Supplementary Information

Shape-restrained modelling of protein-small molecule complexes with HADDOCK

Panagiotis I. Koukos[#], Manon Réau[#], Alexandre M. J. J. Bonvin^{*}

Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, 3584CH, Utrecht, The Netherlands.

These authors contributed equally

* To whom correspondence should be addressed: <u>a.m.j.j.bonvin@uu.nl</u>, phone: +31 30 253 2652

Table of Contents

Table S1	S3
Table S2	S6
Table S3	S9
Figure S1	S10
Figure S2	S11
Figure S3	S12
Figure S4	S13
Figure S5	S14
Figure S6	S15
Figure S7	S16
Figure S8	S17

Table S1: Templates used for the shape-based protocol. The first column lists the DUD-E target according to DUD-E nomenclature, the second column lists the PDB id of the identified template, the third column lists the RMSD between template and reference receptors using the backbone atoms of the binding site (all residues whose atoms lie within 5Å of the reference compound), the fourth through sixth columns list the interface ligand RMSD (heavy-atom RMSD between reference and model compound after superimposing on backbone atoms of the receptor binding site) when considering top1, top5 and all models generated during the semi-flexible refinement stage.

TARGET	TARGET PDBID	TEMPLATE PDBID	BINDING SITE RMSD [Å]	ТОР1 [Å]	ТОР5 [Å]	BEST [Å]
AA2AR	3eml	5iu8	0.24	1.46	1.18	0.90
ABL1	2hzi	1opk	0.26	0.91	0.51	0.51
ACE	3bkl	3bkk	0.09	1.58	1.58	1.40
ACES	1e66	6g1v	0.21	0.44	0.43	0.43
ADA	2e1w	1ndy	0.29	0.46	0.46	0.46
ADA17	2oi0	3b92	0.57	1.60	1.60	1.22
ADRB1	2vt4	2ycz	0.25	0.83	0.74	0.59
ADRB2	3ny8	3nya	0.37	2.54	0.96	0.74
AKT1	3cqw	3mv5	0.40	1.84	1.06	0.91
AKT2	3d0e	3e88	0.43	2.95	2.47	2.26
ALDR	2hv5	2pdg	0.42	0.67	0.59	0.59
AMPC	1l2s	1xgi	0.21	1.25	1.19	0.56
ANDR	2am9	1gs4	0.24	0.44	0.44	0.44
AOFB	1s3b	2c75	0.08	1.60	1.26	0.62
BACE1	3l5d	3l5c	0.11	5.45	5.28	3.32
BRAF	3d4q	3psd	0.34	1.36	1.01	1.01
CAH2	1bcd	6rzx	0.12	1.23	1.23	1.23
CASP3	2cnk	2c2m	0.13	4.10	3.01	2.18
CDK2	1h00	1v1k	0.46	1.69	1.69	1.69
COMT	3bwm	3s68	0.15	4.31	3.48	1.07
CP2C9	1r9o	5x23	0.74	6.64	1.88	0.70
CP3A4	3nxu	4i4g	0.75	2.15	2.15	2.15
CSF1R	3krj	2i0v	0.34	2.17	1.74	1.03
DEF	1lru	3k6l	0.51	1.33	1.33	1.32
DHI1	3frj	3pdj	0.86	7.99	1.39	1.39
DPP4	2i78	1x70	0.23	2.86	2.57	1.70
DYR	3nxo	3nxy	0.44	1.51	1.34	1.00
EGFR	2rgp	3bel	0.11	1.40	1.04	1.04
ESR1	1sj0	1xpc	0.23	1.04	0.77	0.72
ESR2	2fsz	1qkn	0.46	1.44	1.44	1.02
FA10	3kl6	2cji	0.34	1.35	1.24	1.24
FA7	1w7x	1w2k	0.51	1.73	1.48	0.94
FABP4	2nnq	6ljs	0.37	7.41	3.84	2.92
FAK1	3bz3	6i8z	0.29	3.04	2.49	1.25

