Supporting Information

Efficient dimerization disruption of *Leishmania infantum* trypanothione reductase by triazole-phenyl-thiazoles

Alejandro Revuelto, *# Héctor de Lucio, *# Juan Carlos García Soriano, * Pedro A. Sánchez-

Murcia,§1 Federico Gago,§ Antonio Jiménez-Ruiz,** María-José Camarasa,† and Sonsoles

Velázquez^{+*}

[†] Instituto de Química Médica (IQM-CSIC), E-28006 Madrid, Spain

[‡] Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain

[§] Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain

[#] These two authors contributed equally to this work

[⊥] **Present address**: Asst. Prof. Dr. Pedro A. Sánchez Murcia, Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingstalstraße 6/III, A-8010 Graz, Austria (pedro.murcia@medunigraz.at)

Table of contents

Chemistry Schemes S1-S3 Synthesis of non-commercially available α-bromomethylketones 10m,p-s Synthesis of intermediates 5b, 7a-g, 8a-g, 11f-s and target compounds 12d-s Synthesis of truncated analogues 13 and 14

Biology Methods

Figure S1 and Table S1. Noncompetitive hyperbolic inhibition of <i>Li</i> TryR by 19a	S43
Figures S2-S7. Observed rate constant (k_{obs}) for LiTryR inactivation at 6 different	TS ₂
concentrations	S48
Table S2. Rate constants for LiTryR time-dependent inhibition by 19a at six different T	S ₂
concentrations (Table S2)	S49
Figure S8. Effect of substrate concentration on the apparent inhibition	
constants K_i^{app} and K_i^{*app} upon binding of 19a	S49
Figure S9. Plot of the k_{obs} values as a function of TS ₂ concentration	
at six different 19a concentrations	S50
Figure S10. Curves for LiTryR enzymatic reactions in the absence of inhibitor	S51
Figure S11. L/TryR inhibition by 12b	S52
Table S3. Estimation of the kinetic parameters of LiTryR inactivation by 12b	S53
Figure S12. L/TryR inhibition by 12q	S54
Table S4. Estimation of the kinetic parameters of LiTryR inhibition by 12q	S54
Scheme S4. Reversible single-step mechanism of time-dependent inhibition	
of <i>Li</i> TryR by 12q	S55
Figure S13. Residual activity of <i>Li</i> TryR after incubation with 19a	S55
Scheme S5. Global mechanism for <i>Li</i> TryR inactivation	356

Computational Methods

Figure S16. Calculated contributions of individual LiTryR residues to the overall solvent-	
corrected interaction energyS5	
Figure S17A. Theoretical model of <i>Li</i> TryR in complex with 19a S59-S6	
Figure S17B. 19a-induced disruptions in hydrogen bonds involving the Glu436	
carboxylates OE1 and OE2S59-S0	
Table S5. Residues making up the interfacial cavity present in TryRs from	
trypanosomatids and positionally equivalent residues in hGRS6	
¹ H and ¹³ C NMR spectra, HRMS and HPLC data of target compoundsS61-S11	
ReferencesS11	

Scheme S3. Synthesis of truncated analogues 13 and 14

Synthesis of non-commercially available α-bromomethylketones

General procedure for the synthesis of methylketones by Wittig reaction (9p-s).

A solution of the corresponding arylaldehyde or alkylaldehyde (1 eq) and 1-(triphenylphosphoranylidene)-2-propanone (0.9 eq) in chloroform (40 mL) was heated at 60 °C for 4 h. The reaction mixture was evaporated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc, 90:10) to obtain the corresponding α , β -unsaturated methylketones **9p-s**.

(*E*)-5-Phenylpent-3-en-2-one and (*E*)-5-phenylpent-4-en-2-one (9pa and 9pb). Following the general Wittig procedure, commercial 1-(triphenylphosphoranylidene)-2propanone (2.87 g, 9.02 mmol) and phenylacetaldehyde (1.17 mL, 9.02 mmol) were reacted. Work-up and purification of the residue gave 1.24 g (86%) of a 75:25 regioisomer mixture of **9pa** and **9pb** (determined by ¹H NMR). ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.41 - 7.01 (m, 7H, Ar^{a,b}), 7.00 (dt, *J* = 15.9, 1.5 Hz, 0.3H, PhC<u>H</u>^b=CH), 6.85 (dt, *J* = 15.9, 7.1 Hz, 0.3H, PhCH=C<u>H</u>^b), 6.83 (dt, *J* = 15.9, 6.8 Hz, 1H, C<u>H</u>^a=CHCO), 6.00 (dt, *J* = 15.9, 1.6 Hz, 1H, CH=C<u>H</u>^aCO), 3.46 (dd, *J* = 6.8, 1.6 Hz, 2H, CH₂^a), 3.25 (dd, *J* = 7.1, 1.3 Hz, 0.5H, CH₂^b), 2.16 (s, 3H, CH₃^a), 2.13 (s, 0.7H, CH₃^b).

(*E*)-4-(*quinolin-6-yl*)*but-3-en-2-one* (*9q*). Following the general procedure, 1-(triphenylphosphoranylidene)-2-propanone (563 mg, 1.77 mmol) and quinoline-6carbaldehyde (250 mg, 1.59 mmol) were reacted for 6 h. Purification of the residue by flash column chromatography (hexane/AcOEt, 50:50) gave 1.70 g of an unsolvable mixture of the starting ylide and the desired product **9q**. The mixture was used in the next step without further purification.

(*E*)-4-(2,3-Dihydrobenzofuran-5-yl)but-3-en-2-one (9r). According to the general procedure of the aldol condensation described in the experimental section and similarly to naphthyl and biphenyl methylketones, 2,3-dihydrobenzofuran-5-carbaldehyde (1 g, 6.73 mmol), acetone (4.98 mL, 67.3 mmol) and NaOH 10% ag (27 mL, 67.3 mmol) were

reacted. After working up, crude was purified by flash column chromatography (hexane/AcOEt, 80:20) to provide 811 mg (64%) of a white solid identified as **(9r)**. M.p: 105-106 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.36 (d, *J* = 16.2 Hz, 1H, C<u>H</u>=CHCO), 7.31 (s, 1H, Ar), 7.20 (dd, *J* = 8.2, 1.9 Hz, 1H, Ar), 6.68 (d, *J* = 8.6 Hz, 1H, Ar), 6.47 (d, *J* = 16.2 Hz, 1H, CH=C<u>H</u>CO), 4.51 (t, *J* = 8.7 Hz, 2H, OCH₂), 3.12 (t, *J* = 8.7 Hz, 2H, OCH₂C<u>H₂</u>), 2.24 (s, 3H, CH₃).

(*E*)-4-(*Dibenzo[b,d]furan-2-yl*)*but-3-en-2-one (9s*). Following the general procedure, 1-(triphenylphosphoranylidene)-2-propanone (1.06 g, 3.31 mmol) and dibenzofuran-2carboxaldehyde (500 mg, 2.55 mmol) were reacted to give **9s** (1.09 g, 90%) as a white solid. M.p.: 141-142 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.93 (d, *J* = 1.9 Hz, 1H, Ar), 7.80 (d, *J* = 8.5 Hz, 1H, Ar), 7.57 - 7.32 (m, 5H, Ar, C<u>H</u>=CHCO), 7.25 (td, *J* = 7.5, 2.1 Hz, 1H, Ar), 6.64 (d, *J* = 16.2 Hz, 1H, CH=C<u>H</u>CO), 2.29 (s, 3H, CH₃).

1-bromo-4,4-dimethylpentan-2-one (10m). To a stirred solution of commercially available 4,4-dimethylpentan-2-one (1 g, 8.75 mmol) in MeOH (20 mL) was added dropwise Br₂ (0.45 mL, 8.75 mmol) at 0 °C. Then, the reaction mixture was allowed to warm to room temperature and stirred under reflux for 3 h. After quenching with water (20 mL), the aqueous phase was extracted with Et₂O (3 x 30 mL). The combined organics were dried (Na₂SO₄), filtered and carefully concentrated to give **10m** (1.69 g, >99%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 3.86 (s, 2H, CH₂Br), 2.52 (s, CH₂-tBu), 1.03 (s, 9H, CH₃).

General procedure for the preparation of α-bromoketones through bromination with

NBS (10p-s). To a solution of the corresponding methylketone (1 eq) in CH₃CN or THF, *p*-TsOH (1.3 eq) and NBS (1.3 eq) were successively added at -78 °C or at room temperature and the mixture was stirred for 6 h/overnight. After quenching with H₂O (30 mL) the reaction mixture was carefully concentrated under reduced pressure without heating. The aqueous crude was extracted with EtOAc (3 x 30 mL), dried (Na₂SO₄),

filtered and evaporated to dryness. The residue was purified by flash column chromatography or by CCTLC to give the desired α -bromoketones **10b**,**c** and **10p-s**.

(E)-1-bromo-5-phenylpent-3-en-2-one (10p). Following the general procedure,

p-TsOH (890 mg, 4.68 mmol), NBS (833 mg, 4.68 mmol) and the methylketone mixture **(9pa** and **9pb)** (500 mg, 3.12 mmol) were reacted. After the work-up and purification **10p** (130 mg, 17%) was obtained as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.37 - 7.31 (m, 2H, Ar), 7.29 - 7.23 (m, 1H, Ar), 7.20 - 7.16 (m, 2H, Ar), 7.12 (dt, J = 15.7, 6.8 Hz, 1H, C<u>H</u>=CHCO), 6.28 (dt, J = 15.8, 1.6 Hz, 1H, CH=C<u>H</u>CO), 3.98 (s, 2H, CH₂Br), 3.59 (dd, J = 7.0, 1.7 Hz, 2H, PhCH₂); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 191.1 (CO), 148.7 (CH₂CH=CH), 137.3 (C_{Ar}), 129.0 (CH_{Ar}), 127.4 (CH_{Ar}), 127.1 (CH₂CH=<u>C</u>H), 39.0 (Ar-CH₂), 32.7 (CH₂Br).

(*E*)-1-bromo-4-(quinolin-6-yl)but-3-en-2-one (10q). Following the general bromination procedure, **9q** (1.59 mmol), *p*-TsOH (454 mg, 2.39 mmol) and NBS (425 mg, 2.39 mmol) were reacted. To give after the work-up compound **10q** that was not isolated due to stability problems and it was used directly in the next step without further purification.

(*E*)-1-bromo-4-(2,3-dihydrobenzofuran-5-yl)but-3-en-2-one (10r). Following the general procedure, *p*-TsOH (380 mg, 2.00 mmol) and NBS (355 mg, 2.00 mmol) were successively added to a solution of methylketone **9r** (250 mg, 1.33 mmol) and allowed to react for 6 h. Work-up and purification gave **10r** (107 mg, 30%) as a white solid. M.p.: Decompose without melting; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.65 (d, *J* = 15.9 Hz, 1H, C<u>H</u>=CHCO), 7.46 (d, *J* = 2.0 Hz, 1H, Ar), 7.36 (dd, *J* = 8.3, 1.9 Hz, 1H, Ar), 6.80 (d, *J* = 8.2 Hz, 1H, Ar), 6.64 (d, *J* = 15.9 Hz, 1H, CH=C<u>H</u>CO), 4.64 (t, *J* = 8.7 Hz, 2H, OCH₂), 4.05 (s, 2H, CH₂Br), 3.24 (t, J = 8.7 Hz, 2H, OCH₂C<u>H₂</u>); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 191.1 (CO), 163.2 (OC_{Ar}), 145.8 (Ar<u>C</u>H=CH), 130.7 (CH_{Ar}), 128.5 (C_{Ar}), 126.9 (C_{Ar}), 125.2

(ArCH=<u>C</u>H), 119.3 (CH_{Ar}), 110.0 (CH_{Ar}), 72.2 (OCH₂), 33.3 (CH₂Br), 29.3 (OCH₂<u>C</u>H₂); MS (ESI, positive mode) m/z: 289.0 [M+Na]⁺, 267.0 [M+H]⁺, both with a Br isotopic pattern.

(*E*)-1-bromo-4-(dibenzo[b,d]furan-2-yl)but-3-en-2-one (10s). Following the general procedure, methylketone **9s** (200 mg, 0.85 mmol), *p*-TsOH (161 mg, 0.85 mmol) and NBS (151 mg, 0.85 mmol) were reacted. Work-up and purification of the residue by CCTLC on the Chromatotron (hexane/EtOAc, 93:7) gave **10s** (75 mg, 28%) as a white solid. M.p.: 143-145 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.17 (d, *J* = 1.8 Hz, 1H, Ar), 7.98 (dd, *J* = 7.7, 1.4 Hz, 1H, Ar), 7.87 (d, *J* = 16.0 Hz, 1H, C<u>H</u>=CHCO), 7.70 (dd, *J* = 8.5, 1.8 Hz, 1H, Ar), 7.62 - 7.57 (m, 2H, Ar), 7.51 (td, *J* = 8.0, 1.3 Hz, 1H, Ar), 7.39 (td, *J* = 7.6, 1.0 Hz, 1H, Ar), 7.02 (d, *J* = 16.0 Hz, 1H, CH=C<u>H</u>CO), 4.12 (s, 2H, CH₂Br); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 191.0 (CO), 158.0 (OC_{Ar}), 156.9 (OC_{Ar}), 145.7 (Ar<u>C</u>H=CH), 143.3 (CH_{Ar}), 129.1 (C_{Ar}), 128.1 (CH_{Ar}), 128.0 (ArCH=<u>C</u>H), 125.1 (C_{Ar}), 123.6 (C_{Ar}), 123.4 (CH_{Ar}), 121.4 (CH_{Ar}), 121.0 (CH_{Ar}), 112.5 (CH_{Ar}), 112.1 (CH_{Ar}), 33.3 (CH₂Br); MS (ESI, positive mode) m/z: 329.0 [M+Na]* with a Br isotopic pattern.

