ twins, randomly
selected (N=1538) with a simple linear model (Im function in R). €) Analysis in single MZ
twins and single DZ twins, randomly selected (N=1538) with a simple linear model (Im
function in R), without any covariates. f) Female-only analysis in single MZ twins and single
DZ twins, randomly selected (N=1033) with a simple linear model (Im function in R). g) Male-
only analysis in single MZ twins and single DZ twins, randomly selected (N=505) with a
simple linear model (Im function in R). h) Effect sizes in males (single twins, N=505, x-axis)
versus females (single twins, N=1033, y-axis).

Figure S2 Comparison of effect sizes in NTR versus BSGS for 243 DMPs
a) b)
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Scatterplot showing the estimates (methylation beta-value difference between MZ twins and
controls). X-axis: results from the primary EWAS in NTR (N=1957; controls=DZ twins).
y=axis: results from the EWAS in BSGS: a) MZ versus DZ twins (N=356) b) MZ twins versus
all other individuals (N=476; all other individuals are DZ twins, siblings, and parents of twins).
DMPs that replicate after stringent Bonferroni correction for 243 tests are shown in dark
purple.



Figure S3. Twinning-associated DNA methylation and correlation patterns
in 11 differentially methylated regions
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a-k) Plots of exemplary regions that contain multiple CpGs significantly associated

with MZ twinning. Regions were defined by selecting a window of 1 Mb around each
differentially DMP with the lowest p-value. Plots were created for all regions with 10 or more
significant CpGs in this window. The top panel of each plot shows the EWAS meta-analysis
p-values for all CpGs in the window, with the most strongly associated CpG highlighted.
CpGs above the red horizontal line are epigenome-wide significant in the meta-analysis (total
sample size = 5,723). The middle panel shows the genomic coordinates (genome build
GRCh37/hg19) and the functional annotation of the region: the ENSEMBL Genes track
shows the genes in the genomic region (orange); the CpG Island track shows the location of
CpG islands (green); the Regulation ENSEMBL track shows regulatory regions. The bottom
panel shows the Spearman correlation between methylation levels of CpGs in the window
based on whole blood Illumina 450k methylation data from the NTR (N=3,089 samples). a)
chromosome 5:1245902-2334971, 782 CpGs, 18 significant CpGs, mean correlation
between significant CpGs 0.328 [range=0.053; 0.919]. b) chromosome 5:140166589-
140781179, 476 CpGs, 79 significant CpGs, mean correlation between significant CpGs:
0.283 [range=-0.029; 0.719]. c) chromosome 7:62514673-63504673, 44 CpGs, 14 significant
CpGs, mean correlation between significant CpGs 0.195 [range=-0.690; 0.893]. d)
chromosome 7:56242407-57484819, 73 CpGs, 26 significant CpGs, mean correlation
between significant CpGs 0.446 [range=-0.228; 0.866]. €) chromosome 7:157368901-
158363642, 844 CpGs, 14 significant CpGs, mean correlation between significant CpGs
0.420 [range=0.144; 0.954]. f) chromosome 10:99338074-99735010, 153 CpGs, 10
significant CpGs, mean correlation between significant CpGs 0.474 [range=0.106; 0.945]. g)
chromosome 12:33590837-34506462, 82 CpGs, 19 significant CpGs, mean correlation
between significant CpGs 0.317 [range=0.068;0.700]. h) chromosome 13:112547341-
114814171, 1688 CpGs, 27 significant CpGs, mean correlation between significant CpGs
0.400 [range=0.035; 0.931]. i) chromosome 16: 33817457-34809318, 1688 CpGs, 34
significant CpGs, mean correlation between significant CpGs 0.331 [range=0.138; 0.563]. j)
chromosome 17:21220055-22203489, 98 CpGs, 11 significant CpGs, mean correlation
between significant CpGs 0.381 [range=0.207;0.850]. k) chromosome 19:57741988-
58728390, 480 CpGs, 12 significant CpGs, mean correlation between significant CpGs 0.444
[range=-0.592; 0.978].