FGFR1	3c4f	1agw	2.12	7.19	3.55	3.55
FKB1A	1j4h	1j4i	0.44	6.15	2.08	1.85
FNTA	3e37	1x81	0.51	9.84	9.36	4.43
FPPS	1zw5	4ga3	0.20	0.91	0.86	0.63
GCR	3bqd	1m2z	0.54	0.71	0.58	0.58
GLCM	2v3f	6tjk	0.31	3.98	3.08	0.98
GRIA2	3kgc	3bki	0.60	1.28	0.98	0.98
GRIK1	1vso	2wky	1.97	2.06	1.76	1.70
HDAC2	3max	5iwg	0.12	7.31	1.22	1.08
HDAC8	3f07	5bwz	0.66	8.26	3.73	1.89
HIVINT	3nf7	3nf6	0.21	1.92	1.92	0.66
HIVPR	1xl2	3bhe	0.22	4.73	3.51	2.82
HIVRT	3lan	3lam	0.38	1.65	1.26	0.81
HMDH	3ccw	3ccz	0.13	2.05	1.41	1.03
HS90A	1uyg	1uyh	0.14	0.80	0.80	0.80
HXK4	3f9m	3fr0	0.94	0.83	0.69	0.69
IGF1R	2oj9	3023	2.94	11.60	10.84	4.94
INHA	2h7l	4u0j	0.17	2.07	0.69	0.69
ITAL	2ica	3m6f	0.27	1.80	1.45	0.94
JAK2	3lpb	3e64	0.81	1.67	0.93	0.93
KIF11	Зсјо	2fky	0.31	1.02	1.02	1.02
КІТ	3g0e	6mob	0.46	8.64	6.87	3.16
КІТН	2b8t	2uz3	0.20	0.60	0.45	0.45
LCK	2of2	2of4	0.11	0.41	0.41	0.41
LKHA4	3chp	3chr	0.15	2.31	2.00	0.82
MAPK2	3m2w	3m42	0.66	7.42	7.25	1.14
MCR	2aa2	4uda	0.26	0.45	0.45	0.45
MET	3lq8	5dg5	0.93	1.00	1.00	1.00
MK01	2ojg	2oji	0.95	1.72	1.24	0.90
MK10	2zdt	2zdu	0.32	0.76	0.76	0.40
MK14	2qd9	1a9u	2.30	11.03	7.89	3.81
MMP13	830c	1cxv	0.30	1.38	1.38	1.20
MP2K1	3eqh	6nyb	0.59	4.11	3.98	2.62
NOS1	1qw6	1zvl	0.16	6.64	2.00	1.05
NRAM	1b9v	1vcj	0.24	1.75	1.25	1.25
PA2GA	1kvo	1kqu	0.33	7.00	5.87	3.82
PARP1	3l3m	2rd6	0.21	2.02	1.19	0.74
PDE5A	1udt	1uho	0.24	1.49	1.06	1.06
PGH1	2oyu	1pgf	0.55	6.31	5.49	1.75
PGH2	3ln1	1cx2	0.58	0.58	0.58	0.45
PLK1	2owb	3kb7	0.48	3.17	3.17	2.17
PNPH	3bgs	3phb	0.59	1.12	1.12	1.12
PPARA	2p54	4ci4	0.58	1.92	1.54	1.05

PPARD	2znp	2znq	0.33	2.10	1.74	1.02
PPARG	2gtk	1i7i	0.41	1.96	1.61	0.82
PRGR	3kba	3hq5	0.22	1.10	1.10	1.10
PTN1	2azr	2hb1	0.12	0.71	0.37	0.37
PUR2	1njs	1rc1	0.11	1.95	1.30	1.25
PYGM	1c8k	4yua	0.18	4.17	4.17	2.91
PYRD	1d3g	2b0m	0.26	0.77	0.59	0.53
RENI	3g6z	3g72	0.40	2.10	0.98	0.98
ROCK1	2etr	4уvс	0.37	2.05	1.61	1.34
RXRA	1mv9	4m8e	0.21	1.71	1.68	1.41
SAHH	1li4	5axb	0.15	0.63	0.63	0.63
SRC	3el8	3geq	1.02	1.47	1.47	1.47
TGFR1	3hmm	6b8y	0.38	0.48	0.48	0.48
тнв	1q4x	1nq0	0.92	1.82	1.67	0.80
THRB	1ype	1vzq	0.19	0.74	0.65	0.59
TRY1	2ayw	1f0u	0.25	10.40	10.11	7.24
TRYB1	2zec	2zeb	0.15	1.13	0.84	0.60
TYSY	1syn	1aiq	0.58	2.42	2.42	2.18
UROK	1sqt	4fu7	0.21	1.04	1.04	0.89
VGFR2	2p2i	2oh4	2.32	9.88	9.88	1.14
WEE1	3biz	2in6	0.21	1.97	1.28	1.10
XIAP	3hl5	1tfq	0.79	3.95	3.90	3.25

Table S2: Templates used for the pharmacophore-based protocol. Column explanations are the same as for table S1.