Synthesis of intermediates and target compounds 12d-s

4-Azido-2-methoxybenzonitrile (5b). A solution of **4b**¹ (500 mg, 2.36 mmol) and NaN₃ (2.30 g, 35.4 mmol) in anhydrous DMSO (30 mL) in the presence of 4 Å molecular sieves, and under argon atmosphere, was heated at 100 °C for 72 h. After a similar work-up as described for **5b**, the residue was purified by flash column chromatography (CH₂Cl₂/MeOH, 100:2) to give **5b** (304 mg, 74%) as a white solid. M.p.: 118-120 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.53 (d, *J* = 8.3 Hz, 1H, Ar), 6.69 (dd, *J* = 8.3, 2.0 Hz, 1H, Ar), 6.54 (d, *J* = 2.0 Hz, 1H, Ar), 3.92 (s, 3H, OCH₃); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 162.7 (OC_{Ar}), 146.7 (C_{Ar}), 135.1 (CH_{Ar}), 116.2 (CN), 111.4 (CH_{Ar}), 102.6 (CH_{Ar}), 98.3 (C_{Ar}), 56.4 (OCH₃); MS (ESI, positive mode) m/z: 197.0 [M+Na]⁺, 175.0 [M+H]⁺. NaN₃ may be toxic and explosive. Thus, for safety precautions a polycarbonate safety screen in a properly functioning fume hood was always used to perform this reaction.

General procedure for the synthesis of 1,2,3-triazoles by copper-catalyzed 1,3dipolar azide-alkyne cycloaddition (CuAAC) (7a-g). A solution of the azide intermediates 5a,b (1 eq) in EtOH was treated with the corresponding terminal alkynes 6a-g (1.2 eq) and CuSO₄·5H₂O (0.1 eq). Sodium ascorbate (0.40 eq) and H₂O were subsequently added and the reaction mixture was stirred at room temperature overnight in the darkness. Then, it was evaporated to dryness and the residue was dissolved in CH₂Cl₂ (50 mL) and washed with H₂O (3 x 50 mL) dried (Na₂SO₄) filtered and evaporated under reduced pressure. The residue was purified by flash column chromatography (eluents are specified in each case).

Tert-butyl-(4-(1-(4-cyano-3-(2-(2-oxoimidazolidin-1-yl)ethoxy)phenyl)-1H-1,2,3-

triazol-4-yl)butyl)carbamate (7a). Following the general procedure, azide **5a** (250 mg, 0.92 mmol) reacted with commercially available *tert*-butyl-5-hexynylcarbamate (**6a**, 248 mg, 1.19 mmol). After the work-up the residue was purified by flash column chromatography (CH₂Cl₂/MeOH, 100:2) to give **7a** (242 mg, 56%) as a colorless oil. ¹H

NMR (CDCl₃, 300 MHz) δ (ppm): 7.93 (s, 1H, Ar), 7.68 (dd, *J* = 8.4, 2.4 Hz, 1H, Ar), 7.57 (s, 1H, Ar), 7.39 (d, *J* = 7.7 Hz, 1H, Ar), 4.78 (br s, 1H, NHCON), 4.69 (br s, 1H, NHBoc), 4.35 - 4.31 (m, 2H, OCH₂), 3.75 (t, *J* = 7.1 Hz, 2H, CH₂CH₂NHCON), 3.67 - 3.62 (m, 2H, OCH₂CH₂), 3.45 (t, *J* = 7.4 Hz, 2H, CH₂CH₂NHCON), 3.15 (q, *J* = 6.0 Hz, 2H, CH₂NHBoc), 2.82 (t, *J* = 6.6 Hz, 2H, TrizCH₂), 1.76 (quin, *J* = 7.7 Hz, 2H, TrizCH₂CH₂), 1.57 (quin, *J* = 7.5 Hz, 2H, CH₂CH₂NHBoc), 1.42 (s, 9H, CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 162.8 (NHCON), 161.5 (OC_{Ar}), 156.2 (NHCOO), 149.3 (C_{Ar}), 141.6 (C_{Ar}), 135.1 (CH_{Ar}), 119.1 (CH_{Ar}), 115.7 (CN), 112.1 (CH_{Ar}), 104.1 (CH_{Ar}), 101.6 (C_{Ar}), 79.3 (O<u>C</u>(CH₃)₃), 69.2 (OCH₂), 47.4 (<u>C</u>H₂CH₂NHCON), 43.0 (OCH₂<u>C</u>H₂), 40.3 (CH₂NHBoc), 38.6 (CH₂<u>C</u>H₂NHCON), 29.5 (<u>C</u>H₂CH₂NHBoc), 28.5 (CH₃), 26.3 (TrizCH₂<u>C</u>H₂), 25.2 (Triz<u>C</u>H₂); MS (ESI, positive mode) m/z: 492.3 [M+Na]⁺, 470.3 [M+H]⁺.

Benzyl-(4-(1-(4-cyano-3-methoxyphenyl)-1H-1,2,3-triazol-4-yl)butyl)carbamate (7*c).* Following the general procedure azide **5b** (590 mg, 2.71 mmol) was reacted with benzyl 5-hexynylcarbamate (858 mg, 3.52 mmol), CuSO₄·5H₂O (68 mg, 0.27 mmol) and sodium ascorbate (215 mg, 1.08 mmol). After the work-up the residue was purified by flash column chromatography (First: hexane/EtOAc, 80:20; Second: CH₂Cl₂/MeOH, 100:2) to give **7c** (963 mg, 88%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.79 (s, 1H, Ar), 7.60 (d, *J* = 8.3 Hz, 1H, Ar), 7.49 (d, *J* = 1.9 Hz, 1H, Ar), 7.31 - 7.14 (m, 6H, Ar), 5.02 (s, 2H, NHCOOC<u>H₂</u>), 4.90 (t, *J* = 6.2 Hz, 1H, NHCbz), 3.95 (s, 3H, OCH₃), 3.17 (q, *J* = 6.7 Hz, 2H, C<u>H₂NHCbz</u>), 2.76 (t, *J* = 7.5 Hz, 2H, TrizCH₂), 1.71 (quin, *J* = 7.5 Hz, 2H, TrizCH₂CH₂NHCbz), 1.55 (quin, *J* = 7.2 Hz, 2H, C<u>H₂CH₂NHCbz</u>); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 162.5 (OC_{Ar}), 156.6 (NHCOO), 149.2 (C_{Ar}), 141.5 (C_{Ar}), 136.6 (C_{Ar}), 135.1 (CH_{Ar}), 128.6 (CH_{Ar}), 128.1 (CH_{Ar}), 119.1 (CH_{Ar}), 115.6 (CN), 111.5 (CH_{Ar}), 103.6 (CH_{Ar}), 101.6 (C_{Ar}), 66.7 (NHCOO<u>C</u>H₂), 56.7 (OCH₃), 40.7 (CH₂NHCbz), 29.5 (<u>C</u>H₂CH₂NHCbz), 26.3 (TrizCH₂<u>C</u>H₂), 25.4 (Triz<u>C</u>H₂); HRMS (ES, positive mode) m/z: calculated for C₂₂H₂₃N₅O₃ 405.1801; Found 405.1794 (1.8 ppm). Benzyl (3-(1-(4-cyano-3-((1-(2-oxoimidazolidin-1-yl)ethoxy)phenyl)-1H-1,2,3-triazol-4yl)propyl)carbamate (7d). According to the general procedure, azide 5a (600 mg, 2.20 mmol), benzyl 4-pentynylcarbamate (622 mg, 2.86 mmol), CuSO₄·5H₂O (55 mg, 0.22 mmol) and sodium ascorbate (175 mg, 0.88 mmol) were reacted. After the work-up the residue was purified by flash column chromatography (CH₂Cl₂/MeOH, 100:2) to give 7d (779 mg, 72%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.01 (s, 1H, Ar), 7.61 (d, J = 8.3 Hz, 1H, Ar), 7.55 (s, 1H, Ar), 7.38 (d, J = 8.4 Hz, 1H, Ar), 7.32 - 7.18 (m, 5H, Ar), 5.48 (br s, 1H, NHCbz), 5.02 (s, 2H, NHCOOCH₂), 4.70 (br s, 1H, NHCON), 4.26 (t, J = 5.7 Hz, 2H, OCH₂), 3.63 (t, J = 8.0 Hz, 2H, CH₂CH₂NHCON), 3.55 (t, J = 5.7 Hz, 2H, OCH₂CH₂), 3.25 (t, J = 8.0 Hz, 2H, CH₂CH₂NHCON), 3.16 (q, J = 6.6 Hz, 2H, C<u>H</u>₂NHCbz), 2.76 (t, *J* = 7.3 Hz, 2H, TrizCH₂), 1.85 - 1.79 (m, 2H, TrizCH₂C<u>H₂</u>); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 162.9 (NHCON), 161.4 (OC_{Ar}), 156.7 (NHCOO), 148.4 (C_{Ar}), 141.5 (C_{Ar}), 136.5 (CH_{Ar}), 135.1 (CH_{Ar}), 128.7 (CH_{Ar}), 128.3 (CH_{Ar}), 119.7 (CH_{Ar}), 115.7 (CN), 112.0 (CH_{Ar}), 104.1 (CH_{Ar}), 101.4 (C_{Ar}), 68.6 (OCH₂), 66.9 (NHCOO<u>C</u>H₂), 47.2 (CH₂CH₂NHCON), 42.6 (OCH₂CH₂), 39.8 (CH₂NHCbz), 38.5 (CH₂CH₂NHCON), 29.0 (Triz<u>CH</u>₂CH₂), 22.3 (Triz<u>CH</u>₂); HRMS (ES, positive mode) m/z: calculated for C₂₅H₂₇N₇O₄ 489.2124; Found 489.2126 (0.21 ppm).

Methyl 4-(1-(4-cyano-3-(2-(2-oxoimidazolidin-1-yl)ethoxy)phenyl)-1H-1,2,3-triazol-4yl)butanoate (7e). Following the general procedure, azide **5a** (472 mg, 1.73 mmol) was reacted with methyl 4-butynylcarboxylate (293 mg, 2.25 mmol), CuSO₄·5H₂O (43 mg, 0.18 mmol) and sodium ascorbate (137 mg, 0.69 mmol. Work-up and purification of the residue by flash column chromatography (CH₂Cl₂/MeOH, 100:2) gave **7e** (451 mg, 65%) as a white solid. M.p.: 122.4 - 123.6 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.90 (s, 1H, Ar), 7.67 (d, *J* = 8.4 Hz, 1H, Ar), 7.54 (d, *J* = 2.0 Hz, 1H, Ar), 7.36 (dd, *J* = 8.4, 2.9 Hz, 1H, Ar), 4.98 (br s, 1H, NHCON), 4.32 (t, *J* = 5.1 Hz, 2H, OCH₂), 3.75 (dd, *J* = 9.0, 6.8 Hz, 2H, CH₂CH₂NHCON), 3.44 (dd, *J* = 9.0, 6.9 Hz, 2H, CH₂CH₂NHCON), 2.83 (t, *J* = 7.5 Hz, 2H, CH₂COOMe), 2.41 (t, *J* = 7.3 Hz, 2H, TrizCH₂), 2.05 (quint, *J* = 7.5 Hz, 2H, TrizCH₂CH₂); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 173.7 (COO), 162.8 (NHCON), 161.5 (OC_{Ar}), 148.7 (C_{Ar}), 141.5 (C_{Ar}), 135.0 (CH_{Ar}), 119.2 (CH_{Ar}), 115.6 (CN), 112.0 (CH_{Ar}), 104.1 (CH_{Ar}), 101.6 (C_{Ar}), 69.3 (OCH₂), 51.7 (Me), 47.4 (<u>C</u>H₂CH₂NHCON), 43.0 (OCH₂<u>C</u>H₂), 38.6 (CH₂<u>C</u>H₂NHCON), 33.3 (CH₂COOMe), 24.9 (Triz<u>C</u>H₂CH₂), 24.4 (Triz<u>C</u>H₂); HRMS (ES, positive mode) m/z: calculated for C₁₉H₂₂N₆O₄ 398.1702; Found 398.1702 (-0.16 ppm).

