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Getting started
Current stable version of orfipy can be installed via PyPI using the following command

p i p i n s t a l l o r f i p y

Anaconda users can install orfipy from the bioconda channel.

conda i n s t a l l −c b i o c o n d a o r f i p y

Information on installing the development version from the source code is available from https://github.
com/urmi-21/orfipy. During submission of this manuscript, orfipy version 0.0.3 source code can be
accessed from: https://doi.org/10.5281/zenodo.4404795

Usage
orfipy requires a fasta/multi-fasta/fastq file, in plain or gzipped format, as input to search ORFs. Other several
options can be used to fine tune the ORF search. Basic command to execute orfipy looks like:

o r f i p y [ < o p t i o n s >] < i n . fa >

orfipy help menu, which describes all the input options, can be printed using the command:

o r f i p y −h

Providing start and stop codons and a translation table
With orfipy, users can specify one of the 23 codon tables from NCBI (https://www.ncbi.nlm.nih.gov/
Taxonomy/Utils/wprintgc.cgi?chapter=cgencodes) to use for translation. If needed, users can also
input their own table with the –table parameter. The codon table should be in a .json file to be read by orfipy.
An example is provided here: https://raw.githubusercontent.com/urmi-21/orfipy/master/
scripts/example_user_table.json
By default, the codon tables specify the start and stop codons to use. Users can easily override these values using
−− start and −− stop parameters when running orfipy. For example:

o r f i p y i n . f a s t a −− s t a r t TTG,CTG # u s e s TTG and CTG s t a r t codons
o r
o r f i p y i n . f a s t a −− s t a r t ATG −−s t o p TAA # u s e s on ly TAA as s t o p codon
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ORF searching modes
orfipy has two ORF searching modes by which users can search for ORFs. A user can choose either one.

1. Between Start and Stop: ORFs are defined as the regions between a start and a stop codon. For example,
consider the sequence

AAAATGTTTAAAGGGCCCTAGTTT

The ORF starting with the start codon “ATG” and ending with the stop codon “TAG” (stop codon not included)
is:

ATG TTT AAA GGG CCC

2. Between Stops (regions free of stop codon): ORFs are defined as regions free of stop codons. For example,
for the sequence

AAAATGTTTAAAGGGCCCTAGTTT

ORFs reported in frame +1 will now be:

AAA ATG TTT AAA GGG CCC
and
TTT

ORF types
orfipy labels each ORFs as one of the following:

1. complete: This type of ORF has both a start and a stop codon. For example:

ATG TTT AAA GGG CCC TAG (STOP)

(the stop codon is included in the ORF for reference)

2. 5-prime partial: This type of ORF has a stop codon but lacks a start codon. For example:

TTT AAA GGG CCC TAG (STOP)

(the stop codon is included in the ORF for reference)

3. 3-prime partial: This type of ORF has a start codon but lacks a stop codon. For example:

ATG TTT AAA GGG CCC

By default orfipy outputs all complete ORFs. Users can use the flags −− partial−5 and −− partial−3 to
include the 5-prime partial and 3-prime partial ORFs.

API to orfipy
We have provided a handy function, “orfipy_core.orfs()” for users to directly use orfipy’s ORF search algorithm in
python. This section provides a small example.

i m p o r t o r f i p y _ c o r e
seq = ’ATGCATGACTAGCATCAGCATCAGCAT’
o r f i p y _ c o r e . o r f s ( seq , min len =3 , maxlen =1000)

The above command generates a list of all ORFs found in the sequence passed to orfs() function. The orfs()
function can take a number options to fine-tune ORF searches. More details are provided on orfipy’s GitHub
repository.
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Implementation Details
orfipy is written in python, with the core ORF search algorithm implemented in cython to achieve faster execution
times. orfipy takes nucleotide sequences in a multi-fasta or fastq file as input. The files can be plain or in gzipped
compressed format. Using the python package pyfastx1, orfipy iterates over the input fasta or fastq file for easy
and efficient access to the input sequences.

orfipy efficiently searches for the start and stop codon positions in a sequence using the Aho–Corasick string-
searching algorithm via the pyahocorasick library (https://pypi.org/project/pyahocorasick/).

orfipy uses python’s multiprocessing library to to process multiple sequences in parallel. The number of
sequences to be processed in parallel is automatically estimated by orfipy at runtime, as based on available
memory and cpu cores. This ensures optimal performance and limits memory usage.