Figure S4 Average methylation level in blood and longitudinal correlation for 834 MZ-DMPs.
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a)Histogram of the average DNA methylation level in blood at 834 MZ-DMPs, based on data
from the Netherlands Twin Register (N= 3057 individuals). b) Histogram of the correlations
between longitudinal peripheral blood DNA methylation levels collected with an interval of on
average 5 years, based on data from the Netherlands Twin Register (N= 31 individuals).

Figure S5 Heritability and SNP heritability for 834 MZ-DMPs based on whole blood
methylation data.
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Histogram of the total heritability (h?) and SNP heritability (h? SNPs) of DNA methylation level
in blood at 834 MZ-DMPs, based on data from the Netherlands Twin Register (N= 2,603
individuals).



Figure S6 Twin correlations and ADE twin model estimates for 834 MZ-DMPs based on
whole blood methylation data.
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Twin correlations and ADE model estimates for DNA methylation level in blood at 834 MZ-
DMPs, based on data from the Netherlands Twin Register. a) Histograms of the correlation
between DNA methylation levels of monozygotic twins (rMZ, N MZ pairs= 769), and dizygotic
twins (rDZ, N DZ pairs=424). b) Scatterplot of the DZ twin correlation (x-axis) versus the
ratio of the twin correlations (rMZ/rDZ; y-axis). c) Proportion of variance in DNA methylation
level explained by additive genetic effects, non-additive genetic effects, and unique
environment.



Figure S7 Within-pair differences in MZ pairs at ten exemplary MZ-DMPs based on whole
blood methylation data.
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Histograms of absolute within MZ pair differences in DNA methylation levels are shown for
ten exemplary CpGs that were randomly selected from the total set of 834 MZ-DMPs, and
illustrate the skewed distribution of with-pair differences. Within-pair differences were
calculated for 761 MZ twin pairs, based on whole blood methylation data from the
Netherlands Twin Register. The figures show absolute within-pair differences of residual
methylation levels, which were obtained after adjusting methylation beta-values for
covariates.



Figure S8 MZ twin scatterplots (twin 1 versus twin 2) of ten exemplary MZ-DMPs based on
whole blood methylation data.

cg25987564 cg25970575
5 | g
5 ©
o o~ —
c — = e _]
2 3 E 7
s
& _
§ | | T | | ¥ T
-01 0.0 0.1 0.z 03 -02 -01 0.0 01
Residual methylation level twin 1 Residual methylation level twin 1
cg14977608 cg23166781
=
= =
. =
o 7 ™ o
[= — {=
R EE
o e |
i I o ' s 7 . . i
I I I I I I I I I I I I I
-02 -1 0.0 0.1 02 03 04 AL -0.10 -0.05 0.00 005 010
Residual methylation level twin 1 Residual methylation level twin 1
cg22695986 cg01193368
9 E
2 s ]
o s ™~ 9 7]
. o 4
| L BTN, t% _ .
7 T T T T T T T T T T T T
-02 01 0.0 0.1 02 03 015 -0.10 -0.05 0.00 0.05 0.10
Residual methylation level twin 1 Residual methylation level twin 1
cg0B347626 cg22056094
-] s
o s o~ -
c - c -
2 5 4 R e
-] 5 -
¢ T T T T T T T T T T
-02 -01 0.0 0.1 02 -02 0.1 0.0 0.1 02
Residual methylation level twin 1 Residual methylation level twin 1
cg16724588 cg01677628
@ 8]
P <
— o 7
o - o~ s 7
£ s 7 k= -
Z 4 2 s
. <
$ 7 e 7]
T T T T 7 T \ T T
-0.1 0.0 0.1 02 -0t 0.0 ot 02
Residual methylation level twin 1 Residual methylation level twin 1

Scatterplots are shown for ten exemplary CpGs that were randomly selected from the total
set of 834 MZ-DMPs. Data are shown for 761 MZ twin pairs (each dot represents one twin
pair), based on whole blood methylation data from the Netherlands Twin Register. The
figures show residual methylation levels, which were obtained after adjusting methylation
beta-values for covariates. The value of twin 1 is shown on the x-axis and the value of twin 2
is shown on the y-axis.