4-(4-Butyl-1H-1,2,3-triazol-1-yl)-2-(2-(2-oxoimidazolidin-1-yl)ethoxy)benzonitrile (**7f**). According to the general procedure, azide **5a** (269 mg, 0.99 mmol), 1-hexyne (109 mg, 1.28 mmol), CuSO₄-5H₂O (25 mg, 0.10 mmol) and sodium ascorbate (78 mg, 0.40 mmol) were reacted. After work-up and purification (CH₂Cl₂/MeOH, 100:1), **7f** (277 mg, 79%) was obtained as a white solid. M.p.: 187-190 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.80 (s, 1H, Ar), 7.69 (d, *J* = 8.3 Hz, 1H, Ar), 7.53 (d, *J* = 1.9 Hz, 1H, Ar), 7.36 (dd, *J* = 8.4, 1.9 Hz, 1H, Ar), 4.53 (br s, 1H, NHCON), 4.34 (t, *J* = 5.0 Hz, 2H, OCH₂), 3.79 (t, *J* = 7.6 Hz, 2H, CH₂CH₂NHCON), 3.68 (t, *J* = 4.9 Hz, 2H, OCH₂CH₂), 3.46 (t, *J* = 7.7 Hz, 2H, CH₂CH₂NHCON), 2.80 (t, *J* = 7.7 Hz, 2H, TrizCH₂), 1.73 (quin, *J* = 7.5 Hz, 2H, TrizCH₂CH₂), 1.52 (sex, *J* = 7.4 Hz, 2H, CH₂CH₃), 0.96 (t, *J* = 7.3 Hz, 3H, CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 162.7 (NHCON), 161.6 (OC_{Ar}), 150.1 (C_{Ar}), 141.6 (C_{Ar}), 135.1 (CH_{Ar}), 118.7 (CH_{Ar}), 115.7 (CN), 112.0 (CH_{Ar}), 104.1 (CH_{Ar}), 101.6 (C_{Ar}), 69.5 (OCH₂), 47.5 (CH₂CH₂NHCON), 43.1 (OCH₂CH₂), 38.6 (CH₂CH₂NHCON), 31.4 (TrizCH₂CH₂), 25.4 (TrizCH₂), 22.4 (CH₂CH₃), 13.9 (CH₃); MS (ESI, positive mode) m/z: 377.2 [M+Na]⁺, 355.2 [M+H]⁺.

4-(4-(4-Hydroxybutyl)-1H-1,2,3-triazol-1-yl)-2-(2-(2-oxoimidazolidin-1-

yl)ethoxy)benzonitrile (7g). Following the general CuAAC procedure, azide **5a** (250 mg, 0.92 mmol), commercially available 5-hexyn-1-ol (122 mg, 1.19 mmol), CuSO₄·5H₂O (23 mg, 0.09 mmol) in EtOH (20 mL) and sodium ascorbate (73 mg, 0.40 mmol) were reacted. Purification of the final residue by flash column chromatography (CH₂Cl₂/MeOH, 100:7) provided **7g** (204 mg, 55%) as a white solid. M.p.: 138-140 °C; ¹H NMR (CD₃OD, 400

MHz) δ (ppm): 8.48 (s, 1H, Ar), 7.81 (d, J = 8.4 Hz, 1H, Ar), 7.70 (d, J = 1.9 Hz, 1H, Ar), 7.61 (dd, J = 8.4, 1.9 Hz, 1H, Ar), 4.39 (t, J = 5.2 Hz, 2H, OCH₂), 3.76 (dd, J = 9.0, 7.2 Hz, 2H, CH₂CH₂NHCON), 3.64 (t, J = 5.1 Hz, 2H, OCH₂CH₂), 3.61 (t, J = 6.4 Hz, 2H, CH₂OH), 3.43 (dd, J = 9.0, 7.2 Hz, 2H, CH₂CH₂NHCON), 2.82 (t, J = 7.6 Hz, 2H, TrizCH₂), 1.82 (quin, J = 6.5 Hz, 2H, TrizCH₂CH₂), 1.63 (quin, J = 6.5 Hz, 2H, CH₂CH₂OH); ¹³C NMR (CD₃OD, 75 MHz) δ (ppm): 165.1 (NHCON), 162.9 (OC_{Ar}), 150.5 (C_{Ar}), 142.9 (C_{Ar}), 136.3 (CH_{Ar}), 121.5 (CH_{Ar}), 116.6 (CN), 113.5 (CH_{Ar}), 105.3 (CH_{Ar}), 102.5 (C_{Ar}), 70.1 (OCH₂), 62.5 (CH₂OH), 50.5 (CH₂CH₂NHCON), 43.9 (OCH₂CH₂), 39.4 (CH₂CH₂NHCON), 33.0 (CH₂CH₂OH), 26.7 (TrizCH₂CH₂), 26.1 (TrizCH₂); MS (ESI, positive mode) m/z: 763.5 [2M+Na]⁺, 393.2 [M+Na]⁺, 371.2 [M+H]⁺.

General procedure for the synthesis of thioamides (8a-g). A solution of the corresponding benzonitriles 7a-g (1 eq) in DMF was treated with an excess of 20% aq. $(NH_4)_2S$ (70 eq). A change of yellow to dark blue color was instantly observed. The reaction mixture was heated at 80 °C for 4 h and then allowed to cool to room temperature. CH_2Cl_2 (50 mL) was added and the resulting solution was successively washed with HCl 0.1 N (2 x 50 mL), H₂O (1 x 50 mL) and brine (1 x 50 mL). The organic layers were dried (Na₂SO₄), filtered and evaporated to dryness. The crude was purified by flash column chromatography (eluents are specified for each compound).

Tert-butyl-(4-(1-(4-carbamothioyl-3-(2-(2-oxoimidazolidin-1-yl)ethoxy)phenyl)-1H-

1,2,3-triazol-4-yl)butyl)carbamate (8a). According to the general procedure, a solution of benzonitrile **7a** in DMF (10 mL) and 20% aq solution of (NH₄)₂S (1 mL, 13.8 mmol) were reacted. Work-up and purification of the crude by flash column chromatography (CH₂Cl₂/MeOH, 100:5) gave 64 mg (67%) of **8a** as a yellow oil. IR (KBr), v (cm⁻¹): 3351 (NH st), 1682 (C=O st); ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm): 10.10 (br s, 1H, SCNH₂), 9.43 (br s, 1H, SCNH₂), 8.68 (s, 1H, Ar), 7.88 (dd, J = 8.4, 1.1 Hz, 1H, Ar), 7.56 (d, J = 1.6 Hz, 1H, Ar), 7.51 (dd, J = 8.4, 1.7 Hz, 1H, Ar), 6.82 (br s, 1H, NHCON), 6.38 (br s, 1H,

NHBoc), 4.25 (t, J = 5.2 Hz, 2H, OCH₂), 3.55 - 3.45 (m, 4H, CH₂CH₂NHCON, OCH₂CH₂), 3.22 (t, J = 7.8 Hz, 2H, CH₂CH₂NHCON), 2.98 - 2.93 (m, 2H, CH₂NHBoc), 2.71 (t, J = 7.5 Hz, 2H, TrizCH₂), 1.70 - 1.60 (m, 2H, TrizCH₂CH₂), 1.51 - 1.41 (m, 2H, CH₂CH₂NHBoc), 1.36 (s, 9H, CH₃); ¹³C NMR (DMSO-d₆, 75 MHz) δ (ppm): 197.5 (SCNH₂), 162.2 (NHCON), 155.6 (NHCOO), 154.3 (OC_{Ar}), 148.1 (C_{Ar}), 138.5 (C_{Ar}), 132.5 (CH_{Ar}), 129.8 (C_{Ar}), 120.3 (CH_{Ar}), 111.1 (CH_{Ar}), 103.9 (CH_{Ar}), 77.3 (OC(CH₃)₃), 67.7 (OCH₂), 45.6 (CH₂CH₂NHCON), 42.6 (OCH₂CH₂), 37.6 (CH₂CH₂NHCON), 29.0 (CH₂CH₂NHBoc), 28.3 (CH₃), 26.0 (TrizCH₂CH₂), 24.7 (TrizCH₂); MS (ESI, positive mode) m/z: 526.3 [M+Na]⁺, 504.3 [M+H]⁺.

Benzyl-(4-(1-(4-carbamothioyl-3-methoxyphenyl)-1H-1,2,3-triazol-4-

yl)butyl)carbamate (8c). The general procedure was followed with benzonitrile **7c** (1.07 g, 2.64 mmol). After the work-up, **8c** (1.15 g, >99%) was obtained as a yellow oil that was used in the next step without further purification. ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm): 10.08 (br s, 1H, SCNH₂), 9.42 (br s, 1H, SCNH₂), 8.67 (s, 1H, Ar), 7.87 (d, *J* = 8.4 Hz, 1H, Ar), 7.54 (d, *J* = 2.0 Hz, 1H, Ar), 7.49 (dd, 1H, *J* = 8.4, 2.0 Hz, Ar), 7.40 - 7.17 (m, 6H, Ar, NHCbz), 5.01 (s, 2H, NHCOOCH₂), 3.93 (s, 3H, OCH₃), 3.06 (q, *J* = 6.6 Hz, 2H, CH₂NHCbz), 2.72 (t, *J* = 7.5 Hz, 2H, TrizCH₂), 1.68 (quin, *J* = 7.5 Hz, 2H, TrizCH₂CH₂), 1.50 (quin, *J* = 7.1 Hz, 2H, CH₂CH₂NHCbz); ¹³C NMR (DMSO-d₆, 75 MHz) δ (ppm): 197.5 (SCNH₂), 156.1 (OC_{Ar}), 155.2 (NHCOO), 148.1 (C_{Ar}), 138.5 (C_{Ar}), 137.3 (C_{Ar}), 132.4 (CH_{Ar}), 129.8 (CH_{Ar}), 128.3 (CH_{Ar}), 127.7 (CH_{Ar}), 127.6 (CH_{Ar}), 120.4 (CH_{Ar}), 110.9 (CH_{Ar}), 103.2 (CH_{Ar}), 65.1 (NHCOOCH₂); 56.3 (OCH₃), 40.0 (CH₂NHCbz), 28.9 (CH₂CH₂NHCbz), 26.0 (TrizCH₂CH₂), 24.7 (TrizCH₂); HRMS (ES, positive mode) m/z: calculated for C₂₂H₂₅N₅O₃S 439.1678; Found 439.1674 (-0.96 ppm).

Benzyl-(3-(1-(4-carbamothioyl-3-((1-(2-oxoimidazolidin-1-yl)ethoxy)phenyl)-1H-1,2,3triazol-4-yl)propyl)carbamate (8d). The general procedure was followed with 7d (779 mg, 1.59 mmol) and 20% aq (NH₄)₂S (7.6 mL, 0.11 mol). Purification of the final residue by flash column chromatography (CH₂Cl₂/MeOH, 100:5) gave 8d (655 mg, 79%) as a

yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 9.69 (br s, 1H, SCNH₂), 9.49 (br s, 1H, SCNH₂), 8.69 (d, *J* = 8.7 Hz, 1H, Ar), 7.84 (s, 1H, Ar), 7.42 (s, 1H, Ar), 7.38 - 7.13 (m, 5H, Ar), 7.09 (dd, *J* = 8.7, 2.0 Hz, 1H, Ar), 6.03 (br s, 1H, NHCON), 5.18 (t, *J* = 6.2 Hz, 1H, NHCbz), 5.02 (s, 2H, NHCOOCH₂), 4.13 (t, *J* = 4.3 Hz, 2H, OCH₂), 3.63 (t, *J* = 4.5 Hz, 2H, OCH₂CH₂), 3.49 (dd, *J* = 9.4, 6.4 Hz, 2H, CH₂CH₂NHCON), 3.38 (dd, *J* = 9.4, 6.5 Hz, 2H, CH₂CH₂NHCON), 3.19 (q, *J* = 6.7 Hz, 2H, CH₂NHCbz), 2.74 (t, *J* = 7.4 Hz, 2H, TrizCH₂), 1.93 - 1.80 (m, 2H, TrizCH₂CH₂); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 196.9 (SCNH₂), 137.0 (CH_{Ar}), 128.7 (CH_{Ar}), 128.2 (CH_{Ar}), 125.6 (C_{Ar}), 119.4 (CH_{Ar}), 111.6 (CH_{Ar}), 104.3 (CH_{Ar}), 66.9 (OCH₂), 66.8 (NHCOOCH₂), 45.6 (CH₂CH₂NHCON), 43.3 (OCH₂CH₂), 40.5 (CH₂NHCbz), 38.4 (CH₂CH₂NHCON), 29.5 (CH₂CH₂NHCbz), 22.8 (TrizCH₂); HRMS (ES, positive mode) m/z: calculated for C₂₅H₂₉NrO4S 523.2002; Found 523.2007 (0.96 ppm).

