Supporting Information

Biosynthetic crossover of 5-lipoxygenase and cyclooxygenase-2 yields 5-hydroxy-PGE₂ and 5hydroxy-PGD₂

Fumie Nakashima¹, Takashi Suzuki¹, Odaine N. Gordon¹, Dominic Golding¹, Toshiaki Okuno², Juan A. Giménez-Bastida¹, Takehiko Yokomizo², and Claus Schneider¹

 ¹Division of Clinical Pharmacology, Department of Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN 37232, U.S.A.
²Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan

Table of Contents

General Information	p. 2	2
Experimental Procedures	p. 2	2
Supplementary Figures	p. (5
Supplementary Tables	p. 12	2
NMR Spectra	p. 18	8

General Information

Materials. Prostaglandin standards (PGD₂, PGE₂, PGF_{2 α}, PGF_{2 β}, 11 β -PGF_{2 α}), NS-398, and indomethacin were obtained from Cayman Chemical. Other reagents and solvents were obtained from Acros, Fischer, Sigma-Aldrich, or TCI America. Recombinant human COX-2 (1) and recombinant human H-PGDS (2) were expressed and purified as described. *5S*-HETE was prepared from arachidonic acid according to a described procedure (3,4).

HPLC. Samples were analyzed using an Agilent 1200 HPLC system equipped with a diode array detector. RP-HPLC used a Waters Symmetry 5-µm column (4.6 x 250 mm). Solvents A (water/acetonitrile/HOAc 80/20/0.01, by vol.) and B (water/acetonitrile/HOAc 20/80/0.01, by vol.) were mixed to generate linear gradients for elution (1 ml/min flow rate).

Spectroscopy. NMR spectra were recorded using a Bruker AV-II 600 MHz spectrometer equipped with a cryoprobe. Chemical shifts (δ value) are given relative to the residual protiated solvent and are reported in parts per million (ppm). Coupling constants (*J*) are given in Hertz (Hz). Pulse frequencies were taken from the Bruker library. UV spectra were recorded during on-line HPLC-diode array analyses using an Agilent 1200 system or off-line using a Perkin Elmer PE-35 spectrophotometer. The LC-MS instrument was a Thermo Scientific TSQ Vantage triple stage quadrupole mass spectrometer. LC-mass spectra were recording using electrospray ionization and detection in the negative ion mode. Instrument and ionization parameters were optimized by infusion of a solution of PGD₂. For high-resolution mass spectrometry an LTQ Orbitrap 3 XL system (Thermo Scientific) was used.

Safety Statement. No unexpected or unusually high safety hazards were encountered.

Naming of Compounds. Known compounds are identified by their trivial names. The novel 5-hydroxy-prostaglandins have been named in accord with their arachidonic acid-derived analogues.

Experimental Procedures

Singlet oxidation of PGD₂ and PGE₂

Reactions appeared to give higher overall yield when conducted in multiple small aliquots in parallel rather than combined into a single large reaction. PGD₂ or PGE₂ (100 µg each) were placed in conical 1 mL glass vials containing 75 µg methylene blue (from a 5 mg/ml stock solution in methanol) in a total volume of 100 µL methanol. The vials were placed on a sheet of aluminum foil on ice. A desk lamp with a 100 W bulb was placed about 20 cm above the vials and served as the light source. For reaction times >10 h light exposure was interrupted and samples were stored in a freezer overnight before re-starting the reaction. Reaction progress was monitored by analyzing 1 µL aliquots by RP-HPLC using a Waters Symmetry C18 5 µm-column, 250 x 4.6 mm, eluted with a solvent of acetonitrile/water/acetic acid (37.5/62.5/0.01, by vol.) at 1 mL/min flow rate and UV detection using an Agilent 1200 diode array detector. After about 10-20% conversion to products (for PGE₂: 17 h; for PGD₂: 4 h) an excess of TPP was added, and the solvent was evaporated to 50 µL volume under a

stream of nitrogen. The residue was dissolved in 1 mL of ethyl acetate to remove excess methylene blue that has limited solubility that solvent, transferred to a new vial and evaporated. Products were isolated by RP-HPLC using a Waters Symmetry C18 5 µm-column, 450 x 4.6 mm, eluted with acetonitrile/water/acetic acid (for PGE₂: 30/70/0.01, by vol.; for PGD₂: 25/75/0.01, by vol.) at 1 mL/min flow rate. The collected products were evaporated to remove the organic solvent, diluted with water, and extracted using a 30 mg Waters HLB cartridge.

