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Supporting algorithm. Algorithm for finding the best performing structural similarity measures 

  

Results
(RIKEN high-confidence set)

Selecting the best-performing molecular fingerprints

1
Generate molecular fingerprints for the compound collections for which we have chemical-
genetic interaction profiles.

2
Establish the binarized gold standard for biological activity
(10% of the most similar compound pairs based on chemical-genetic cosine similarity).

3
Compute precision for each structural similarity measure at several recall thresholds
(Each structural similarity measure is defined as one molecular fingerprint paired with one 
similarity coefficient).

4
Select up to the top three fingerprints based on the highest precision at each recall threshold
(Precision values within the 10% of the maximum precision were considered equivalent).

Recall = 0.002:
ASP, DFS, RAD2D

Recall = 0.005:
ASP, LSTAR, RAD2D

Top-performing molecular fingerprints: ASP, LSTAR, and RAD2D
Recall = 0.02:
ASP, LSTAR, RAD2D

Reall = 0.05:
ASP, LSTAR, RAD2D

Recall = 0.2:
LSTAR

Selecting the best-performing similarity coefficients

1
Remove the similarity coefficients for which the precision was < 80% of the maximum 
precision achieved at the majority of recall thresholds for the majority of molecular fingerprints.

Exclude:
Dot-product, Euclidean, Russel/Rao, Simpson

2
Select the similarity coefficients that appear in the top three in terms of precision at all recall 
thresholds (based on the best-performing molecular fingerprint for that similarity coefficient).

Recall = 0.002:
Braun-Blanquet, Tullos

Recall = 0.005:
Braun-Blanquet, Tullos

Top-performing similarity coefficients: Braun-Blanquet and Tullos
Recall = 0.02:
Braun-Blanquet, Dice, Sokal/Sneath, Tanimoto, Tullos

Recall = 0.05:
Braun-Blanquet, Dice, Sokal/Sneath, Tanimoto, Tullos

Recall = 0.2:
Braun-Blanquet, Dice, Sokal/Sneath, Tanimoto, Tullos

Steps for the systematic benchmarking of structural similarity measures
based on chemical-genetic interaction data
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Figure S1. SRD analysis for molecular fingerprints. Since our systematic benchmark compares 

many structural similarity measures/models, we used the SRD method/model comparison 

approach72 as a multi-criteria decision making framework to ensure that we fairly compared the 

components of our similarity models. We downloaded, from http://aki.ttk.hu/srd, the Excel macro 

program file for the SRD analysis with ties (i.e., repeated observations)73. We generated a matrix 

of our data that contained the precision at all predefined recall thresholds and the areas under the 

ROC curves as two sets of criteria for evaluating the performance of our structural similarity 
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models (120x11 data matrix by transposing and combining all spreadsheet tables from Table S1 

or Table S2; rows: 12 similarity coefficients measured at 9 recall thresholds and for the areas under 

the ROC curves; columns: 11 molecular fingerprints). We used only the fingerprints with a depth 

of 8 and the symmetric similarity coefficients (Tversky with 𝛼 = 0.9 was removed) for this SRD 

analysis. We used the maximum of the row values as the reference ranking because we searched 

for the molecular fingerprint with the highest performance. We validated the resulting sum of 

absolute ranking differences using the approximated normal distribution of random numbers. The 

Comparison of Ranks by Random Numbers (CRRN) validation74 using (A) the RIKEN and (B) 

the NCI/NIH/GSK high-confidence sets confirmed the superiority of LSTAR and ASP fingerprints 

over all other molecular fingerprints. The colors were assigned to the bars on a rotational basis by 

the SRD program file. 
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Figure S2. SRD analysis for similarity coefficients. For each compound collection, we generated 

a matrix of our data (510x12 matrix by combining all spreadsheet tables from Table S1 or Table 

S2; rows: 11 molecular fingerprints measured at all available depths, at 9 recall thresholds, and for 

the areas under the ROC curves; columns: 12 symmetric similarity coefficients). Since we included 

the Dice and Tanimoto similarity coefficients, which are two symmetric instances of the Tversky 

coefficient, we removed Tversky with 𝛼 = 0.9 from this SRD analysis. We used the maximum of 

the row values as the reference ranking because we searched for the similarity coefficient with the 
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highest performance. The CRRN validation for (A) the RIKEN and (B) the NCI/NIH/GSK high-

confidence sets indicated the relative superiority of the Tullos and Braun-Blanquet coefficients 

over all other similarity coefficients. Although several similarity coefficients were competing for 

high performance based on the CRRN validations for our compound collections, the Dot-product, 

Euclidean, Russel/Rao, and Simpson similarity coefficients were distinctly the worst coefficients, 

whereas the Tullos and Braun-Blanquet similarity coefficients were the best ones. While the Tullos 

coefficient achieved comparable performance to the Braun-Blanquet coefficient, the simplicity of 

the Braun-Blanquet coefficient makes this coefficient preferable in most practical scenarios. We 

also repeated this SRD analysis for individual recall thresholds (51x12 data matrices), which again 

confirmed the superiority of the Braun-Blanquet and Tullos similarity coefficients over all other 

coefficients at our predefined recall thresholds (Tables S1 and S2 – SRD analysis spreadsheets). 