Methyl-4-(1-(4-carbamothioyl-3-(2-(2-oxoimidazolidin-1-yl)ethoxy)phenyl)-1H-1,2,3-

triazol-4-yl)butanoate (8e). Following the general procedure benzonitrile **7e** (416 mg, 1.04 mmol) and 20% aq (NH₄)₂S (4.44 mL, 65.3 mmol) were reacted, to give, after work-up, **8e** (434 mg, quantitative) as a yellow solid. M.p.: 156.5 - 159.5 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 9.55 (br s, 1H, SCNH₂), 9.46 (br s, 1H, SCNH₂), 8.83 (d, *J* = 8.7 Hz, 1H, Ar), 7.84 (s, 1H, Ar), 7.58 (d, *J* = 2.1 Hz, 1H, Ar), 7.18 (dd, *J* = 8.7, 2.0 Hz, 1H, Ar), 5.76 (br s, 1H, NHCON), 4.27 (t, *J* = 4.5 Hz, 2H, OCH₂), 3.75 (t, *J* = 4.5 Hz, 2H, OCH₂CH₂), 3.58 (dd, *J* = 8.8, 5.8 Hz, 2H, CH₂CH₂NHCON), 3.51 (dd, *J* = 9.2, 6.1 Hz, 2H, CH₂CH₂NHCON), 2.85 (t, *J* = 7.6 Hz, 2H, CH₂COOMe), 2.43 (t, *J* = 7.4 Hz, 2H, TrizCH₂), 2.08 (quint, *J* = 7.5 Hz, 2H, TrizCH₂CH₂); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 196.1 (SCNH₂) 173.8 (COO), 163.5 (NHCON), 156.4 (OC_{Ar}), 148.5 (C_{Ar}), 140.2 (C_{Ar}), 138.5 (C_{Ar}), 125.1 (CH_{Ar}), 119.2 (CH_{Ar}), 111.2 (CH_{Ar}), 103.9 (CH_{Ar}), 66.8 (OCH₂), 51.8 (Me), 45.4 (CH₂CH₂NHCON), 4.3.3 (OCH₂CH₂), 38.3 (CH₂CH₂NHCON), 33.4 (CH₂COOMe), 25.0 (TrizCH₂CH₂); HRMS (ES, positive mode) m/z: calculated for C₁₉H₂₄N₆O₄S 432.1580; Found 432.1559 (-4.82 ppm).

4-(4-Butyl-1H-1,2,3-triazol-1-yl)-2-(2-(2-coxoimidazolidin-1-yl)ethoxy)benzothioamide (*8f*). According to the general thionation procedure, benzonitrile **7f** (550 mg, 1.55 mmol) and 20% aq (NH₄)₂S (7.4 mL, 109 mmol) were reacted. Work-up and purification by flash column chromatography (CH₂Cl₂/MeOH, 100:2) gave **8f** (505 mg, 84%) as a yellow solid. M.p.: 145-148 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 9.74 (br s, 1H, SCNH₂), 9.59 (br s, 1H, SCNH₂), 8.81 (d, *J* = 8.7 Hz, 1H, Ar), 7.79 (s, 1H, Ar), 7.57 (d, *J* = 2.0 Hz, 1H, Ar), 7.16 (dd, *J* = 8.7, 2.0 Hz, 1H, Ar), 6.05 (br s, 1H, NHCON), 4.25 (t, *J* = 4.4 Hz, 2H, OCH₂), 3.75 (t, *J* = 4.5 Hz, 2H, OCH₂CH₂), 3.58 (dd, *J* = 9.8 , 6.7 Hz, 2H, CH₂CH₂NHCON), 3.50 (dd, *J* = 9.0, 6.0 Hz, 2H, CH₂CH₂NHCON), 2.79 (t, *J* = 7.7 Hz, 2H, TrizCH₂), 1.71 (quin, *J* = 7.7 Hz, 2H, TrizCH₂CH₂), 1.42 (sex, *J* = 7.4 Hz, 2H, CH₂CH₃), 0.95 (t, *J* = 7.4 Hz, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 195.9 (SCNH₂), 163.6 (NHCON), 156.4 (OC_{Ar}), 149.8 (C_{Ar}), 140.3 (C_{Ar}), 138.4 (CH_{Ar}), 124.9 (C_{Ar}), 118.8 (CH_{Ar}), 111.0 (CH_{Ar}), 103.8 (CH_{Ar}), 66.8 (OCH₂), 45.4 (<u>C</u>H₂CH₂NHCON), 43.3 (OCH₂CH₂), 38.3 (CH₂CH₂NHCON), 31.5 (TrizCH₂CH₂), 25.4 (Triz<u>C</u>H₂), 22.4 (CH₂CH₃), 13.9 (CH₃); MS (ESI, positive mode) m/z: 389.2 [M+H]*.

4-(4-(4-Hydroxybutyl)-1H-1,2,3-triazol-1-yl)-2-(2-(2-oxoimidazolidin-1-yl)ethoxy)

benzothioamide (8g). According to the general procedure, **7g** (375 mg, 1.01 mmol) and 20% aq (NH₄)₂S (4.8 mL, 70.9 mmol) were reacted. After the work-up **8g (**408 mg, >99%) was obtained as a yellow solid, which was used in the next step without further purification. M.p.: Decompose without melting; ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 8.47 (s, 1H, Ar), 8.17 (d, *J* = 8.5 Hz, 1H, Ar), 7.60 (d, *J* = 2.0 Hz, 1H, Ar), 7.49 (dd, *J* = 8.5, 2.0 Hz, 1H, Ar), 4.34 (t, *J* = 5.0 Hz, 2H, OCH₂), 3.70 - 3.58 (m, 6H, CH₂OH, OCH₂CH₂, CH₂CH₂NHCON), 3.41 (dd, *J* = 9.3, 6.9 Hz, 2H, CH₂CH₂NHCON), 2.86 (t, *J* = 7.6 Hz, 2H, TrizCH₂), 1.87 - 1.77 (m, 2H, TrizCH₂CH₂), 1.68 - 1.59 (m, 2H, CH₂CH₂OH); ¹³C NMR (CD₃OD, 75 MHz) δ (ppm): 200.5 (SCNH₂), 165.6 (NHCON), 156.9 (OCA_r), 150.6 (CA_r), 141.1 (CA_r), 135.5 (CH_{Ar}), 130.9 (CA_r), 121.9 (CH_{Ar}), 113.2 (CH_{Ar}), 105.9 (CH_{Ar}), 69.2

(OCH₂), 63.0 (CH₂OH), 47.6 (<u>C</u>H₂CH₂NHCON), 44.4 (OCH₂<u>C</u>H₂), 39.7 (CH₂<u>C</u>H₂NHCON), 33.4 (<u>C</u>H₂CH₂OH), 27.2 (TrizCH₂<u>C</u>H₂), 26.5 (Triz<u>C</u>H₂); MS (ESI, positive mode) m/z: 831.3 [2M+Na]⁺, 427.0 [M+Na]⁺, 405.2 [M+H]⁺.

General procedure for the synthesis of thiazoles by Hantzsch cyclization (11f-s and 12d-f). A solution of the thioamides 8 (1 eq) in ⁱPrOH (15 mL) was treated with the appropriated α -bromomethylketone 10c, 10m,f-s (1 eq). The reaction mixture was stirred at 70 °C for 3 - 6 h in a pressure tube and then, it was allowed to cool to room temperature and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography or by CCTLC on the Chromatotron (eluents are specified in each case).

1-(2-(5-(4-butyl-1H-1,2,3-triazol-1-yl)-2-(4-(2-([1,1'-biphenyl]-4-yl)vinyl)thiazol-2-

yl)phenoxy)ethyl)imidazolidin-2-one (11f). Following the general Hantzsch procedure, the thioamide **8f** (140 mg, 0.36 mmol) and α-bromoketone **10c** (108 mg, 0.36 mmol) were reacted for 4 h. The residue was purified by flash column chromatography (CH₂Cl₂/MeOH, 98:2) to yield **11f** (110 mg, 65%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.59 (d, *J* = 8.5 Hz, 1H, Ar), 7.74 (s, 1H, Ar), 7.64 - 7.47 (m, 8H, Ar, ThiazCH=C<u>H</u>), 7.35 (t, *J* = 7.5 Hz, 2H, Ar), 7.34 - 7.17 (m, 3H, Ar), 7.13 (d, *J* = 15.9 Hz, 1H, ThiazC<u>H</u>=CH), 4.60 (br s, 1H, NHCON), 4.38 (t, *J* = 5.4 Hz, 2H, OCH₂), 3.75 (t, *J* = 5.4 Hz, 2H, OCH₂C<u>H</u>₂), 3.54 (dd, *J* = 9.0, 6.6 Hz, 2H, C<u>H</u>₂CH₂NHCON), 3.34 (dd, *J* = 9.1, 6.5 Hz, 2H, CH₂C<u>H</u>₂NHCON), 2.74 (t, *J* = 7.7 Hz, 2H, TrizCH₂), 1.66 (quin, *J* = 7.6 Hz, 2H, TrizCH₂C<u>H</u>₂), 1.38 (sex, *J* = 7.4 Hz, 2H, C<u>H</u>₂CH₃), 0.90 (t, *J* = 7.4 Hz, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 162.7 (NHCON), 161.0 (OC_{Ar}), 156.3 (C_{Ar}), 153.5 (C_{Ar}), 149.6 (C_{Ar}), 140.7 (C_{Ar}), 127.3 (CH_{Ar}), 127.2 (CH_{Ar}), 127.0 (CH_{Ar}), 122.4 (C_{Ar}), 121.6 (CH_{Ar}), 118.8 (CH_{Ar}), 117.1 (CH_{Ar}), 112.4 (CH_{Ar}), 104.6 (CH_{Ar}), 68.1 (OCH₂), 46.5 (CH₂CH₂NHCON), 43.2 (OCH₂CH₂), 38.5 (CH₂CH₂NHCON), 31.6 (TrizCH₂CH₂), 25.5

 $(Triz\underline{C}H_2)$, 22.5 ($\underline{C}H_2CH_3$), 14.0 (CH_3); HRMS (ES, positive mode) m/z: calculated for $C_{34}H_{34}N_6O_2S$ 590.2464; Found 590.2474 (1.66 ppm).

Methyl-4-(1-(3-(2-(2-oxoimidazolidin-1-yl)ethoxy)-4-(4-phenethylthiazol-2-yl)phenyl)-1H-1,2,3-triazol-4-yl)butanoate (11g). Following the Hantzsch procedure, thioamide 8e (300 mg, 0.69 mmol) and the commercially available 1-bromo-4-phenylbutan-2-one 10a (158 mg, 0.69 mmol) were reacted for 4 h. After the work-up, the residue was purified by CCTLC on the Chromatotron (CH₂Cl₂/MeOH, 100:3) to yield **11g** (305 mg, 76%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.47 (d, *J* = 8.5 Hz, 1H, Ar), 7.80 (s, 1H, Ar), 7.52 (d, J = 2.0 Hz, 1H, Ar), 7.28 (dd, J = 8.5, 2.0 Hz, 1H, Ar), 7.22 - 7.03 (m, 5H, Ar), 6.87 (s, 1H, Ar), 4.81 (br s, 1H, NHCON), 4.36 (t, J = 5.5 Hz, 2H, OCH₂), 3.72 (t, J = 5.5 Hz, 2H, OCH₂C<u>H₂</u>), 3.61 (s, 3H, Me), 3.53 (dd, *J* = 9.0, 6.6 Hz, 2H, C<u>H₂CH₂NHCON</u>), 3.33 (dd, J = 9.1, 6.6 Hz, 2H, CH₂CH₂NHCON), 3.14 - 2.93 (m, 4H, CH₂CH₂Ph), 2.79 (t, J = 7.5 Hz, 2H, TrizCH₂), 2.37 (t, J = 7.4 Hz, 2H, CH₂COOMe), 2.02 (quin, J = 7.5 Hz, 2H, TrizCH₂CH₂); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 173.8 (COO), 162.8 (NHCON), 160.2 (OC_{Ar}), 156.1 (C_{Ar}), 156.0 (C_{Ar}), 148.2 (C_{Ar}), 141.6 (C_{Ar}), 138.3 (C_{Ar}), 130.0 (CH_{Ar}), 128.6 (CH_{Ar}), 128.5 (CH_{Ar}), 128.4 (CH_{Ar}), 126.1 (CH_{Ar}), 122.8 (C_{Ar}), 119.2 (CH_{Ar}), 115.2 (CH_{Ar}), 112.4 (CH_{Ar}), 104.6 (CH_{Ar}), 68.1 (OCH₂), 51.7 (CH₃), 46.5 (<u>C</u>H₂CH₂NHCON), 43.1 (OCH₂CH₂), 38.4 (CH₂CH₂NHCON), 35.6 (CH₂CH₂Ph), 33.4 (CH₂CH₂Ph), 33.4 (CH₂COOMe), 25.0 (TrizCH₂CH₂), 24.6 (TrizCH₂); HRMS (ES, positive mode) m/z: calculated for C₂₉H₃₂N₆O₄S 560.2206; Found 560.2200 (-1.11 ppm).