Methyl esterification

A solution of diazomethane in ether (2 drops, ca. 20 μ L) was added to 20 μ g of 5-OH-PG or 5-HETE dissolved in 20 μ L of acetonitrile. The sample was mixed and immediately evaporated under a stream of nitrogen.

Derivatization with (-)-menthyl chloroformate

(-)-Menthoxycarbonyl derivatives were prepared by treatment of methyl-esterified 5-OH-eicosanoids in 40 μ L of dry benzene and 12 μ L of pyridine with 60 μ L of a solution containing 1 μ mol/ μ L (-)menthyl chloroformate in toluene at room temperature for 18 h. Samples were diluted with 2 mL of water, and the mixture was acidified by adding HCl. The mixture was extracted twice with 500 μ L of methylene chloride and evaporated to dryness under a stream of nitrogen. The residue was dissolved in chloroform for ozonolysis.

Oxidative ozonolysis

Ozonolysis was performed by bubbling O_3 into a solution of the (-)-menthoxycarbonyl derivatives dissolved in 0.5 mL of chloroform at -20°C for 1.5 h. After the reaction, the solvent was evaporated under a stream of nitrogen, and the sample was treated with 1 mL of glacial acetic acid containing 30% hydrogen peroxide at 50°C for 18 h. The sample was diluted with 3 mL of water and extracted using a 30 mg Waters HLB cartridge. Products were eluted using methanol, evaporated, and dissolved in 50 μ L acetonitrile/water 1:1 (by vol.) for LC-MS analysis.

Reduction of PGD₂ and PGE₂

 PGD_2 and PGE_2 dissolved in PBS (500 nM, 1 mL) were reduced by addition of 20 μ L of 1 M NaBH₄ in 0.1 N NaOH. After 5 min reaction at room temperature the samples were acidified with acetic acid (pH 4). The products were recovered by extraction using a 30-mg Waters HLB cartridge. Products were eluted from the cartridge using 0.25 mL of ethyl acetate and 1 mL of methanol and evaporated under a stream of nitrogen.

Derivatization with AMPP

Products formed in leukocyte incubations were derivatized with N-(4-aminomethylphenyl)pyridinium (AMPP) to increase sensitivity using positive ion LC-MS analysis (5). The eluates from the HLB cartridges were evaporated under a stream of nitrogen, and the following reagents were added: 10 μ L of ice-cold acetonitrile/dimethyoformamide (4:1, v/v), 10 μ L of 1-ethyl-3-(e-dimethylamino-propyl) carbodiimide (640 mM in water), and 20 μ L of a solution containing 5 mM N-hydroxylbenzotriazole and 15 mM AMPP (in acetonitrile). Sample tubes were briefly vortex mixed and incubated at 60°C for 30 min. The samples were diluted with 40 μ L of acetonitrile/water (1:1, v/v) and analyzed using LC-MS on the same day while maintained at 4°C in the autosampler during analysis.