Figure S9 Within-pair and between-pair differences at 834 MZ-DMPs
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The x-axis shows the absolute mean difference in DNA methylation level between MZ and
DZ twins and the y-axis shows the absolute within-pair dfiference in MZ twins at 834 MZ-
DMPs, based on whole blood methylation data from the Netherlands Twin Register. Mean
differences between MZ and DZ twins were taken from the primary EWAS analysis in NTR.
Mean differences within MZ pairs were calculated on residual methylation levels, which were
obtained after adjusting methylation beta-values for covariates.



Figure S10 Distribution of within-pair differences in MZ pairs at 834 MZ-DMPs
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Figure a shows boxplots of within-pair differences across pairs for each CpG. Figure b shows
boxplots of within-pair differences across CpGs for each MZ pair. Within-pair differences
were calculated for 761 MZ twin pairs, based on whole blood methylation data from the
Netherlands Twin Register. The figures show absolute within-pair differences of residual
methylation levels, which were obtained after adjusting methylation beta-values for
covariates. Thick horizontal lines within boxes denote the median, box edges show the 25th
and 75" percentiles, whiskers denote 1.5xinterquartile range (IQR), and dots any datapoints
outside this range.



Figure S11 Twin correlations in buccal cell DNA methylation data from an independent
group of children from the Netherlands Twin Register.
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a)Density plots of twin correlations for genome-wide autosomal methylation sites. b) Twin
correlations for the 833 MZ-DMPs that were present in the buccal DNA methylation
dataset. c) Twin correlations for previously published putative metastable epi-alleles.
MZ= Monozygotic twins. DZ=Dizygotic twins. ME=metastable epi-alleles.
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Figure S12 Chromatin state enrichment analysis of MZ-hypomethylated sites (previous
page)

Results from the enrichment analysis of 15 Epigenomic Roadmap Chromatin States for MZ-

hypomethylated sites.
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Figure S13 Chromatin state enrichment analysis of MZ-hypermethylated sites (previous

page)

Results from the enrichment analysis of 15 Epigenomic Roadmap Chromatin States for MZ-

hypermethylated sites.

Figure S14 QQ-plots from the EWAS meta-analysis of MZ versus DZ twins, highlighting
methylation sites within imprinted DMRs.
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P-values from the EWAS meta-analysis (sample size = 5,723) are shown.



Figure S15 QQ-plots from the EWAS meta-analysis of MZ versus DZ twins, highlighting
methylation sites within previously published putative metastable epi-alleles.
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P-values from the EWAS meta-analysis (sample size = 5,723) are shown.
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Figure S16 TF motif enrichment analysis of MZ-hypomethylated sites (previous page)

Results from the transcription factor (TF) motif enrichment analysis for MZ-hypomethylated

sites. B-Y FDR= Benjamini—Yekutieli False Discovery Rate.



Figure S17 Top-enriched pathways of nearest genes of MZ-hypomethylated sites
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Clustergram showing the top-enriched pathways (cell fate; columns) for MZ-

hypomethylated CpGs. Metascape automatically clusters similar GO terms (orange) into

groups (GRP, blue). The clustergram shows the membership of genes (rows) involved in

groups and GO-terms (columns). Each group consists of multiple GO terms, and each

term consists of multiple genes. The rows show the genes that are implicated in the most

strongly enriched group of pathways (GRP1; these pathways are related to cell fate;

columns). A gene can be involved in many GO pathways of a particular group (dark blue)

or can be involved in few (light blue) or no pathways (white) of a particular group. On the

right, the orange heatmap shows genes across GO terms (within group 1). The darkness

of the orange color reflect the p-value of the given term.
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Figure S18 TF motif enrichment analysis of MZ-hypermethylated sites (previous page)

Results from the transcription factor (TF) motif enrichment analysis for MZ-hypermethylated

sites. B-Y FDR= Benjamini-Yekutieli False Discovery Rate.