1H-1,2,3-triazol-4-yl)propyl)carbamate (11h). Following the general Hantzsch procedure, thioamide 8d (325 mg, 0.62 mmol), the commercially available 1-bromo-4-phenylbutan-2-one 10a (141 mg, 0.62 mmol) in ⁱPrOH (30 mL), was stirred at 70 °C for 4 h. After the work-up, residue was purified by flash column chromatography (CH₂Cl₂/MeOH, 98:2) to yield 11h (321 mg, 77%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.36 (d, *J* = 8.6 Hz, 1H, Ar), 7.85 (s, 1H, Ar), 7.46 (d, *J* = 2.0 Hz, 1H, Ar),

7.26 (dd, J = 8.6, 2.0 Hz, 1H, Ar), 7.24 - 6.97 (m, 10H, Ar), 6.75 (s, 1H, Ar), 5.30 (br s, 1H, NHCbz), 4.93 (s, 2H, NHCOOCH₂), 4.43 (br s, 1H, NHCON), 4.25 (t, J = 6.0 Hz, 2H, OCH₂), 3.56 (t, J = 6.0 Hz, 2H, OCH₂CH₂), 3.38 (t, J = 7.9 Hz, 2H, CH₂CH₂NHCON), 3.15 - 3.05 (m, 4H, CH₂CH₂NHCON, CH₂NHCbz), 3.01 - 2.82 (m, 4H, CH₂CH₂Ph), 2.69 (t, J = 7.1 Hz, 2H, TrizCH₂), 1.79 (quin, J = 6.9 Hz, 2H, TrizCH₂CH₂); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 162.8 (NHCON), 160.3 (OC_{Ar}), 156.7 (C_{Ar}), 156.1 (C_{Ar}), 155.9 (C_{Ar}), 148.0 (C_{Ar}), 141.7 (C_{Ar}), 138.4 (C_{Ar}), 136.7 (C_{Ar}), 130.1 (CH_{Ar}), 128.7 (CH_{Ar}), 128.7 (CH_{Ar}), 128.6 (CH_{Ar}), 128.5 (C_{Ar}), 128.4 (CH_{Ar}), 128.3 (CH_{Ar}), 126.1 (CH_{Ar}), 122.7 (C_{Ar}), 119.6 (CH_{Ar}), 115.1 (CH_{Ar}), 112.4 (CH_{Ar}), 104.5 (CH_{Ar}), 67.6 (OCH₂), 66.9 (NHCOO<u>C</u>H₂), 46.5 (<u>C</u>H₂CH₂NHCON), 42.8 (OCH₂<u>C</u>H₂), 40.0 (CH₂NHCbz), 38.4 (CH₂<u>C</u>H₂NHCON), 35.7 (CH₂CH₂Ph), 33.5 (CH₂CH₂Ph), 29.2 (TrizCH₂<u>C</u>H₂), 22.5 (Triz<u>C</u>H₂); HRMS (ES, positive mode) m/z: calculated for C₃₅H₃₇NrO₄S 651.2628; Found 651.2623 (-0.74 ppm).

Benzyl-(E)-(3-(1-(4-(4-(2-([1,1'-biphenyl]-4-yl)vinyl)thiazol-2-yl)-3-(2-(2-

oxoimidazolidin-1-yl)ethoxy)phenyl)-1H-1,2,3-triazol-4-yl)propyl)carbamate (11i). Following the general Hantzsch procedure, thioamide 8d (281 mg, 0.54 mmol) the αbromoketone 10c (1 eq) (162 mg, 0.54 mmol) were reacted for 4 h. The crude was purified by flash column chromatography (CH₂Cl₂/MeOH, 98:2) to give 11i (210 mg, 53%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.59 (d, *J* = 8.6 Hz, 1H, Ar), 7.98 (s, 1H, Ar), 7.65 - 7.50 (m, 9H, Ar, ThiazCH=C<u>H</u>), 7.44 - 7.35 (m, 3H, Ar), 7.33 - 7.23 (m, 6H, Ar), 7.13 (d, *J* = 16.1 Hz, 1H, ThiazC<u>H</u>=CH), 5.41 (br s, 1H, NHCbz), 5.04 (s, 2H, NHCOOC<u>H₂</u>), 4.51 (br s, 1H, NHCON), 4.38 (t, *J* = 5.8 Hz, 2H, OCH₂), 3.69 (t, *J* = 6.1 Hz, 2H, OCH₂C<u>H₂</u>), 3.50 (t, *J* = 7.9 Hz, 2H, C<u>H₂CH₂NHCON</u>), 3.22 - 3.16 (m, 4H, CH₂C<u>H₂NHCON</u>, C<u>H₂NHCbz</u>), 2.81 (t, *J* = 7.1 Hz, 2H, TrizCH₂), 1.92 (quin, *J* = 7.3 Hz, 2H, TrizCH₂C<u>H₂</u>); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 162.6 (NHCON), 161.0 (OC_{Ar}), 156.2 (C_{Ar}), 156.1 (C_{Ar}), 153.9 (C_{Ar}), 148.0 (C_{Ar}), 140.8 (C_{Ar}), 140.7 (C_{Ar}), 138.7 (C_{Ar}), 136.6 (C_{Ar}), 136.3 (C_{Ar}), 131.0 (CH_{Ar}), 130.4 (CH_{Ar}), 130.2 (CH_{Ar}), 128.9 (CH_{Ar}), 128.7 (CH_{Ar}), 128.4 (CH_{Ar}), 128.3 (CH_{Ar}), 127.5 (CH_{Ar}), 127.3 (CH_{Ar}), 127.1 (CH_{Ar}), 121.6 (CH_{Ar}), 119.7 (CH_{Ar}), 117.0 (CH_{Ar}), 112.5 (CH_{Ar}), 104.4 (CH_{Ar}), 67.5 (OCH₂), 66.9 (NHCOO<u>C</u>H₂), 46.5 (<u>C</u>H₂CH₂NHCON), 42.8 (OCH₂<u>C</u>H₂), 40.0 (CH₂NHCbz), 38.4 (CH₂<u>C</u>H₂NHCON), 29.2 (TrizCH₂<u>C</u>H₂), 22.5 (Triz<u>C</u>H₂); HRMS (ES, positive mode) m/z: calculated for C₄₁H₃₉N₇O₄S 725.2784; Found 725.2797 (1.69 ppm).

Benzyl-(4-(1-(3-methoxy)-4-(4-phenethylthiazol-2-yl)phenyl)-1H-1,2,3-triazol-4-

yl)butyl)carbamate (11j). Following the general procedure for thiazole synthesis, thioamide 8c (125 mg, 0.28 mmol) and the commercially available 1-bromo-4phenylbutan-2-one 10a (65 mg, 0.28 mmol) were reacted. After the work-up, the final residue was purified by CCTLC on the Chromatotron (CH₂Cl₂/MeOH, 99:1) to yield 11j (105 mg, 63%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.47 (d, J = 8.5 Hz, 1H, Ar), 7.74 (s, 1H, Ar), 7.53 (d, J = 2.1 Hz, 1H, Ar), 7.37 - 7.02 (m, 11H, Ar), 6.87 (s, 1H, Ar), 5.02 (s, 2H, NHCOOCH₂), 4.78 (br s, 1H, NHCbz), 4.03 (s, 3H, OCH₃), 3.19 (q, J = 6.7 Hz, 2H, CH₂NHCbz), 3.14 - 2.99 (m, 4H, CH₂CH₂Ph), 2.76 (t, J = 7.5 Hz, 2H, TrizCH₂), 1.72 (quin, J = 7.5 Hz, 2H, TrizCH₂CH₂), 1.56 (quin, J = 7.1 Hz, 2H, CH₂CH₂NHCbz); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 160.4 (OC_{Ar}), 157.2 (C_{Ar}), 156.6 (C_{Ar}), 156.0 (NHCOO), 148.8 (C_{Ar}), 141.7 (C_{Ar}), 138.3 (C_{Ar}), 136.7 (C_{Ar}), 129.7 (CH_{Ar}), 128.6 (CH_{Ar}), 128.6 (CH_{Ar}), 128.6 (CH_{Ar}), 128.5 (CH_{Ar}), 128.2 (CH_{Ar}), 128.2 (C_{Ar}), 126.1 (CH_{Ar}), 122.7 (C_{Ar}), 119.1 (CH_{Ar}), 115.3 (CH_{Ar}), 111.9 (C_{Ar}), 103.9 (CH_{Ar}), 66.8 (NHCOOCH₂), 56.2 (OCH₃), 40.9 (CH₂NHCbz), 35.7 (CH₂CH₂Ph), 33.5 (CH₂CH₂Ph), 29.6 (CH₂CH₂NHCbz), 26.5 (TrizCH₂CH₂), 25.3 (TrizCH₂); HRMS (ES, positive mode) m/z: calculated for C₃₂H₃₃N₅O₃S 567.2304; Found 567.2312 (1.38 ppm).

Benzyl-(4-(1-(3-methoxy-4-(4-(2-([1,1'-biphenyl]-4-yl)vinyl)thiazol-2-yl)phenyl)-1H-

1,2,3-triazol-4-yl)butyl)carbamate (11k). Following the general Hantzsch procedure, thioamide **8c** (292 mg, 0.66 mmol) and α -bromoketone **10c** (200 mg, 0.66 mmol) were reacted for 5h. The final residue was purified by CCTLC on the Chromatotron (CH₂Cl₂/MeOH, 98:2) to give **11k** (250 mg, 57%) as a yellow oil. ¹H NMR (CDCl₃, 400

MHz) δ (ppm): 8.63 (d, J = 8.5 Hz, 1H, Ar), 7.78 (s, 1H, Ar), 7.63 - 7.53 (m, 8H, Ar, ThiazCH=C<u>H</u>), 7.41 (t, J = 7.6 Hz, 2H, Ar), 7.34 - 7.21 (m, 8H, Ar), 7.17 (d, J = 16.0 Hz, 1H, ThiazC<u>H</u>=CH), 5.06 (s, 2H, NHCOOCH₂), 4.83 (br s, 1H, NHCbz), 4.08 (s, 3H, OCH₃), 3.22 (q, J = 6.7 Hz, 2H, C<u>H₂NHCbz</u>), 2.79 (t, J = 7.5 Hz, 2H, TrizCH₂), 1.76 (quin, J = 7.5Hz, 2H, TrizCH₂C<u>H₂), 1.59 (quin, J = 7.1 Hz, 2H, C<u>H₂CH₂NHCbz</u>); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 161.1 (NHCON), 157.4 (OC_{Ar}), 156.6 (NHCOO), 153.3 (C_{Ar}), 148.8 (C_{Ar}), 140.7 (C_{Ar}), 140.6 (C_{Ar}), 138.6 (CH_{Ar}), 136.7 (CH_{Ar}), 136.3 (CH_{Ar}), 130.8 (CH_{Ar}), 129.9 (CH_{Ar}), 128.9 (CH_{Ar}), 128.6 (CH_{Ar}), 128.2 (CH_{Ar}), 128.2 (CH_{Ar}), 127.5 (CH_{Ar}), 127.2 (CH_{Ar}), 127.0 (CH_{Ar}), 122.4 (C_{Ar}), 121.7 (CH_{Ar}), 119.1 (C_{Ar}), 117.2 (C_{Ar}), 111.9 (CH_{Ar}), 103.8 (CH_{Ar}), 66.7 (NHCOO<u>C</u>H₂), 56.2 (OCH₃), 40.9 (CH₂NHCbz), 29.6 (<u>C</u>H₂CH₂NHCbz), 26.5 (TrizCH₂<u>C</u>H₂), 25.3 (Triz<u>C</u>H₂); HRMS (ES, positive mode) m/z: calculated for C₃₈H₃₅N₅O₃S 641.2461; Found 641.2474 (2.07 ppm).</u>

Tert-butyl-(4-(1-(4-(4-isopropoxythiazol-2-yl)-3-(2-(2-oxoimidazolidin-1-

yl)ethoxy)phenyl)-1H-1,2,3-triazol-4-yl)butyl)carbamate and 1-(2-(5-(4-(4-Aminobutyl)-1H-1,2,3-triazol-1-yl)-2-(4-isopropoxythiazol-2-

yl)phenoxy)ethyl)imidazolidin-2-one chloride (111 and 12l). Following the general Hantzsch procedure, thioamide **8a** (87 mg, 0.17 mmol) and isopropyl chloroacetate (0.25 mL, 1.99 mmol) in ⁱPrOH (8 mL) were reacted. Work-up and purification of the crude by flash column chromatography (from CH₂Cl₂/MeOH, 97:3 to CH₂Cl₂/MeOH/NH₃, 85:14:1) gave, from the fastest moving band, compound **111** (27 mg, 26%) as a colorless oil. ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm): 8.72 (s, 1H, Ar), 8.34 (d, *J* = 8.6 Hz, 1H, Ar), 7.73 (d, *J* = 1.6 Hz, 1H, Ar), 7.66 (dd, *J* = 8.6, 1.8 Hz, 1H, Ar), 6.81 (t, *J* = 1.9 Hz, 1H, Ar), 6.64 (br s, 1H, NHCON), 6.56 (br s, 1H, NHBoc), 4.73 (quin, *J* = 6.1 Hz, 1H, OC<u>H</u>(CH₃)₂), 4.47 (t, *J* = 5.6 Hz, 2H, OCH₂), 3.63 (t, *J* = 5.6 Hz, 2H, OCH₂C<u>H₂</u>), 3.49 (t, *J* = 7.8 Hz, 2H, C<u>H₂CH₂NHCON</u>), 3.23 (t, *J* = 7.9 Hz, 2H, CH₂C<u>H₂NHCON</u>), 3.01 - 2.91 (m, 2H, C<u>H₂CH₂NHBoc</u>), 2.75 - 2.68 (m, 2H, TrizCH₂), 1.71 - 1.60 (m, 2H, TrizCH₂C<u>H₂</u>), 1.53 - 1.41 (m, 2H, C<u>H₂CH₂NHBoc</u>), 1.36 (s, 9H, C(CH₃)₃), 1.32 (d, *J* = 6.1 Hz, 6H, CH(C<u>H₃)₂</u>);

¹³C NMR (DMSO-d₆, 100 MHz) δ (ppm): 162.2 (NHCON), 156.7 (OC_{Ar}), 155.9 (OC_{Ar}), 155.6 (NHCOO), 148.2 (C_{Ar}), 137.9 (C_{Ar}), 128.6 (CH_{Ar}), 120.9 (CH_{Ar}), 120.3 (C_{Ar}), 112.0 (CH_{Ar}), 104.3 (CH_{Ar}), 93.1 (CH_{Ar}), 77.4 (O<u>C</u>(CH₃)₃), 71.8 (O<u>C</u>H(CH₃)₂), 67.6 (OCH₂), 45.3 (<u>C</u>H₂CH₂NHCON), 42.4 (OCH₂<u>C</u>H₂), 37.6 (CH₂<u>C</u>H₂NHCON), 29.0 (<u>C</u>H₂CH₂NHBoc), 28.3 (C(<u>C</u>H₃)₃), 26.1 (TrizCH₂<u>C</u>H₂), 24.7 (Triz<u>C</u>H₂), 21.9 (CH(<u>C</u>H₃)₂); MS (ESI, positive mode) m/z: 1193.5 [2M+Na]⁺, 608.3 [M+Na]⁺, 586.3 [M+H]⁺.