Memory considerations
orfipy loads multiple fasta/fastq sequences into memory, and searches for ORFs in parallel. This approach is
particularly fast for files containing multiple shorter sequences, such as de-novo transcriptome assembly data.

Files with extremely long sequences, such as whole genomes, can require more memory due to the number of
ORFs per sequence (which is roughly proportional to sequence length). However, this increased memory use and
resultant slower system performance can be avoided. The user has an option to set the −− chunk− size option to
control memory usage. orfipy will then process the input file in smaller chunks of size −− chunk− size. By
default orfipy is able to determine an optimal value of −− chunk− size, based on system’s available memory,
cpu cores and the input file provided.

Benchmarking details
To compare the runtimes of orfipy with getorf2 and OrfM3, we used three datasets of different sizes and structures:
A. thaliana whole genome (TAIR 10), 5,000 microbial genomes and RNA, and Human transcriptome (Ensembl
release-101). The −−chunk− size and −− procs parameters were not supplied to orfipy and were automatically
estimated by orfipy during runtime.

Each tool was run to find ORFs defined as regions free of stop codons, because OrfM supports only this mode.
Each tool was run to save ORFs as nucleotide and peptide fasta files. OrfM was also run to output ORFs to only
peptide fasta file. Additionally, orfipy was also run to output ORFs in BED format (the other tools do not provide
this option).

For A. thaliana, the minimum ORF size was set as 300; for the other two datasets, the minimum ORF size was
set to 99. A script was written to execute each of the three tools via pyrpipe4 to capture the runtimes. Tools were run
three times and mean runtime for each tool is reported. Code to download data and run the benchmarks is available
at https://github.com/urmi-21/orfipy/tree/master/scripts.

Basic commands for executing tools looked like the following:
orfipy

o r f i p y −−min <m> −−dna <nuc . fa > −−pep <pep . fa > −−between−s t o p s < i n . fa >
and
o r f i p y −−min <m> −−bed < o u t . bed > −−between−s t o p s < i n . fa >

OrfM

orfm −m <m> − t <nuc . fa > < i n . fa > > <pep . fa >

getorf

g e t o r f −f i n d 0 −min <m> −o u t s e q <pep . fa > −s e q u e n c e < i n . fa >
g e t o r f −f i n d 2 −min <m> −o u t s e q <nuc . fa > −s e q u e n c e < i n . fa >

We compared the ORFs reported by each tool, using https://github.com/urmi-21/orfipy/blob/master/scripts/compare_fasta_files.py;
all three tools reported identical ORFs.
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System information
We used two different systems for running the benchmark comparisons. The first was a PC running Debian 9.12 (64
bit) with 16 GB RAM and Intel Core i7-3770 CPU. The second, an HPC, was a regular memory node on Pittsburgh Su-
percomputing Center’s Bridges system. Bridges RM node had 128GB RAM and 2 Intel E5-2695 v3 CPUs providing
a total of 28 CPU cores (https://www.psc.edu/resources/bridges/system-configuration/).

All the tools were installed via conda. To allow for reproducing the conda environment we have provided
the conda environment information as .yml files available from https://github.com/urmi-21/orfipy/
tree/master/scripts.

Compatibility with other tools
This section describes how to set orfipy parameters to extract the same ORFs as with some existing tools. This
will be helpful to users wanting to switch to orfipy from existing tools.