Figure S19 Top-enriched pathways of nearest genes of MZ-hypermethylated sites
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Clustergram showing the top-enriched pathways (cell adhesion; columns) for MZ-

hypermethylated CpGs. Metascape automatically clusters similar GO-terms (orange) into

groups (GRP, blue). The clustergram shows the membership of genes (rows) involved in

groups and GO-terms (columns). Each group consists of multiple GO terms, and each

term consists of multiple genes. The rows show the genes that are implicated in the most

strongly enriched group of pathways (GRP1; these pathways are related to cell adhesion;

columns). A gene can be involved in many GO pathways of a particular group (dark blue)

or can be involved in few (light blue) or no pathways (white) of a particular group. On the

right, the orange heatmap shows genes across GO terms (within group 1). The darkness

of the orange color reflect the p-value of the given term.
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Results from the sensitivity analysis in NTR. a) Methylation difference between MZ and
DZ twins from the primary EWAS in NTR (unadjusted for cis mQTL, x-axis; N=1957)
versus methylation difference between MZ and DZ twins adjusting for the strongest cis
mQTL for each CpG (y-axis, N=1713). b) Effect size of the strongest cis mQTL (x-axis)
versus effect size of zygosity (methylation difference between MZ and DZ twins, y-axis).
c¢) P-values for the cis mQTL effect confirming that these SNPs are strongly associated
with methylation level in this sample. d) Effect sizes of cis mQTLs. e) Effect sizes for
zygosity (MZ minus DZ twins), adjusted for the top cis mQTL.



Supplementary Tables

Supplementary Table 1 EWAS cohorts and Bayesian estimates of bias and inflation

Whole blood
N
Cohort Sample size methylation Inflation Bias
sites
Brisbane SGS 613 367,620 1.03  0.0030
E-Risk 1,164 367,620 1.10 0.0103
Finland 1,708 367,620 1.80 -0.4163
NTR adults 1,957 367,620 1.03  0.2585
TwinsUK Study 492 367,620 0.88 -0.0161
Meta-analysis 5,723 367,620 1.03 -0.0344
Buccal
N
Cohort Sample size methylation Inflation Bias
sites
NTR children 765 787,711 1.10 0.04

The R package Bacon was used to obtain Bayesian estimates of bias and inflation and to obtain bias-
and inflation-corrected test statistics prior to meta-analysis. The estimates shown for the individual
cohorts in this table represent the original estimates prior to adjustment. The meta-analysis
estimates were obtained after adjusting the test statistics from the individual EWAS cohorts for bias
and inflation with bacon and then meta-analysing the adjusted summary statistics.



Supplementary Table 2 Enrichment analysis results of telomeric and centromeric regions for MZ-

hypomethylated sites

all Proportion | hypo- Proportion | X- df | p-value
CpGs DMPs squared
centromere (5%) 22771 | 0.06 26 0.05 0.79393 |1 0.3729
Telomeres (5%) 83164 | 0.23 224 0.45 143.27 1 < 2.2e-16
N total 367620 497

Supplementary Table 3 Enrichment analysis results of telomeric and centromeric regions
for MZ-hypermethylated sites

all Proportion | hyper- Proportion | X-squared | df p-value
CpGs DMPs
centromere 22771 | 0.06 137 0.41 689.31 1 < 2.2e-16
(5%)
Telomeres (5%) | 83164 | 0.23 40 0.12 22.28 1 2.36E-06
N total 367620 337




Supplementary Table 4 Enrichment analysis results of genomic regions for MZ-
hypomethylated sites