LC-MS analysis

Products formed by the reaction of recombinant human COX-2 with 5-HETE (Fig. 1), samples treated with SnCl₂ (Fig. 2A) and NaBH₄ (Fig. 4) were analyzed using a Thermo TSQ Vantage triple quadrupole MS instrument (Mass Spectrometry Core, Vanderbilt University) equipped with a heated electrospray interface operated in negative ion mode. The instrument parameters were optimized by infusion of a solution of PGD₂ in acetonitrile/water 1:1 (by vol.). The electrospray needle was maintained at 4.0 kV. The ion transfer tube was operated at 300°C. A Zorbax Eclipse Plus C18 1.8-μm column (2.1 x 50 mm; Agilent Technologies, Santa Clara, CA, USA) was used for the separation. Water and acetonitrile containing 0.01% formic acid were the mobile phases (A and B, respectively) used at a flow rate of 0.4 mL/min. Samples were analyzed in negative ion mode, and a linear gradient was used starting with 80% of solvent A, reaching 40% of solvent B at 4 min. Samples were analyzed in the negative ion Full Scan mode. The signal intensities obtained for each ion chromatogram are given in exponential format with the maximum intensity set as 100%. Data acquisition and spectral analysis were performed using Thermo Scientific Xcalibur software.

Hematin treated samples (Fig. 2B and 2C) and leukocyte samples (Fig. 5) were analyzed using a Thermo TSQ Quantis Triple Quadrupole MS instrument (Mass Spectrometry Core, Vanderbilt University) equipped with a heated electrospray interface operated in negative ion mode. A Zorbax Eclipse Plus C18 1.8-µm column (2.1 x 50 mm; Agilent Technologies, Santa Clara, CA, USA) was used for the separation. Water and acetonitrile containing 0.01% formic acid were the mobile phases (A and B, respectively) used at a flow rate of 0.4 mL/min. For the hematin-treated sample, a linear gradient was used starting with 100% of solvent A, reaching 50% of Solvent B at 4 min. For the leukocyte samples a linear gradient was used starting with 95% of A, reaching 50% of B at 4 min,

100% of B at 4.5 min, and held for 0.8 min. Data acquisition and spectral analysis were performed using Thermo Scientific Xcalibur software.

The following transitions were recorded in the selected reaction monitoring (SRM)-positive ion mode for AMPP-derivatized compounds: $HKD_2 m/z 567 > 369 (+ 35 \text{ eV})$, HKE_2 , m/z 567 > 381 (+ 35 eV); 5-OH-PGD₂ m/z 535 > 183 (+ 42 eV); 5-OH-PGE₂ m/z 353 > 183 (+ 45 eV); hexa-hydroxy C20:2 m/z571->341 (+ 45 eV); 5-OH-PGF₂ m/z 537 > 183 (+ 45 eV).

References

- 1. Schneider, C., Boeglin, W. E., and Brash, A. R. (2004) Identification of two cyclooxygenase active site residues, leucine-384 and glycine-526, that control carbon ring cyclization in prostaglandin biosynthesis. *J. Biol. Chem.* **279**, 4404-4414
- Griesser, M., Suzuki, T., Tejera, N., Mont, S., Boeglin, W. E., Pozzi, A., and Schneider, C. (2011) Biosynthesis of hemiketal eicosanoids by cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways. *Proc. Natl. Acad. Sci. U.S.A.* 108, 6945-6950
- 3. Corey, E. J., and Hashimoto, S. (1981) A practical process for large-scale synthesis of (S)-5hydroxy-6-trans-8,11,14,cis-eicosatetraenoic acid (5-HETE). *Tetrahed. Lett.* **22**, 299-302
- 4. Griesser, M., Boeglin, W. E., Suzuki, T., and Schneider, C. (2009) Convergence of the 5-LOX and COX-2 pathways. Heme-catalyzed cleavage of the 5S-HETE-derived di-endoperoxide into aldehyde fragments. *J. Lipid Res.* **50**, 2455-2462
- 5. Bollinger, J. G., Thompson, W., Lai, Y., Oslund, R. C., Hallstrand, T. S., Sadilek, M., Turecek, F., and Gelb, M. H. (2010) Improved sensitivity mass spectrometric detection of eicosanoids by charge reversal derivatization. *Anal. Chem.* **82**, 6790-6796