The slowest moving band gave the deprotected compound **12I** (43 mg, 47%) as a yellow oil. ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm): 8.83 (s, 1H, Ar), 8.30 (d, *J* = 8.6 Hz, 1H, Ar), 7.75 (s, 1H, Ar), 7.65 (d, *J* = 8.3 Hz, 1H, Ar), 6.60 (s, 1H, Ar), 6.42 (br s, 1H, NHCON), 4.73 (quin, *J* = 6.1 Hz, 1H, OC<u>H</u>(CH₃)₂), 4.50 - 4.40 (m, 2H, OCH₂), 3.65 - 3.55 (m, 2H, OCH₂C<u>H₂</u>), 3.48 (t, *J* = 7.4 Hz, C<u>H₂CH₂NHCON</u>), 3.21 (t, *J* = 7.4 Hz, 2H, CH₂C<u>H₂NHCON</u>), 2.79 - 2.62 (m, 4H, TrizCH₂, C<u>H₂NH₃⁺</u>), 1.75 - 1.65 (m, 2H, TrizCH₂C<u>H₂</u>), 1.63 - 1.53 (m, 2H, C<u>H₂CH₂NH₃⁺</u>), 1.31 (d, *J* = 6.1 Hz, 6H, CH₃); ¹³C NMR (DMSO-d₆, 100 MHz) δ (ppm): 162.1 (NHCON), 156.7 (OC_{Ar}), 155.9 (OC_{Ar}), 148.0 (C_{Ar}), 137.9 (C_{Ar}), 128.5 (CH_{Ar}), 120.8 (CH_{Ar}), 120.5 (C_{Ar}), 111.9 (CH_{Ar}), 104.2 (CH_{Ar}), 93.0 (CH_{Ar}), 71.8 (OCH₂), 67.5 (O<u>C</u>H(CH₃)₂), 45.3 (<u>C</u>H₂CH₂NHCON), 42.4 (OCH₂<u>C</u>H₂), 37.6 (CH₂<u>C</u>H₂NHCON), 28.6 (<u>C</u>H₂CH₂NH₃⁺), 25.8 (TrizCH₂C₂C₂), 24.6 (Triz<u>C</u>H₂), 21.9 (CH₃); HPLC (*Gradient A, Agilent*): *R_t* = 3.5 min; HRMS (ES, positive mode) m/z: calculated for C₂₃H₃₁N₇O₃S 485.2203; Found 485.2209 (-1.19 ppm); Anal. Calc. for C₂₃H₃₁N₇O₃S.HCl: C. 52.92; H. 6.18; N. 18.78; S. 6.14; Found: C. 53.15; H. 6.16; N. 19.05; S. 5.65.

Tert-butyl-(4-(1-(4-(4-neopentylthiazol-2-yl)-3-(2-(2-oxoimidazolidin-1-

yl)ethoxy)phenyl)-1H-1,2,3-triazol-4-yl)butyl)carbamate and 1-(2-(5-(4-(4-Aminobutyl)-1H-1,2,3-triazol-1-yl)-2-(4-neopentylthiazol-2-

yl)phenoxy)ethyl)imidazolidin-2-one bromide (11m and 12m). Following the general Hantzsch procedure, thioamide **8a** (50 mg, 0.10 mmol) was reacted with α -bromoketone **10m** (77 mg, 0.40 mmol). Purification by flash column chromatography (from CH₂Cl₂/MeOH, 96:4 to CH₂Cl₂/MeOH/NH₃, 85:14:1) gave, from the fastest moving band,

compound **11m** (27 mg, 46%) as a colorless oil. ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 8.45 (s, 1H, Ar), 8.44 (d, *J* = 8.6 Hz, 1H, Ar), 7.72 (d, *J* = 2.0 Hz, 1H, Ar), 7.58 (dd, *J* = 8.6, 2.0 Hz, 1H, Ar), 7.21 (s, 1H, Ar), 4.50 (t, *J* = 5.5 Hz, 2H, OCH₂), 3.77 (t, *J* = 5.5 Hz, 2H, OCH₂CH₂), 3.62 (dd, *J* = 9.2, 6.9 Hz, 2H, CH₂CH₂NHCON), 3.38 (dd, *J* = 9.3, 6.9 Hz, 2H, CH₂CH₂NHCON), 3.10 (t, *J* = 6.9 Hz, 2H, CH₂CH₂NHBoc), 2.82 (t, *J* = 7.5 Hz, 2H, TrizCH₂), 2.75 (s, 2H, CH₂-¹Bu), 1.77 (quin, *J* = 7.6 Hz, 2H, TrizCH₂CH₂), 1.59 (quin, *J* = 7.6 Hz, 2H, CH₂CH₂NHBoc), 1.43 (s, 9H, OC(CH₃)₃), 1.00 (s, 9H, CH₂C(CH₃)₃); ¹³C NMR (CD₃OD, 75 MHz) δ (ppm): 165.1 (NHCON), 161.1 (OC_{Ar}), 157.4 (C_{Ar}), 155.8 (C_{Ar}), 150.0 (C_{Ar}), 139.7 (C_{Ar}), 130.8 (CH_{Ar}), 123.9 (C_{Ar}), 121.5 (CH_{Ar}), 118.4 (CH_{Ar}), 113.6 (CH_{Ar}), 105.8 (CH_{Ar}), 79.9 (OC(CH₃)₃), 68.4 (OCH₂), 46.9 (CH₂CH₂NHCON), 45.7 (CH₂-¹Bu), 43.9 (OCH₂CH₂), 41.0 (CH₂NHBoc), 39.3 (CH₂CH₂NHCON), 32.4 (CH₂C(CH₃)₃), 30.4 (CH₂CH₂NHBoc), 30.0 (CH₂C(CH₃)₃), 28.8 (OC(CH₃)₃), 27.6 (TrizCH₂CH₂), 26.0 (TrizCH₂); HRMS (ES, positive mode) m/z: calculated for C₃₀H₄₃N₇O₄S 597.3097; Found 597.3096 (-0.18 ppm). The slowest moving band afforded 17 mg (30%) of a yellow oil identified as **12m**.

¹H NMR (CD₃OD, 400 MHz) δ (ppm): 8.46 (s, 1H, Ar), 8.46 (d, *J* = 8.6 Hz, 1H, Ar), 7.73 (d, *J* = 2.1 Hz, 1H, Ar), 7.59 (dd, *J* = 8.6, 2.1 Hz, 1H, Ar), 7.22 (s, 1H, Ar), 4.50 (t, *J* = 5.5 Hz, 2H, OCH₂), 3.77 (t, *J* = 5.5 Hz, 2H, OCH₂C<u>H₂</u>), 3.62 (dd, *J* = 9.2, 6.9 Hz, 2H, CH₂CH₂NHCON), 3.38 (dd, *J* = 9.3, 6.9 Hz, 2H, CH₂C<u>H₂NHCON</u>), 2.83 (t, *J* = 7.5 Hz, 2H, CH₂NH₃⁺), 2.75 (s, 2H, CH₂-¹Bu), 2.70 (t, *J* = 7.2 Hz, 2H, TrizCH₂), 1.79 (quin, *J* = 7.6 Hz, 2H, TrizCH₂C<u>H₂</u>), 1.58 (quin, *J* = 7.6 Hz, 2H, C<u>H₂CH₂NH₃⁺</u>), 1.00 (s, 9H, CH₃); ¹³C NMR (CD₃OD, 75 MHz) δ (ppm): 165.1 (NHCON), 161.1 (OC_{Ar}), 157.4 (C_{Ar}), 155.8 (C_{Ar}), 150.1 (CA_a), 139.7 (CA_a), 130.8 (CH_{Ar}), 123.9 (CA_a), 121.5 (CH_{Ar}), 118.4 (CH_{Ar}), 113.6 (CH_{Ar}), 105.7 (CH_{Ar}), 68.4 (OCH₂), 46.9 (CH₂CH₂NHCON), 45.7 (CH₂-¹Bu), 43.9 (OCH₂CH₂), 42.2 (CH₂NH₃⁺), 39.3 (CH₂CH₂NHCON), 33.2 (CH₂CH₂NH₃⁺), 32.4 (CH₂C(CH₃)₃), 30.0 C(CH₃)₃), 27.7 (TrizCH₂CH₂), 26.1 (TrizCH₂); HPLC (*Gradient A, Agilent*): *R_t* = 4.1 min; HRMS (ES, positive mode) m/z: calculated for C₂₅H₃₅N₇O₂S 497.2573; Found 497.2572 (-0.17 ppm); Anal. Calc. for C₂₅H₃₅N₇O₂S.HBr: C. 51.90; H. 6.27; N. 16.95; S. 5.54; Found: C. 52.27; H. 6.17; N. 16.79; S. 5.65.

Benzyl-(4-(1-(3-(2-(2-oxoimidazolidin-1-yl)ethoxy)-4-(4-phenylthiazol-2-yl)phenyl)-1H-1,2,3-triazol-4-yl)butyl)carbamate (11n). Following the general Hantzsch procedure, the thioamide 8b (100 mg, 0.19 mmol) and the commercially available 1-bromo-2phenylethan-2-one (37 mg, 0.19 mmol) were reacted for 3 h. After the work-up, the residue was purified by flash column chromatography (CH₂Cl₂/MeOH, 95:5) to give 11n (104 mg, 86%) as a colorless oil. ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm): 8.74 (s, 1H, Ar), 8.60 (d, J = 8.6 Hz, 1H, Ar), 8.21 (s, 1H, Ar), 8.10 (dd, J = 7.7, 2.0 Hz, 2H, Ar), 8.09 (s, 1H, Ar), 7.77 (d, J = 1.9 Hz, 1H, Ar), 7.72 (dd, J = 8.6, 1.9 Hz, 1H, Ar), 7.48 (t, J = 7.8 Hz, 1H, Ar), 7.42 - 7.24 (m, 6H, Ar), 6.41 (br s, 1H, NHCbz), 5.01 (s, 2H, NHCOOCH₂), 4.50 (t, J = 5.7 Hz, 2H, OCH₂), 3.67 (t, J = 5.6 Hz, 2H, OCH₂CH₂), 3.51 (dd, J = 9.0, 6.6 Hz, 2H, C<u>H</u>₂CH₂NHCON), 3.23 (dd, *J* = 9.0, 6.6 Hz, 2H, CH₂C<u>H</u>₂NHCON), 3.07 (q, *J* = 6.6 Hz, 2H, CH_2 NHCbz), 2.74 (t, J = 7.5 Hz, 2H, TrizCH₂), 1.70 (quin, J = 7.5 Hz, 2H, TrizCH₂CH₂), 1.51 (quin, J = 6.6 Hz, 2H, CH₂CH₂NHCbz); ¹³C NMR (DMSO-d₆, 75 MHz) δ (ppm): 162.2 (NHCON), 162.1 (OC_{Ar}), 160.1 (C_{Ar}), 156.1 (C_{Ar}), 155.8 (C_{Ar}), 153.4 (C_{Ar}), 148.1 (C_{Ar}), 138.3 (C_{Ar}), 137.3 (C_{Ar}), 134.1 (CH_{Ar}), 129.2 (CH_{Ar}), 128.8 (CH_{Ar}), 128.3 (CH_{Ar}), 128.1 (CH_{Ar}), 127.7 (CH_{Ar}), 126.2 (C_{Ar}), 121.1 (CH_{Ar}), 120.3 (CH_{Ar}), 115.8 (CH_{Ar}), 112.1 (CH_{Ar}), 104.3 (CH_{Ar}), 67.6 (OCH₂), 65.1 (NHCOO<u>C</u>H₂), 45.3 (<u>C</u>H₂CH₂NHCON), 42.4 (OCH₂<u>C</u>H₂), 37.6 (CH₂CH₂NHCON), 28.9 (CH₂CH₂NHCbz), 26.0 (TrizCH₂CH₂), 24.7 (TrizCH₂); HRMS (ES, positive mode) m/z: calculated for C₃₄H₃₅N₇O₄S 637.2471; Found 637.2474 (0.49 ppm).