The colors were assigned to the bars on a rotational basis by the SRD program file. 
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Figure S3. Impact of the describing depth of molecular fingerprints on the NCI/NIH/GSK high-

confidence set. We measured the precision of our prediction models at 10 molecular depths, 

ranging from 2 to 20, for five different molecular fingerprints. Similarities were calculated with 

the Braun-Blanquet similarity coefficient, and the precision at three different recall thresholds for 

each molecular depth is shown. 
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Figure S4. Pairwise structural vectors and bootstrapping used by our machine learning pipeline. 

(A) We generated the pairwise structural features/vector for a compound pair by the element-wise 

multiplication of the normalized, low-dimensional structural vectors describing the compounds. 

(B) Bootstrap aggregating (bagging) example. For an example of five compound pairs and four 

bootstraps, we illustrate the bootstrap aggregating procedure: We averaged the predicted chemical-

genetic similarities of a test pair (represented by X values in a row) over all bootstraps to generate 

the final prediction for the test pair. For example, compound pair 1 was a test pair in bootstraps 1, 

2, and 4; therefore, we averaged these three predictions to form the final prediction for pair 1 (In 

bootstrap 3, compound pair 1 was either a training pair or an invalid pair for which one compound 

belonged to the training set and the other to the test set). 
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Figure S5. Correlation analysis of the predicted structural similarities with the chemical-genetic 

similarities. Correlation of (A) the ASP/Braun-Blanquet-derived structural similarity and (B) the 

machine-learning-derived predicted similarity with chemical-genetic similarity for the RIKEN 

high-confidence set. Correlation of (C) the ASP/Braun-Blanquet-derived structural similarity and 

(D) the machine-learning-derived predicted similarity with chemical-genetic similarity for the 

NCI/NIH/GSK high-confidence set. We computed all the machine-learning-derived predicted 

similarities from bootstrap aggregating, where we calculated the prediction for a compound pair 

RIKEN high-confidence set RIKEN high-confidence set

NCI/NIH/GSK high-confidence set NCI/NIH/GSK high-confidence set

2% of the most similar functional pairs5% of the most similar functional pairs10% of the most similar functional pairs

Background compound pairs
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as the mean of the model output over all the bootstraps for which the compound pair was in the 

test set (Figure S4B). R and P represent the Pearson correlation coefficient and the corresponding 

p-value, respectively. 
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Figure S6. Spearman’s rank correlation distribution between the machine-learning-derived and 

the ASP/Braun-Blanquet-derived structural similarity predictions. We measured the Spearman’s 

rank correlation distribution for (A) the RIKEN and (B) the NCI/NIH/GSK high-confidence sets. 

Each value represents the Spearman’s rank correlation for a compound. To compute the correlation 

value for a compound, we measured the Spearman’s rank correlation between two lists of predicted 

similarities, where one list was generated by our machine learning model and the other list by the 

Braun-Blanquet similarity coefficient, both using ASP fingerprints. 

 

 

Figure S6
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Figure S7. Distribution of the predicted biological functions across 17 broad, previously defined 

functional neighborhoods32,34 for (A) the RIKEN and (B) the NCI/NIH/GSK high-confidence sets. 

The gray bar heights represent the distribution of all the studied compounds in these sets, whereas 

the green bar heights represent the distribution of a subset of these compounds. 

 
 
  

Figure S5

A

Chemical-genetic functional neighborhoods
N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16N1 N17

10

20

30

40

50

60

70

80

0

90
C

om
po

un
ds

 %

2% of the most similar functional pairs
5% of the most similar functional pairs
10% of the most similar functional pairs
Individual compounds

RIKEN high-confidence set

B

5

10

15

20

25

0

30

C
om

po
un

ds
 %

Chemical-genetic functional neighborhoods
N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16N1 N17

2% of the most similar functional pairs
5% of the most similar functional pairs
10% of the most similar functional pairs
Individual compounds

NCI/NIH/GSK high-confidence set



 

 S15 

 
 
Figure S8. Prediction performance of the machine learning models for the 5% cutoff (as a more 

stringent cutoff than 10%) on the functional similarity gold standard. (A) Model performance for 

the RIKEN high-confidence set. The blue PR curve represents the prediction performance gained 

by the best-performing structural similarity measure (ASP/Braun-Blanquet), whereas the teal and 

gold PR curves represent the performance of the machine learning models using ASP and LSTAR 

fingerprints, respectively. A prediction is considered a true positive if the compound pair is within 

the top 5% of functionally similar compound pairs using chemical-genetic interaction profiles. (B) 

Model performance for the NCI/NIH/GSK high-confidence set. 
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