Supplementary Figures

Fig. S1. Products from singlet oxidation of PGD₂ and PGE₂. RP-HPLC analysis of (A) PGD₂ and (B) PGE₂ reacted with methylene blue in methanol under a 100 W light bulb on ice for 4 h or 17 h, respectively. Samples were reduced with an excess of triphenylphosphine and injected on a Waters Symmetry C18 5 μ m-column, 450 x 4.6 mm, eluted with acetonitrile/water/acetic acid (30/70/0.01, by vol. in panel A and 25/75/0.01, by vol. in panel B) at 1 ml/min flow rate and UV detection at 205 nm. The equivalent of 100 μ g starting material was injected.

Fig. S2. Analysis of the configuration of C-5 of 5-OH-PGD₂ and 5-OH-PGE₂ diastereomers prepared by singlet oxidation of the respective prostaglandin precursor. (A) Transformation of 5*S*- and 5*R*-HETE standards and isolated 5-OH-PGs to diastereomeric 2*R*- and 2*S*-(-)-menthoxycarbonyl (MC) 2-hydroxy-1,6-hexanedioic acid-6-methyl esters. (B) LC-MS negative ion traces (m/z 357.4) of (-)MC-derivatized 2*S*- and 2*R*-hydroxy-1,6-hexanedioic acid-6-methyl ester formed upon methyl esterification (CH₂N₂), (-)MC derivatization, and oxidative ozonolysis of 5-HETE enantiomers of known configuration and of 5-OH-PG diastereomers **3**, **4**, **5**, and **8**.

Samples were analyzed using a Waters Xevo TQ-S MS instrument (Eicosanoid and Neurochemistry Core, Vanderbilt University) equipped with a heated electrospray interface operated in negative ion mode. The instrument parameters were optimized by infusion of a solution of PGD₂ in acetonitrile/water 1:1 (by vol.). A Zorbax Eclipse Plus C18 1.8- μ m column (2.1 x 50 mm; Agilent Technologies, Santa Clara, CA, USA) was used for the separation. Water and acetonitrile containing 0.1% formic acid were the mobile phases (A and B, respectively) used at a flow rate of 0.5 ml/min. A linear gradient was used starting with 50% of solvent A, reaching 55% of solvent B at 4.5 min. The ion traces for *m/z* 357.4 for derivatized 2*R* or 2*S*-hydroxyhexanedioic methyl ester were acquired in negative ion MS1 mode. The signal intensities obtained for each ion chromatogram are given in exponential format with the maximum intensity set as 100%. Data acquisition and spectral analysis were performed using Waters MassLynx software.

Fig. S3. Reduction of PGD₂ and PGE₂ with NaBH₄ yields three PGF₂ diastereomers that were identified by co-elution with authentic standards, PGF_{2α}, PGF_{2β}, and 11β-PGF_{2α}. Diastereomers were analyzed using LC-MS, and the ion traces for m/z 353 acquired in negative ion MS1 mode are shown to the right of each reaction or standard. Reduction of PGD₂ yielded PGF_{2α} as a prominent product whereas 11β-PGF_{2α} was about 5% in abundance. The same preference for reduction was assumed to have occurred with 5-OH-PGD₂. Reduction of PGE₂, in contrast, gave the expected ≈1:1 mixture of PGF_{2α} and PGF_{2β} diastereomers, showing no stereoselectivity in the reduction of this compound. Samples were analyzed using a Thermo TSQ Vantage triple quadrupole MS instrument equipped with a heated electrospray interface operated in negative ion mode. The same conditions as in Fig. 4 were used.

Fig. S4. Reduction of a crude reaction of 5-HETE with COX-2 (top) and of isolated HKE₂ (bottom) with NaBH₄ yields 5,8,9,11,12,15-hexahydroxy-eicosadienoic acid **13**. Reaction products were analyzed using LC-MS, and the ion traces for m/z 403 acquired in negative ion MS1 mode are shown to the right of each reaction. Samples were analyzed using a Thermo TSQ Vantage triple quadrupole MS instrument equipped with a heated electrospray interface operated in negative ion mode. The same conditions as in Fig. 4 were used.

