SUPPORTING MATERIAL

Dominant Entropic Binding of Perfluoroalkyl Substances (PFASs) to Albumin Protein Revealed by ¹⁹F NMR

Michael Fedorenko,[†] Jessica Alesio,[†] Anatoliy Fedorenko,[†] Angela Slitt[§] and Geoffrey D. Bothun^{*,†}

[†]Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Ave,

Kingston, RI, 02881, USA

[§]Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI, 02881, USA.

Keywords: PFAS; protein binding; albumin; NMR

*Corresponding author: Geoffrey D. Bothun. E-mail: gbothun@uri.edu, Tel: +1-401-874-9518

The Supporting Material contains the ¹⁹F NMR spectra of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexanesulfonic acid (PFHxS), and perfluorooctanesulfonic acid (PFOS) as-received from AccuStandard ((New Haven, CT).

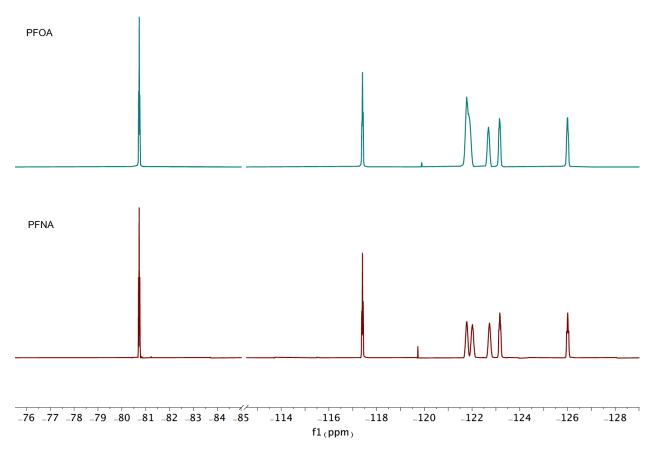


Figure S1. ¹⁹F NMR spectra for 1 mM PFOA (top, teal) and PFNA (bottom, red) in pH 7.4 phosphate buffered saline at 298 K as-received.

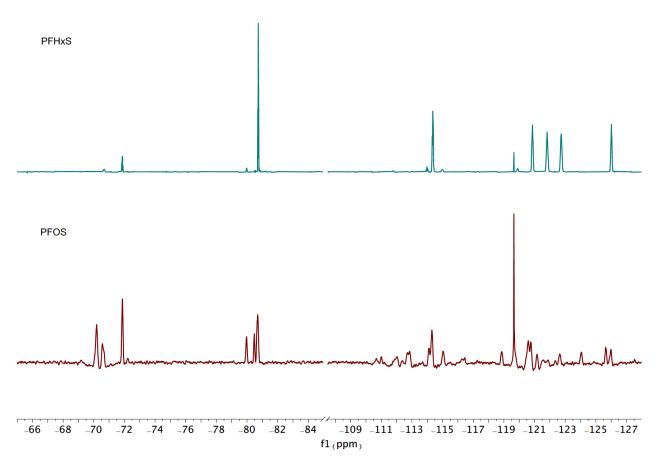


Figure S2. ¹⁹F NMR spectra for 1 mM PFHxS (top, teal) and PFOS (bottom, red) in pH 7.4 phosphate buffered saline at 298 K as-received.