Tert-Butyl-(4-(1-(4-(4-benzylthiazol-2-yl)-3-(2-(2-oxoimidazolidin-1-yl)ethoxy)phenyl)-1H-1,2,3-triazol-4-yl)butyl)carbamate and 1-(2-(5-(4-(4-Aminobutyl)-1H-1,2,3-triazol-1yl)-2-(4-benzylthiazol-2-yl)phenoxy)ethyl)imidazolidin-2-one chloride (11o and 12o). According to the general Hantzsch procedure, thioamide **8a** (74 mg, 0.15 mmol) and 1chloro-3-benzylpropan-2-one (100 mg, 0.60 mmol) were reacted. The final crude was purified by flash column chromatography (from CH₂Cl₂/MeOH, 95:5 to CH₂Cl₂/MeOH/NH₃, 85:14:1) to give, from the fastest moving band compound **11o** (41 mg, 44%) as a colorless oil. ¹H NMR (DMSO-d₆, 300 MHz) δ (ppm): 8.72 (s, 1H, Ar), 8.40 (d, *J* = 8.6 Hz, 1H, Ar), 7.73 (d, *J* = 2.0 Hz, 1H, Ar), 7.66 (dd, *J* = 8.4, 2.0 Hz, 1H, Ar), 7.40 - 7.14 (m, 6H, Ar), 6.80 (br s, 1H, NHCON), 6.39 (br s, 1H, NHBoc), 4.46 (t, *J* = 5.5 Hz, 2H, OCH₂), 4.14 (s, 2H, CH₂Ph), 3.62 (t, *J* = 5.5 Hz, 2H, OCH₂CH₂), 3.53 - 3.42 (m, 2H, CH₂CH₂NHCON), 3.25 - 3.15 (m, 2H, CH₂CH₂NHCON), 3.00 - 2.90 (m, 2H, CH₂NHBoc), 2.72 (t, *J* = 7.6 Hz, 2H, TrizCH₂), 1.75 - 1.60 (m, 2H, TrizCH₂CH₂), 1.52 - 1.43 (m, 2H, CH₂CH₂Boc), 1.36 (s, 9H, OC(CH₃)₃); HRMS (ES, positive mode) m/z: calculated for C₃₂H₃₉N₇O₄S 617.2784; Found 617.2775 (-1.44 ppm).

The slowest moving band afforded 44 mg (55%) of a yellow oil that was identified as **120**. ¹H NMR (DMSO-d₆, 300 MHz) δ (ppm): 8.73 (s, 1H, Ar), 8.39 (d, *J* = 8.6 Hz, 1H, Ar), 7.74 (s, 1H, Ar), 7.66 (d, *J* = 8.4 Hz, 1H, Ar), 7.55 - 7.05 (m, 5H, Ar), 7.19 (s, 1H, Ar), 6.43 (br s, 1H, NHCON), 4.46 (t, *J* = 5.4 Hz, 2H, OCH₂), 4.14 (s, 2H, CH₂Ph), 3.62 (t, *J* = 5.4 Hz, 2H, OCH₂CH₂), 3.53 - 3.42 (m, 2H, CH₂CH₂NHCON), 3.25 - 3.15 (m, 2H, CH₂CH₂NHCON), 2.99 - 2.88 (m, 2H, CH₂NH₃⁺), 2.75 - 2.67 (m, 2H, TrizCH₂), 1.75 - 1.60 (m, 2H, TrizCH₂CH₂), 1.48 - 1.37 (m, 2H, CH₂CH₂NH₃⁺); ¹³C NMR (DMSO-d₆, 75 MHz) δ (ppm): 162.1 (NHCON), 155.6 (C_{Ar}), 155.0 (C_{Ar}), 148.3 (C_{Ar}), 139.6 (C_{Ar}), 138.1 (C_{Ar}), 128.9 (CH_{Ar}), 128.8 (CH_{Ar}), 128.4 (CH_{Ar}), 126.1 (CH_{Ar}), 121.1 (C_{Ar}), 120.0 (CH_{Ar}), 116.7 (CH_{Ar}), 112.0 (CH_{Ar}), 104.3 (CH_{Ar}), 67.6 (OCH₂), 45.2 (CH₂CH₂NHCON), 42.3 (OCH₂CH₂), 40.4 (CH₂NH₃⁺), 37.5 (CH₂CH₂NHCON), 37.0 (CH₂Ph), 30.7 (CH₂CH₂NH₃⁺), 29.7 (TrizCH₂CH₂), 26.1 (TrizCH₂); HPLC (*Gradient A, Agilent*): *R_t* = 4.4 min; HRMS (ES, positive mode) m/z: calculated for C₂₇H₃₁N₇O₂S 517.2260; Found 517.2256 (-0.69 ppm); Anal. Calc. for C₂₇H₃₁N₇O₂S.HCI: C. 58.53; H. 5.82; N. 17.69; S. 5.79; Found: C. 59.02; H. 6.15; N. 17.63; S. 6.16.

Benzyl-(E)-(4-(1-(3-(2-(2-oxoimidazolidin-1-yl)ethoxy)-4-(4-(3-phenylprop-1-en-1-

yl)thiazol-2-yl)phenyl)-1H-1,2,3-triazol-4-yl)butyl)carbamate (11p). Following the general Hantzsch procedure, thioamide **8b** (250 mg, 0.47 mmol) and α-bromoketone **10p** (112 mg, 0.47 mmol) were reacted. The final residue was purified by flash column

chromatography (CH₂Cl₂/MeOH, 97:3) to give **11p** (153 mg, 48%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.55 (d, *J* = 8.5 Hz, 1H, Ar), 7.87 (s, 1H, Ar), 7.57 (d, *J* = 1.9 Hz, 1H, Ar), 7.40 - 7.18 (m, 11H, Ar), 7.10 (s, 1H, Ar), 6.86 (dt, J = 15.5, 6.9 Hz, 1H, CH₂CH=C<u>H</u>), 6.50 (dt, J = 15.5, 1.6 Hz, 1H, CH₂C<u>H</u>=CH), 5.05 (br s, 1H, NHCbz), 5.08 (s, 2H, NHCOOCH₂), 4.73 (br s, 1H, NHCON), 4.41 (t, J = 5.7 Hz, 2H, OCH₂), 3.75 (t, J = 5.7 Hz, 2H, OCH₂CH₂), 3.61 - 3.52 (m, 4H, CH₂CH₂NHCON, CH₂CH=CH), 3.32 (t, J = 7.9 Hz, 2H, CH_2CH_2NHCON), 3.25 (q, J = 6.7 Hz, 2H, CH_2NHCbz), 2.82 (t, J = 7.3 Hz, 2H, TrizCH₂), 1.77 (quin, J = 7.5 Hz, 2H, TrizCH₂CH₂), 1.63 (quin, J = 7.3 Hz, 2H, CH₂CH₂NHCbz); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 162.7 (NHCON), 160.6 (OC_{Ar}), 156.6 (C_{Ar}), 156.1 (C_{Ar}), 153.3 (C_{Ar}), 148.8 (C_{Ar}), 140.0 (C_{Ar}), 138.5 (C_{Ar}), 136.7 (C_{Ar}), 132.6 (CH_{Ar}), 130.2 (CH_{Ar}), 128.9 (CH_{Ar}), 128.6 (CH_{Ar}), 128.2 (CH_{Ar}), 126.3 (CH_{Ar}), 124.3 (CH_{Ar}), 122.5 (C_{Ar}), 119.1 (CH_{Ar}), 115.1 (CH_{Ar}), 112.4 (CH_{Ar}), 104.5 (CH_{Ar}), 67.8 (OCH₂), 66.7 (NHCOOCH₂), 46.4 (CH₂CH₂NHCON), 43.0 (OCH₂CH₂), 40.9 (CH₂NHCbz), 39.3 (CH₂CH₂NHCON), 38.4 (PhCH₂CH=CH), 29.4 (CH₂CH₂NHCbz), 26.4 (TrizCH₂CH₂), 25.2 (TrizCH₂); HRMS (ES, positive mode) m/z: calculated for C₃₇H₃₉N₇O₄S 677.2784; Found 677.2781 (-0.53 ppm).

Benzyl-(E)-(4-(1-(3-(2-(2-oxoimidazolidin-1-yl)ethoxy)-4-(4-(2-(quinolin-6-

yl)vinyl)thiazol-2-yl)phenyl)-1H-1,2,3-triazol-4-yl)butyl)carbamate (11q). According to the general Hantzsch procedure, thioamide **8b** (200 mg, 0.38 mmol) and the α -bromoketone crude **10q** (0.38 mmol) were reacted. After the work-up, the final residue was purified by CCTLC on the Chromatotron (CH₂Cl₂/MeOH, 90:10) to afford **11q (**230 mg, 80%) as an orange oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.79 (d, *J* = 4.2 Hz, 1H, Ar), 8.59 (d, *J* = 8.6 Hz, 1H, Ar), 8.06 (dd, *J* = 6.5, 2.2 Hz, 1H, Ar), 8.01 (d, *J* = 8.8 Hz, 1H, Ar), 7.91 (dd, *J* = 8.9, 2.0 Hz, 1H, Ar), 7.83 (s, 1H, Ar), 7.80 (s, 1H, Ar), 7.69 (d, *J* = 15.9 Hz, 1H, ThiazCH=C<u>H</u>), 7.53 (s, 1H, Ar), 7.37 (d, *J* = 8.6 Hz, 1H, Ar), 7.34 - 7.15 (m, 8H, Ar, ThiazC<u>H</u>=CH), 5.06 (br s, 1H, NHCbz), 5.02 (s, 2H, NHCOOC<u>H₂</u>), 4.67 (br s, 1H, NHCON), 4.37 (t, *J* = 5.8 Hz, 2H, OCH₂), 3.71 (t, *J* = 5.9 Hz, 2H, OCH₂C<u>H₂</u>), 3.52 (dd,

 $J = 9.0, 6.7 \text{ Hz}, 2\text{H}, C\underline{H}_{2}CH_{2}NHCON), 3.28 \text{ (t, } J = 8.0 \text{ Hz}, 2\text{H}, CH_{2}C\underline{H}_{2}NHCON), 3.20 \text{ (q, } J = 6.6 \text{ Hz}, 2\text{H}, C\underline{H}_{2}NHCbz), 2.77 \text{ (t, } J = 7.4 \text{ Hz}, 2\text{H}, TrizCH_{2}), 1.72 \text{ (quin, } J = 7.6 \text{ Hz}, 2\text{H}, TrizCH_{2}C\underline{H}_{2}), 1.57 \text{ (quin, } J = 7.4 \text{ Hz}, 2\text{H}, C\underline{H}_{2}CH_{2}NHCbz); ^{13}C \text{ NMR (CDCl}_{3}, 100 \text{ MHz}) \delta \text{ (ppm): } 162.7 \text{ (NHCON), } 161.1 \text{ (OC}_{Ar}), 156.6 \text{ (C}_{Ar}), 156.2 \text{ (C}_{Ar}), 153.1 \text{ (NHCOO), } 150.2 \text{ (C}_{Ar}), 148.8 \text{ (C}_{Ar}), 148.2 \text{ (C}_{Ar}), 138.7 \text{ (C}_{Ar}), 136.7 \text{ (C}_{Ar}), 136.2 \text{ (CH}_{Ar}), 135.5 \text{ (CH}_{Ar}), 130.6 \text{ (CH}_{Ar}), 130.3 \text{ (CH}_{Ar}), 129.8 \text{ (C}_{Ar}), 128.7 \text{ (CH}_{Ar}), 128.6 \text{ (CH}_{Ar}), 128.2 \text{ (CH}_{Ar}), 127.4 \text{ (CH}_{Ar}), 126.5 \text{ (CH}_{Ar}), 122.9 \text{ (CH}_{Ar}), 122.3 \text{ (C}_{Ar}), 121.6 \text{ (CH}_{Ar}), 119.1 \text{ (CH}_{Ar}), 117.8 \text{ (CH}_{Ar}), 112.5 \text{ (CH}_{Ar}), 104.5 \text{ (CH}_{Ar}), 67.7 \text{ (OCH}_{2}), 66.8 \text{ (NHCOOC}_{H2}), 46.4 \text{ (C}_{H2}CH_{2}NHCON), 43.0 \text{ (OCH}_{2}CH_{2}), 40.9 \text{ (C}_{H2}NHCDz), 38.4 \text{ (CH}_{2}CH_{2}NHCON), 29.5 \text{ (C}_{H2}CH_{2}NHCDz), 26.4 \text{ (TrizCH}_{2}CH_{2}), 25.2 \text{ (Triz}_{C}H_{2}); HRMS (ES, positive mode) m/z: calculated for C}_{39}H_{38}N_{8}O_{4}S 714.2737; Found 714.2734 (-0.38 ppm).$

Benzyl-(E)-(4-(1-(4-(2-(2,3-dihydrobenzofuran-5-yl)vinyl)thiazol-2-yl)-3-(2-(2-

oxoimidazolidin-1-yl)ethoxy)phenyl)-1H-1,2,3-triazol-4-yl)butyl)carbamate (11r).