Fig. S5. Analysis of EP1-EP4 and DP1 prostanoid receptor activation by (A) 5-OH-PGE₂ and (B) 5-OH-PGD₂ in comparison to PGE₂ and PGD₂.

Fig. S6. Analysis of TP, FP, and IP prostanoid receptor activation by 5-OH-PGE₂ and 5-OH-PGD₂ in comparison to PGE₂, PGD₂, and known receptor activators (1 μ M).

		55	$S-OH-PGD_2(4)$		5 <i>R</i> -OH-PGD ₂ (5)			
Proton	$\delta {}^{1}H$	Multi-	Coupling constant (Hz)	$\delta^{13}C^b$	HMBC	$\delta^{1}H$	Multi-	Coupling constant (Hz)
No.	(ppm)	plicity		(ppm)		(ppm)	plicity	
2	2.34	t	$J_{2,3} = 7.7$	33.0	1, 3, 4	2.28	t	$J_{2,3} = 7.4$
3	1.69	m		20.0	2	1.53-1.67	m	
4	1.61- 1.67ª	m		36.4	2,3	1.46	dt	$J_{4,5} = 6.4; J_{4,3} = 7.9$
5	4.23	m		71.9	7	4.03	dt	$J_{5,4} = 6.2; J_{5,6} = 6.3$
6	5.72	dd	$J_{6,7} = 15.7; J_{5,6} = 6.2$	136.5	5,7,8	5.57	dd	$J_{6,7} = 15.3; J_{5,6} = 6.2$
7	5.83	dd	$J_{6,7} = 15.7; J_{7,8} = 7.1$	127.6	5, 6, 8	5.73	dd	$J_{7,6} = 15.7; J_{7,8} = 7.5$
8	2.76	ddd	$J_{8,12} = 11.5; J_{8,9} = 3.3; J_{8,7} = 6.8$	50.3		2.65	ddd	$J_{8,12} = 11.2; J_{7,8} = 7.7; J_{8,9} = 3.4$
9	4.48	dd	$J_{9,10b} = 3.7; J_{9,8} = 3.7$	69.9		4.31	dd	$J_{9,10a} = 4.2; J_{9,8} = 4.2$
10a	2.50	d	$J_{10a,10b} = 18.9$	46.7	8,9,11	2.43	dd	$J_{10a,10b} = 18.3; J_{10a,9} = 4.9$
10b	2.45	dd	$J_{10b,10a} = 18.8$	46.7	11	2.24	d	$J_{10a,10b} = 18.4$
			$J_{10b,9} = 4.5$					
11	(keto)			215.5		(keto)		
12	3.10	dd	$J_{8,12} = 12.1; J_{12,13} = 5.1$	51.5	13,14	2.91	dd	$J_{8,12} = 11.9; J_{12,13} = 7.4$
13	5.62	dd	$J_{13,14} = 15.7$	124.9	12,15	5.41	dd	$J_{13,14} = 15.5; J_{13,12} = 7.4$
			$J_{13,12} = 5.5$					

Table S1: NMR chemical shifts for 5S-OH-PGD₂ (4) (600.13 MHz, CDCl₃) and 5*R*-OH-PGD₂ (5) (600.13 MHz, CD₃CN).

14	5.58	dd	$J_{14,13} = 15.7$	136.4	12, 15	5.52	dd	$J_{14,13} = 15.5; J_{14,15} = 6.4$
			$J_{14,15} = 5.7$					
15	4.10	dt	$J_{15,14} = 6.3; J_{15,16} = 6.3$	72.9	13	3.94	dt	$J_{15,16} = 6.7; J_{14,15} = 6.3$
16	1.48	m		36.8		1.35-1.43	m	
17, 18, 19	1.25-1.35	m		22.6/25.3/31.7	20	1.23-1.29	m	
20	0.86	t	$J_{19,20} = 6.7$	14.2	18, 19	0.87	t	$J_{19,20} = 6.7$

^a the chemical shift was estimated from the H,H-COSY experiment.