TARGET			BINDING	TOP1 رم۱	TOP5 رگرا	BEST ស្រំា
			[Å]	נייז	נייז	[~]
AA2AR	3eml	5iua	0.27	1.96	1.03	0.80
ABL1	2hzi	1m52	0.39	0.70	0.62	0.62
ACE	3bkl	3bkk	0.24	0.74	0.70	0.54
ACES	1e66	1odc	0.09	3.76	2.52	2.37
ADA	2e1w	1v79	0.57	2.31	0.90	0.90
ADA17	2oi0	3b92	0.36	1.38	1.16	1.15
ADRB1	2vt4	5a8e	0.36	1.02	0.70	0.41
ADRB2	3ny8	6ps5	0.33	1.55	1.17	1.00
AKT1	3cqw	3mv5	0.34	0.57	0.57	0.57
AKT2	3d0e	3e88	0.43	2.92	2.58	2.09
ALDR	2hv5	1iei	0.78	1.80	0.97	0.89
AMPC	1l2s	1xgi	0.21	1.70	1.19	0.90
ANDR	2am9	1xow	0.20	1.33	1.24	0.62
AOFB	1s3b	2byb	0.18	1.51	1.42	0.90
BACE1	3l5d	3l5c	0.11	5.25	5.21	4.61
BRAF	3d4q	3psd	0.34	2.51	2.02	1.76
CAH2	1bcd	5flr	0.11	2.32	0.76	0.66
CASP3	2cnk	2cnl	0.13	2.66	2.05	1.63
CDK2	1h00	1v1k	0.46	2.00	1.48	1.31
COMT	3bwm	4pyl	0.21	2.76	2.76	2.60
CP2C9	1r9o	5x23	0.74	0.98	0.69	0.69
CP3A4	3nxu	4i4g	0.75	2.05	2.05	1.50
CSF1R	3krj	3dpk	0.77	2.86	2.20	1.16
DEF	1lru	3k6l	0.51	1.49	0.84	0.84
DHI1	3frj	3d4n	0.66	1.84	1.63	1.42
DPP4	2i78	4j3j	0.25	1.56	1.14	0.72
DYR	3nxo	3gyf	0.33	1.55	0.62	0.58
EGFR	2rgp	3bel	0.11	1.00	1.00	0.85
ESR1	1sj0	1yim	0.43	0.89	0.77	0.66
ESR2	2fsz	1l2j	0.82	3.82	3.45	2.37
FA10	3kl6	2cji	0.34	1.4/	1.42	1.31
FA7	1w/x	4jyu	2.26	4.1/	1.46	1.13
FABP4	2nnq	5d47	0.37	5.95	5.45	3.21
FAK1	3bz3	4d58	1.39	1.96	1.87	1.51
FGFR1	3c4f	4wun	0.67	1.10	0.88	0.81
FKB1A	1j4h	1j4i	0.44	2.57	2.57	2.20
FNIA	3e37	3633	0.21	5.67	3.96	2.43
FPPS	1ZW5	2opm	0.30	1.68	1.67	1.18
GLK	Supa	3mnp 2rik	0.51		0.54	0.54
GLUM	2031	3/1K	1.48	3.38	2.03	15.20
GRIAZ	SKgC	3iiu 2ac1	2.03	17.10	15.00 7 1 7	1 72
UDACO	1020	2421 41v1	0.97	2.45	2.17	1.72
HUALZ	SIIIdX	4171	0.11	1.05	1.40	1.04