Genomic Location Odds Ratio p Value Input Background

5'UTR 0 0.0173 0 0.009
1stExon 0.505 0.000393 0.05 0.095
TSS1500 0.327 9.77E-14 0.07 0.188
TSS200 0.457 2.71E-06 0.064 0.131
3'UTR 0 0.636 0 0.002
Intergenic 1.899 7.11E-11 0.34 0.214
Body 1.25 0.014 0.475 0.42
Island 3.361 1.41E-40 0.588 0.298
N_Shelf 0.252 1.97E-06 0.016 0.061
N_Shore 1.157 0.288 0.129 0.113
OpenSea 0.307 3.89E-26 0.149 0.363
S_Shelf 0.385 0.000215 0.024 0.06
S_Shore 0.892 0.51 0.095 0.105

Supplementary Table 5 Enrichment analysis results of genomic regions for MZ-
hypermethylated sites

Genomic Location Odds Ratio  p Value Input Background

5'UTR 0 8.29E-02 0 0.009
1stExon 2.597 7.24E-11 0.214 0.095
TSS1500 0.934 6.76E-01 0.178 0.188
TSS200 0.649 2.33E-02 0.089 0.131
3'UTR 0 1.00E+00 0 0.002
Intergenic 2.62 9.16E-17 0.415 0.214
Body 0.558 5.92E-07 0.288 0.42
Island 2.008 3.88E-10 0.46 0.298
N_Shelf 0.717 2.53E-01 0.045 0.061
N_Shore 2.32 2.40E-09 0.228 0.113
OpenSea 0.135 8.28E-36 0.071 0.363
S_Shelf 0.675 1.69E-01 0.042 0.06

S_Shore 1.558 5.57E-03 0.154 0.105




Supplementary Table 6 EWAS atlas enrichment analysis results for MZ-hypermethylated

sites
Trait Odds p Value DMC | Background
Ratio
folic acid supplement during pregnancy 293.283 | 7.28E- 39 470
154
neurodevelopmental presentations and congenital 65.216 1.21E-50 | 18 856
anomalies (ND/CAs)
facial anomalies syndrome (ICF) 173.683 | 3.80E-37 | 10 181
Klinefelter syndrome 137.878 | 1.47E-28 | 8 179
thyroid lesion 18.729 2.25E-20 |11 1753
Kabuki syndrome (KS) 17.342 1.09E-19 |11 1891
follicular thyroid carcinoma 8.6 7.05E-19 | 16 5575
sperm viability 26.474 1.45E-17 |8 898
Alzheimer's disease (AD) 19.204 3.58E-17 |9 1392
preterm birth 4.986 7.87E-15 | 18 10662
fetal alcohol spectrum disorder (FASD) 31.094 2.26E-14 | 6 571
type 1 diabetes (T1D) 322.426 | 1.23E-13 |3 30
gender 3.064 2.31E-09 |21 15433
Claes-Jensen syndrome 13.957 6.21E-09 |5 1050
leukoaraiosis (LA) 22.095 6.25E-09 | 4 531
primary Sjgren's Syndrome (pSS) 5.806 3.49E-07 |7 3526
respiratory allergies (RA) 18.067 1.55E-06 |3 485
maternal smoking 3.791 1.20E-05 |8 6153
response to systemic corticosteroid 26.693 2.00E-05 |2 219
maternal alcohol consumption 5.516 2.34E-05 |5 2640
pediatric acute lymphoblastic leukemia 264.239 | 3.75E-05 |1 12
osteoporosis 240.612 | 4.37E-05 |1 13
pan-cancer 15.989 1.41E-04 |2 364
human herpesvirus 6B infection 14.328 2.13E-04 |2 406
maternal phthalate exposure 13.983 2.33E-04 |2 416
lifetime estrogen exposure 70.56 4.28E-04 |1 42
childhood stress 10.561 6.61E-04 |2 550
ancestry 2.251 1.90E-03 |9 10618
maternal pre-pregnancy body mass index (BMI) 26.499 2.81E-03 |1 110
gestational diabetes mellitus 2.632 2.96E-03 | 6 6599
arsenic exposure 25.566 3.01E-03 |1 114
urological cancer 22.732 3.76E-03 |1 128
maternal pre-pregnancy obesity 18.047 5.86E-03 |1 161
high-risk non-muscle invasive bladder cancer (HR- | 14.152 9.29E-03 |1 205

NMIBC)

DMC-=Differentially methylated CpGs - This is the number of methylation sites that is an MZ-
DMP and has been previously associated with the trait reported in the first column.
Background= Total number of methylation sites previously associated with the trait in the first

column.