^b the chemical shift was derived from the HSQC and HMBC experiments.

6-OH-PGD ₂ , (6)					6-OH-PGD ₂ , (7)			
Proton	$\delta ^{1}H$	Multi-	Coupling constant (Hz)	δ ¹ H	Multi-	Coupling constant (Hz)		
No.	(ppm)	plicity		(ppm)	plicity			
2	2.33	t	$J_{2,3} = 6.7$	2.34	t	$J_{2,3} = 7.0$		
3	2.25	q	<i>J</i> = 6.8	2.26	q	<i>J</i> = 6.9		
4	5.61	dt	$J_{4,5} = 15.4; J_{4,3} = 6.5$	5.63	dt	$J_{4,5} = 15.5; J_{4,3} = 6.5$		
5	5.48	dd	$J_{5,4} = 15.1; J_{5,6} = 6.1$	5.53	dd	$J_{5,4} = 15.4; J_{5,6} = 6.1$		
6	4.13	dt	$J_{6,7} = 6.8; J_{6,5} = 6.7$	4.21	m			
7(a)	1.71	ddd	$J_{7a,7b} = 13.9; J_{7a,8} = 10.6;$ $J_{7a,6} = 7.3$	1.71	ddd	$J_{7a,7b} = 14.2; J_{7a,8} = 10.4;$ $J_{7a,6} = 3.8$		
7b	1.51	ddd	$J_{7a,7b} = 13.9; J_{7b,8} = 5.8;$ $J_{7b,6} = 4.4$	1.54	ddd	$J_{7a,7b} = 13.7; J_{7b,8} = 7.7; J_{7b,6} = 4.1$		
8	1.98	dt	$J_{8,12} = 10.9; J_{7,8} = 4.2$	2.14ª	m			
9	4.38	dd	$J_{9,10a} = 4.4; J_{9,8} = 4.4$	4.40	dd	$J_{9,10a} = 4.2; J_{9,8} = 4.2$		
10a	2.41	dd	$J_{10a,10b} = 18.5; J_{10a,9} = 5.2$	2.42	dd	$J_{10a,10b} = 18.4; J_{10a,9} = 5.0$		
10b	2.19ª	m		2.21ª	m			
11	(keto)			(keto)				
12	2.60	dd	$J_{8,12} = 11.6; J_{12,13} = 8.6$	2.63	dd	$J_{8,12} = 11.9; J_{12,13} = 8.4$		
13	5.34	dd	$J_{13,14} = 15.5; J_{13,12} = 8.3$	5.33	dd	$J_{13,14} = 15.5; J_{13,12} = 8.3$		
14	5.46	dd	$J_{14,13} = 15.1; J_{14,15} = 7.0$	5.48	dd	$J_{14,13} = 15.4; J_{14,15} = 6.5$		
15	3.96	dt	$J_{15,16} = 6.3; J_{14,15} = 6.5$	3.95	dt	$J_{15,16} = 6.2; J_{14,15} = 6.5$		
16	1.36-	m		1.35-	m			
	1.47			1.46				
17, 18,	1.23-	m		1.23-	m			
19	1.31ª			1.32				
20	0.87	t	$J_{19,20} = 6.8$	0.87	t	$J_{19,20} = 6.7$		

Table S2: NMR chemical shifts for the 6-OH-PGD₂ diastereomers (6 and 7) (600.13 MHz, CD₃CN).

^a the chemical shift was estimated from the H,H-COSY experiment.