HDAC8	3f07	1t64	1.35	4.65	4.65	3.77
HIVINT	3nf7	3nf9	0.17	2.87	2.87	2.75
HIVPR	1xl2	1xl5	1.40	6.55	6.33	5.55
HIVRT	3lan	3lam	0.38	2.29	2.26	0.58
HMDH	3ccw	3ccz	0.14	0.65	0.65	0.65
HS90A	1uyg	1uyc	0.16	2.30	2.15	1.88
НХК4	3f9m	3goi	0.87	0.95	0.50	0.50
IGF1R	2oj9	2zm3	0.86	7.64	3.10	2.58
INHA	2h7l	4tzk	0.12	1.01	0.64	0.64
ITAL	2ica	3m6f	0.27	2.13	1.68	0.99
JAK2	3lpb	3krr	0.40	1.60	1.46	0.57
KIF11	3cio	2fky	0.31	1.86	1.86	1.57
КІТ	3g0e	, 6mob	0.20	10.61	6.40	3.94
КІТН	2b8t	2uz3	0.46	1.65	0.61	0.60
LCK	2of2	2of4	0.11	1.24	0.67	0.64
LKHA4	3chp	3cho	0.16	2.06	1.78	0.94
МАРК2	3m2w	3m42	0.66	1.03	0.81	0.76
MCR	2aa2	2a3i	0.18	0.61	0.60	0.43
MET	3/08	5hti	0.22	0.89	0.84	0.80
MK01	20ig	2011	0.95	1.90	1.36	1.30
MK10	2zdt	4g1w	0.78	0.98	0.98	0.63
MK14	2ad9	3ha8	1.38	2.14	1.89	1.08
MMP13	830c	2pit	0.27	1.80	1.48	1.17
MP2K1	3eah	3zlx	0.66	11.41	11.07	10.06
NOS1	1aw6	3hsn	0.16	2.28	1.80	1.16
NRAM	1b9v	1vci	0.24	1.41	1.12	1.12
PA2GA	1kvo	1kau	0.33	3.06	1.97	1.78
PARP1	3l3m	6vko	0.61	1.36	0.37	0.37
PDE5A	1udt	1xp0	2.86	3.20	2.90	2.61
PGH1	2ovu	1ht5	0.37	7.28	6.82	6.21
PGH2	, 3ln1	6bl4	0.36	1.55	1.40	1.26
PLK1	2owb	3kb7	0.48	5.60	5.56	2.42
PNPH	3bgs	4ear	0.62	1.35	1.16	1.04
PPARA	2p54	1kkq	4.01	8.43	8.27	6.96
PPARD	2znp	2znq	0.33	0.86	0.86	0.86
PPARG	2gtk	3ia6	0.46	1.57	0.77	0.77
PRGR	3kba	2ovh	1.20	6.22	5.02	4.38
PTN1	2azr	4yua	0.18	0.70	0.49	0.49
PUR2	1njs	1uuo	0.82	2.34	2.33	1.16
PYGM	1c8k	3g72	0.39	5.53	5.45	3.08
PYRD	1d3g	5wng	0.53	0.70	0.70	0.50
RENI	3g6z	4rmd	0.20	1.10	0.75	0.75
ROCK1	2etr	5axc	0.11	9.62	9.50	7.75
RXRA	1mv9	3el7	1.30	2.72	2.72	1.73
SAHH	1li4	6b8y	0.38	0.71	0.69	0.61
SRC	3el8	3imy	0.66	1.07	0.94	0.56
TGFR1	3hmm	1ypg	0.15	0.64	0.64	0.64
тнв	1q4x	1f0u	0.25	1.97	1.97	0.88

THRB	1ype	2zeb	0.15	0.71	0.61	0.56
TRY1	2ayw	2kce	0.55	11.23	6.39	5.66
TRYB1	2zec	4fu7	0.21	2.16	2.16	1.41
TYSY	1syn	3efl	0.27	3.18	2.29	1.70
UROK	1sqt	3bi6	0.13	2.21	1.72	1.22
VGFR2	2p2i	1tft	0.61	1.23	1.23	1.01
WEE1	3biz	1rc1	0.11	1.32	1.23	0.84
XIAP	3hl5	2hb1	0.12	4.63	3.38	3.38

Setting	Value
ncomponents	3
fix_origin_mol1 ¹	true
fix_origin_mol3 ²	true
shape_mol3	true
delenph	false
amb_lastit	1
noecv	false
prot_top_mol3	shape.top
prot_par_mol3	shape.param
dielec_0	cdie
epsilon_1	10
dielec_1	cdie
inter_rigid	0.001
rotate180_it0	false
firstwater	no
w_vdw_0	0
w_elec_2	0.1
w_dist_2	0
clust_meth	RMSD
clust_cutoff	1.5

 Table S3: HADDOCK run.cns parameters that were modified for these protocols.

¹ Refers to the receptor molecule. ² Refers to the shape beads.