OrfM
OrfM3 has only one run mode i.e. find ORFs defined as free of stop codons. To use orfipy to extract these ORFs,
use the flag −−between− stops. OrfM command:

orfm −m <m> − t <nuc . fa > < i n . fa > > <pep . fa >

orfipy command:

o r f i p y −−min <m> −−dna <nuc . fa > −−pep <pep . fa > −−between−s t o p s < i n . fa >

getorf
getorf2 can find ORFs defined as regions free of stop codons or regions between start and stop codons. User can
choose among these options by using the − f ind parameters in getorf. When − f ind is set to 0 or 2 (0 for peptide
output and 2 for nucleotide), getorf extracts ORFs defined as regions free of stop codons. This is same as OrfM and
orfipy command will be identical to what described for OrfM i.e. using the −−between− stops flag.
When − f ind is set to 1 or 3 (1 for peptide output and 3 for nucleotide), getorf extracts ORFs defined as regions
between start and stop codons. However, getorf only uses AT G as the start codon and also outputs ORFs lacking a
stop codon. Thus, to get same ORFs as getorf from orfipy, users can specify the start codon to be ATG and to
include 3-prime partial ORFs (ORFs lacking a stop codon).
getorf:

g e t o r f −f i n d 3 −min $3 −o u t s e q " $2 / g e t o r f _ 3 _ d " −s e q u e n c e $1

Equivalent orfipy command will be:

o r f i p y −−min <m> −−dna <nuc . fa > −− s t a r t ATG −−p a r t i a l −3 < i n . fa >

TransDecoder
The TransDecoder5 tool can be used for inference of candidate coding sequences. TransDecoder.LongOrfs command
identifies ORFs in sequences. Then, using an algorithm that predicts well- conserved genes, Transdecoder.Predict
computes a log-likelihood score for each ORF, and predicts the likely coding regions using the score- and length-
based filtering criteria. This filtering out of non-canonical ORFS is not done by orfipy, orfM, or GetOrf. Transde-
coder.Predict outputs the ORF coordinates in a BED12 format. orfipy can out output ORFs in the same format,
by choosing out type as BED12 and using includestop flag.

o r f i p y −−bed12 < o r f s . bed > −− s t a r t ATG −−p a r t i a l −3 −−p a r t i a l −5 −−i n c l u d e −s t o p < i n . fa >

Note: Since TransDecoder applies a log-likelihood score-based criteria to select those ORFs predicted to encode
CDS, the number of ORFs reported will be less than that for orfipy, and many ORFs encoding novel CDS may be
missed.
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Supplementary Figures

Supplementary Figure 1. Comparison of user CPU times for orfipy, getorf and OrfM on HPC (128 GB
RAM; 28 cores) and PC (16 GB RAM; 8 cores). The times were measured using the “time” command. Since
orfipy takes advantage of multiple CPU cores, total user CPU time is generally higher than the other tools. Note:
for all data tested, CPU usage of orfipy is such that even a standard PC can easily handle it. Data sizes: A.
thaliana genome 120 MB; microbial sequences 1.5 GB; human transcriptome 370 MB. Tools were run to output
fasta: output ORFs to nucleotide and peptide FASTA; bed: output ORFs to BED file; peptide: output ORFs to
peptide-only FASTA.
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Supplementary Figure 2. Comparison of peak memory usage times for orfipy, getorf and OrfM. The
memory usage was monitored using the “System Monitor” program on Debian Linux. orfipy loads multiple
sequences in memory for parallel processing, and thus has much higher memory usage as compared to the other
tools. All tools were run to output ORFs in nucleotide and peptide fasta format. Note: for all data tested, peak
memory usage of orfipy is such that even a standard PC can easily handle it
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Supplementary Figure 3. Comparison of walltimes times for orfipy, and OrfM when Fastq or gzipped Fastq
file are used for input. The input Fastq was downloaded from NCBI-SRA (SRR976159_1.fastq). OrfM performs
faster than orfipy when Fastq file is provided as an input. orfipy and OrfM were run to output ORFs in
nucleotide and peptide fasta format.
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Supplementary Figure 4. Comparison of different output file sizes by orfipy, getorf and OrfM. Each tool
was run on the human transcriptome data used in the benchmark comparison. BED file supported by only orfipy
has the smallest file size. orfipy writes smaller Fasta headers hence fasta files generated by orfipy in this
scenario are much smaller.
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