		5 <i>S</i> -OF	$\text{H-PGE}_2(3)$	5 <i>R</i> -OH-PGE ₂ (8)			
Proton	δ ¹ H	Multi-	Coupling constant (Hz)	$\delta^{1}H$	Multi-	Coupling constant (Hz)	
No.	(ppm)	plicity		(ppm)	plicity		
2	2.36	t	$J_{2,3} = 6.9$	2.37	t	$J_{2,3} = 6.7$	
3	1.65-1.71ª	m		1.68-1.72ª	m		
4	1.46-1.52ª	m		1.47-1.53ª	m		
5	4.11-4.17	m		4.11-4.18	m		
6	5.60	dd	$J_{6,7} = 15.7; J_{5,6} = 6.5$	5.65	dd	$J_{6,7} = 15.8; J_{5,6} = 5.6$	
7	5.54	dd	$J_{6,7} = 15.7; J_{7,8} = 7.0$	5.61	dd	$J_{6,7} = 15.7; J_{7,8} = 5.4$	
8	2.75	dd	$J_{8,12} = 12.4; J_{7,8} = 7.0$	2.75	dd	$J_{8,12} = 12.2; J_{7,8} = 5.6$	
9	(keto)			(keto)			
10a	2.81	dd	$J_{10a,10b} = 18.8$	2.81	dd	$J_{10a,10b} = 18.7$	
			$J_{10a,11} = 7.7$			$J_{10a,11} = 7.4$	
10b	2.32	dd	$J_{10b,10a} = 18.8$	2.32	dd	$J_{10b,10a} = 18.7$	
			$J_{10b,11} = 9.7$			$J_{10b,11} = 9.7$	
11	4.11-4.17	m		4.11-4.18	m		
12	2.52	ddd	$J_{8,12} = 12.2; J_{12,11} = 8.3;$	2.57	ddd	$J_{8,12} = 12.4; J_{12,11} = 8.3;$	
			$J_{12,13} = 8.3$			$J_{12,13} = 8.3$	
13	5.63	dd	$J_{13,14} = 15.6$	5.65	dd	$J_{13,14} = 15.6$	
			$J_{13,12} = 8.0$			$J_{13,12} = 7.2$	
14	5.72	dd	$J_{14,13} = 15.5$	5.73	dd	$J_{14,13} = 15.4$	
			$J_{14,15} = 6.0$			$J_{14,15} = 5.9$	
15	4.11-4.17	m		4.11-4.18	m		
16	1.46-1.52ª	m		1.47-1.53ª	m		
17, 18, 19	1.26-1.29ª	m		1.25-1.29ª	m		

Table S3: NMR chemical shifts for 5S-OH-PGE₂ (3) and 5R-OH-PGE₂ (8) (600.13 MHz, CDCl₃).

20	0.86		t	$J_{19,20} = 6.6$	0.87	t	$J_{19,20} = 6.6$
----	------	--	---	-------------------	------	---	-------------------

^a the chemical shift was estimated from the H,H-COSY experiment.

Compound	m/z	m/z.	δ (ppm)	Derived molecular
	calculated ^a	observed		formula
5 <i>S</i> -OH-PGD ₂ 4	367.2126	367.2124	0.5	$C_{20}H_{32}O_6$
5 <i>S</i> -OH-PGE ₂ 3	367.2126	367.2123	0.8	$C_{20}H_{32}O_{6}$
5 <i>S</i> -OH-PGF _{2α} 9	369.2283	369.2279	1.1	$C_{20}H_{34}O_{6}$

Table S4: HR-MS analysis of 5S-OH-PGD₂, 5S-OH-PGE₂, and 5S-OH-PGF_{2α}.

^a calculations refer to the [M-H]⁻ molecular ion.

5S-OH-PGD₂, product 4, 600 MHz, CD₃CN

R-OH-PGD₂, product **5**, 600 MHz, CD₃CN

6-OH-PGD₂, product 6, 600 MHz, CD₃CN

6-OH-PGD₂, product 7, 600 MHz, CD₃CN

5S-OH-PGE₂, product **3**, 600 MHz, CDCl₃

R-OH-PGE₂, product **8**, 600 MHz, CDCl₃