Figure S1: Distribution of template compound similarity values for shape (top) and pharm templates (bottom). The similarity metric used for the shape-based protocol is the Tversky coefficient computed over the Maximum Common Substructure and for the pharmacophore-based protocol is the Tanimoto coefficient computed over 2D pharmacophore fingerprints. The height of the blue bar indicates the similarity value for a given target. The orange dots of the shape chart indicate the similarity of the low similarity compound that was chosen for that particular target. Black line in the top plot indicates the targets for which the identified templates have a similarity of more than 0.8 to their respective reference. Note: The two plots have been sorted according to their respective similarity metric, meaning the bars do not (necessarily) correspond to the same target between the top and bottom plots.

Figure S2: Distributions of RMSD values of the conformers generated with RDKit relative to the reference compound.

Figure S3: Assessment of the performance of the two protocols for the two modelling stages. Results of the rigidbody docking (it0; top panel) and semi-flexible refinement (it1; bottom panel) are shown. The Y axis for all sub-graphs corresponds to the ranking of the models according to the HADDOCK scoring function, with models ranked near 0 having the best scores. Every model has been coloured according to its quality, with high-, medium-, acceptable-, near acceptable- and low-quality models having IL-RMSD values of less than 0.5 Å (dark green), between 0.5 and 1 Å (light green), between 1 and 2 Å (light blue), between 2 and 2.5 Å (light grey) and over 2.5 Å (white), respectively. The black line indicates the threshold for it0 models to proceed to refinement.

Figure S4: Comparison of template quality (Tversky similarity computed over Maximum Common Substructure) and performance for the low- and high-quality subsets for the shape-based protocol. The top panel highlights the similarity (orange and blue bars for the high- and low-similarity subsets, respectively) and overlap (green and orange dots for the high- and low-similarity subsets, respectively) between reference and template compounds. The bottom panel compares the performance for the semi-flexible refinement stage of HADDOCK (it1) for the two subsets. Each column corresponds to one target with the Y axis reflecting the ranking of models (ranks close to 0 refer to top-ranked models and those close to 200 to bottom-ranked models) and the colour of each model reflecting its quality (see description of figure S3).

Figure S5: Distributions of model compound RMSD values compared to their respective reference compounds. Distributions shaded in light grey, orange and blue correspond to the compounds generated by RDKit, and the compounds at the end of the refinement stage of the shape-based and pharmacophore-based protocols, respectively.

Figure S6: Heatmap of the correlation between different metrics computed on the template and target compounds used for each protocol and the **it1** results. The lower part of the matrix (below the diagonal) contains correlation information between the metrics of the shape-based protocol and the upper part the correlations for the pharmacophore-based protocol. For example, the last column of the heatmap contains all correlation values between the minimum RMSD per target obtained and all the other metrics for the pharmacophore-based protocol, and the shape-based protocol. The diagonal represents correlation between the shape-based protocol and the pharmacophore protocol.

The binding_site_rmsd is computed as the RMSD between all residues within 5A of the bound compound in the target and the template receptor structures; The overlap is computed with the Exact Overlap metric of the shape toolkit of OpenEye (release 2020.2.0) after superimposing on the backbone atoms of the binding site of the receptors; the geom_centre_dist is the distance between the template compound and the target compound geometrical centre once the receptors are superimposed; the similarity stands for Tanimoto coefficient in the vertical axis, and Tversky similarity in the horizontal axis; the number of rotatable bond, the Labute accessible surface area and the difference in molecular weight were computed with RDKIT; The avg_rmsd, min_rmsd and max_rmsd stand for the average, minimum and maximum IL-RMSD obtained per target at it1. The metrics in bold are predictive metrics which can be calculated without the knowledge of the reference complex.

Figure S7: Evaluation of the success rate of the two protocols (shape-based: panels A & B and pharmacophore-based: panels C & D) as a function of N-ranked models considered based on the HADDOCK score (TopN) for top 1, 5, 10, 50, 100, 200 and 1000 models and as a function of compound similarity (panels A & C) and overlap (panels B & D) and breakdown of the targets in difficulty tiers according to similarity and overlap (panel E). Targets with Tv greater than 0.8, between 0.4 and 0.8, and below 0.4 are classified as "Easy", "Intermediate" and "Difficult", respectively, for the shape-based protocol. Targets with Tc greater than 0.7, between 0.3 and 0.7, and below 0.3 are classified as "Easy", "Intermediate" and "Difficult greater than 0.75, between 0.5 and 0.75, and below 0.5 are classified as "Easy", "Intermediate" and "Difficult", respectively, for both protocols.

Figure S8: Success rate of various commercial docking platforms against our two protocols evaluated as a function of the topranked models, the top4 ranked models and all models generated.