Supplementary Table 7 EWAS atlas enrichment analysis results for MZ-hypomethylated

sites

Trait Odds p Value DMC | Background
Ratio

Kabuki syndrome (KS) 69.641 | 9.46E-159 | 58 1891
ancestry 7.732 2.27E-42 | 42 10618
gender 5.357 1.56E-37 | 49 15433
breastfeeding 82.347 | 5.86E-31 | 10 252
respiratory allergies (RA) 46.22 1.20E-28 |11 485
B Acute Lymphoblastic Leukemia with 3.424 2.52E-21 |44 21099
t(1;19)(g23;p13.3); E2A-PBX1 (TCF3-PBX1)
neurodevelopmental presentations and 18.687 | 2.65E-15 |8 856
congenital anomalies (ND/CAS)
ankylosing spondylitis 45354 | 8.56E-14 |5 222
maternal smoking 5.191 3.97E-13 | 16 6153
SETD1B-related syndrome 8.056 4.17E-13 |11 2721
maternal pre-pregnancy body mass index (BMI) | 74.224 | 6.08E-13 | 4 110
alcohol dependence 173.243 | 4.31E-12 |3 37
maternal lead exposure 28.149 | 8.21E-12 |5 355
follicular thyroid carcinoma 4,998 241E-11 | 14 5575
gestational diabetes mellitus 4523 5.27E-11 | 15 6599
folic acid supplement during pregnancy 21.182 | 1.22E-10 |5 470
plasma fasting HOMA-IR levels 561.24 | 3.62E-10 |2 9
multiple sclerosis 3.928 3.91E-10 | 16 8093
colorectal laterally spreading tumor 3.855 6.13E-10 | 16 8245
household socioeconomic status in childhood 16.004 | 1.69E-09 |5 620
intermittent explosive disorder 156.368 | 2.57E-08 | 2 27
sperm viability 11.02 5.31E-08 |5 898
sedentary behavior 122.459 | 6.33E-08 | 2 34
multiple system atrophy 25.294 | 2.49E-05 |2 157
high saturated fatty acids diet 5.009 5.03E-05 |5 1965
cardiac autonomic responses (acceleration 216.014 | 5.74E-05 |1 10
capacity)
osteoporosis 163.521 | 9.48E-05 |1 13
Alzheimer's disease (AD) 5.654 1.23E-04 |4 1392
B Acute Lymphoblastic Leukemia with 4.132 2.34E-04 |5 2379
dic(9;20)(p11;913)
thyroid lesion 4.483 5.63E-04 |4 1753
perinatally-acquired HIV 4.498 2.63E-03 |3 1309
childhood stress 7.144 2.71E-03 |2 550
primary Sjgren's Syndrome (pSS) 2.779 4.25E-03 |5 3526
maternal corticotropin-releasing hormone level | 20.585 | 4.58E-03 |1 96
response to antidepressants 14.169 | 9.30E-03 |1 139

DMC-=Differentially methylated CpGs - This is the number of methylation sites that is an MZ-
DMP and has been previously associated with the trait reported in the first column.
Background= Total number of methylation sites previously associated with the trait in the first

column.




Supplementary Table S8 Enrichment analysis results of age-VMPs for MZ-hypomethylated

sites
all Proportion | hypo-DMPs | Proportion X-squared | df p-value
CpGs
ageVMPs | 5606 0.02 22 0.04 27.903 1 1.28E-07
N total 367620 497

Supplementary Table S9 Enrichment analysis results of age-VMPs for MZ-hypermethylated

sites
all Proportion | hyper-DMPs | Proportion X-squared | df p-value
CpGs
ageVMPs | 5606 0.02 35 0.10 176.36 1 < 2.2e-16
N total 367620 337
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