Following the general Hantzsch procedure, thioamide **8b** (250 mg, 0.47 mmol) and the αbromoketone **10r** (124 mg, 0.47 mmol) were reacted. After work-up, the residue was purified by flash column chromatography (CH₂Cl₂/MeOH, 97:3) to give **11r** (207 mg, 62%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.55 (d, J = 8.6 Hz, 1H, Ar), 7.81 (s, 1H, Ar), 7.51 (s, 1H, Ar), 7.46 (d, J = 15.8 Hz, 1H, ThiazCH=C<u>H</u>), 7.44 - 7.15 (m, 8H, Ar), 7.12 (s, 1H, Ar), 6.92 (d, J = 16.0 Hz, 1H, ThiazC<u>H</u>=CH), 6.71 (d, J = 8.2 Hz, 1H Ar), 5.04 (br s, 1H, NHCON), 5.03 (s, 2H, NHCOOC<u>H₂</u>), 4.68 (br s, 1H, NHCbz), 4.52 (t, J = 8.7 Hz, 2H, OC<u>H₂CH₂Ph), 4.35 (t, J = 5.7 Hz, 2H, OCH₂), 3.69 (t, J = 5.6 Hz, 2H, OCH₂C<u>H₂</u>), 3.50 (t, J = 7.8 Hz, 2H, C<u>H₂CH₂NHCON</u>), 3.26 (t, J = 8.0 Hz, 2H, CH₂C<u>H₂NHCON</u>), 3.26 - 3.12 (m, 4H, C<u>H₂NHCbz, OCH₂C<u>H₂Ph</u>), 2.76 (t, J = 7.3 Hz, 2H, TrizCH₂), 1.72 (quin, J = 7.3Hz, 2H, TrizCH₂C<u>H₂</u>), 1.56 (quin, J = 7.6 Hz, 2H, C<u>H₂CH₂NHCON</u>); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 162.7 (NHCON), 160.7 (OC_{Ar}), 160.3 (OC_{Ar}), 156.6 (C_{Ar}), 156.1 (C_{Ar}), 153.8 (C_{Ar}), 148.8 (C_{Ar}), 138.5 (C_{Ar}), 136.7 (C_{Ar}), 131.5 (C_{Ar}), 130.3 (CH_{Ar}), 130.0 (CH_{Ar}), 128.6 (CH_{Ar}), 128.2 (CH_{Ar}), 128.2 (CH_{Ar}), 127.8 (CH_{Ar}), 127.5 (C_{Ar}), 123.0 (CH_{Ar}), 122.5 (C_{Ar}),</u></u> 119.1 (CH_{Ar}), 118.9 (CH_{Ar}), 115.8 (CH_{Ar}), 112.5 (CH_{Ar}), 109.5 (CH_{Ar}), 104.5 (CH_{Ar}), 71.6 (O<u>C</u>H₂CH₂Ph), 67.8 (OCH₂), 66.8 (NHCOO<u>C</u>H₂), 46.4 (<u>C</u>H₂CH₂NHCON), 43.0 (OCH₂<u>C</u>H₂), 40.9 (CH₂NHCbz), 38.4 (CH₂<u>C</u>H₂NHCON), 29.7 (OCH₂<u>C</u>H₂Ph), 29.5 (<u>C</u>H₂CH₂NHCbz), 26.4 (TrizCH₂<u>C</u>H₂), 25.2 (Triz<u>C</u>H₂); HRMS (ES, positive mode) m/z: calculated for $C_{38}H_{39}N_7O_5S$ 705.2733; Found 705.2728 (-0.82 ppm).

Benzyl-(E)-(4-(1-(4-(4-(2-(dibenzo[b,d]furan-2-yl)vinyl)thiazol-2-yl)-3-(2-(2-

oxoimidazolidin-1-yl)ethoxy)phenyl)-1H-1,2,3-triazol-4-yl)butyl)carbamate (11s). Following the general Hantzsch synthesis procedure, thioamide **8b** (150 mg, 0.28 mmol) α-bromoketone **10s** (88 mg, 0.28 mmol) were reacted. The final residue was purified by flash column chromatography (CH2Cl2/MeOH, 98:2) to yield 11s (121 mg, 58%) as a colorless oil. ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm): 8.70 (br s, 1H, NHCbz), 8.60 (dd, J = 8.5, 2.2 Hz, 1H, Ar), 8.19 (d, J = 7.6 Hz, 1H, Ar), 7.88 - 7.66 (m, 8H, Ar), 7.60 - 7.50 (m, 1H, Ar), 7.47 - 7.24 (m, 8H, Ar), 6.31 (br s, 1H, NHCON), 5.02 (s, 2H, NHCOOCH₂), 4.51 (t, J = 5.8 Hz, 2H, OCH₂), 3.67 (t, J = 5.7 Hz, 2H, OCH₂CH₂), 3.52 (dd, J = 8.8, 6.8 Hz, 2H, CH₂CH₂NHCON), 3.35 - 3.08 (m, 4H, CH₂CH₂NHCON, CH₂NHCbz), 2.76 (t, J = 7.5 Hz, 2H, TrizCH₂), 1.72 (quin, J = 7.2 Hz, 2H, TrizCH₂CH₂), 1.54 (quin, J = 7.2 Hz, 2H, CH₂CH₂NHCbz); ¹³C NMR (DMSO-d₆, 75 MHz) δ (ppm): 161.9 (NHCON), 160.1 (OC_{Ar}), 155.8 (OC_{Ar}), 155.8 (OC_{Ar}), 155.0 (NHCOO), 152.6 (C_{Ar}), 147.9 (C_{Ar}), 138.2 (C_{Ar}), 137.1 (C_{Ar}), 132.1 (C_{Ar}), 130.2 (CH_{Ar}), 129.1 (CH_{Ar}), 128.0 (CH_{Ar}), 127.5 (C_{Ar}), 127.4 (CH_{Ar}), 127.3 (CH_{Ar}), 126.1 (CH_{Ar}), 124.0 (C_{Ar}), 123.3 (C_{Ar}), 123.0 (CH_{Ar}), 121.2 (C_{Ar}), 121.1 (CH_{Ar}), 121.0 (CH_{Ar}), 120.0 (CH_{Ar}), 118.7 (CH_{Ar}), 117.4 (CH_{Ar}), 112.0 (CH_{Ar}), 111.6 (CH_{Ar}), 111.4 (CH_{Ar}), 104.5 (CH_{Ar}), 67.5 (OCH₂), 64.9 (NHCOO<u>C</u>H₂), 45.1 (<u>C</u>H₂CH₂NHCON), 42.3 (OCH₂<u>C</u>H₂), 37.4 (CH₂<u>C</u>H₂NHCON), 28.7 (<u>C</u>H₂CH₂NHCbz), 25.8 (TrizCH₂<u>C</u>H₂), 24.5 (Triz<u>CH₂); HRMS (ES, positive mode) m/z: calculated for C₄₂H₃₉N₇O₅S 753.2733; Found</u> 753.2713 (-2.65 ppm).

1-(2-(5-(4-(4-Hydroxybutyl)-1H-1,2,3-triazol-1-yl)-2-(4-phenethylthiazol-2-

yl)phenoxy)ethyl)imidazolidin-2-one (12d). Following the general Hantzsch procedure, thioamide 8g (50 mg, 0.12 mmol) and the commercially available 1-bromo-4-phenylbutan-2-one 10a (28 mg, 0.12 mmol) were reacted. After the work-up, the residue was purified flash column chromatography (CH₂Cl₂/MeOH, 95:5) to obtain 12d (53 mg, 83%) as a colorless oil. ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm): 8.74 (s, 1H, Ar), 8.46 (d, J = 8.6 Hz, 1H, Ar), 7.75 (d, J = 2.1 Hz, 1H, Ar), 7.69 (dd, J = 8.6, 2.0 Hz, 1H, Ar), 7.37 (s, 1H, Ar), 7.29 - 7.11 (m, 4H, Ar), 7.20 - 7.15 (m, 1H, Ar), 6.39 (br s, 1H, NHCON), 4.47 (t, J = 5.7 Hz, 2H, OCH₂), 4.40 (t, J = 5.1 Hz, 2H, OH), 3.63 (t, J = 5.6 Hz, 2H, OCH₂CH₂), 3.54 -3.36 (m, 4H, CH₂OH, CH₂CH₂NHCON), 3.22 (t, J = 7.8 Hz, 2H, CH₂CH₂NHCON), 3.15 -3.03 (m, 4H, C<u>H₂CH₂Ph)</u>, 2.73 (t, J = 7.6 Hz, 2H, TrizCH₂), 1.73 (quin, J = 7.5 Hz, 2H, TrizCH₂CH₂), 1.58 - 1.37 (m, 2H, CH₂CH₂OH); ¹³C NMR (DMSO-d₆, 75 MHz) δ (ppm): 162.5 (NHCON), 159.8 (OC_{Ar}), 156.0 (C_{Ar}), 155.7 (C_{Ar}), 148.7 (C_{Ar}), 141.8 (C_{Ar}), 138.4 (C_{Ar}), 129.4 (CH_{Ar}), 128.7 (CH_{Ar}), 128.6 (CH_{Ar}), 126.2 (CH_{Ar}), 121.6 (C_{Ar}), 120.6 (CH_{Ar}), 116.3 (CH_{Ar}), 112.3 (CH_{Ar}), 104.6 (CH_{Ar}), 68.0 (OCH₂), 60.8 (CH₂OH), 45.7 (<u>C</u>H₂CH₂NHCON), 42.8 (OCH₂<u>C</u>H₂), 37.9 (CH₂<u>C</u>H₂NHCON), 35.1 (CH₂CH₂Ph), 33.0 (CH₂CH₂Ph), 32.4 (TrizCH₂CH₂), 25.7 (TrizCH₂), 25.3 (CH₂CH₂OH); HPLC (Gradient A, Agilent): $R_t = 8.0$ min; HRMS (ES, positive mode) m/z: calculated for C₂₈H₃₂N₆O₃S 532.2257; Found 532.2258 (0.17 ppm); Anal. Calc. for C₂₈H₃₂N₆O₃S: C. 63.14; H. 6.06; N. 15.78; S. 6.02; Found: C. 62.55; H. 6.21; N. 15.41; S. 5.81.

1-(2-(5-(4-butyl-1H-1,2,3-triazol-1-yl)-2-(4-phenethylthiazol-2-yl)phenoxy)ethyl)

imidazolidin-2-one (12e). Following the general Hantzsch procedure, thioamide **8f** (50 mg, 0.13 mmol) and the commercially available 1-bromo-4-phenylbutan-2-one **10a** (31 mg, 0.13 mmol) were reacted for 3 h. The crude was purified by CCTLC on the Chromatotron (CH₂Cl₂/MeOH, 96:4) to give **12e** (57 mg, 85%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.47 (d, *J* = 8.5 Hz, 1H, Ar), 7.73 (s, 1H, Ar), 7.52 (d, *J* = 2.0 Hz, 1H, Ar), 7.28 (dd, *J* = 8.5, 2.0 Hz, 1H, Ar), 7.24 - 7.09 (m, 5H, Ar), 6.87 (s, 1H, Ar),

4.37 (t, J = 5.5 Hz, 2H, OCH₂), 3.73 (t, J = 5.5 Hz, 2H, OCH₂C<u>H₂</u>), 3.54 (dd, J = 9.0, 6.7 Hz, 2H, C<u>H₂</u>CH₂NHCON), 3.33 (dd, J = 8.7, 7.0 Hz, 2H, CH₂C<u>H₂</u>NHCON), 3.19 - 2.93 (m, 4H, C<u>H₂CH₂Ph</u>), 2.74 (t, J = 7.7 Hz, 2H, TrizCH₂), 1.74 - 1.60 (m, 2H, TrizCH₂C<u>H₂</u>), 1.46 - 1.30 (m, 2H, C<u>H₂</u>CH₃), 0.90 (t, J = 7.4 Hz, 3H, CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 162.7 (NHCON), 160.3 (OC_{Ar}), 156.1 (C_{Ar}), 156.0 (C_{Ar}), 149.6 (C_{Ar}), 141.7 (C_{Ar}), 138.4 (C_{Ar}), 130.0 (CH_{Ar}), 128.6 (CH_{Ar}), 128.5 (CH_{Ar}), 126.1 (CH_{Ar}), 122.7 (C_{Ar}), 118.8 (CH_{Ar}), 115.2 (CH_{Ar}), 112.4 (CH_{Ar}), 104.6 (CH_{Ar}), 68.2 (OCH₂), 46.5 (<u>C</u>H₂CH₂NHCON), 43.2 (OCH₂CH₂), 38.5 (CH₂CH₂NHCON), 35.7 (CH₂CH₂Ph), 33.5 (CH₂CH₂Ph), 31.6 (TrizCH₂CH₂), 25.5 (TrizCH₂), 22.5 (<u>C</u>H₂CH₃), 14.0 (CH₃); HPLC (*Gradient A, Agilent*): R_t = 9.6 min; HRMS (ES, positive mode) m/z: calculated for C₂₈H₃₂N₆O₂S 516.2308; Found 516.2310 (0.52 ppm); Anal. Calc. for C₂₈H₃₂N₆O₂S: C. 65.09; H. 6.24; N. 16.27; S. 6.21; Found: C. 64.69; H. 6.33; N. 15.79; S. 6.01.

1-(2-(5-(4-Butyl-1H-1,2,3-triazol-1-yl)-2-(4-(2-([1,1'-biphenyl]-4-yl)ethyl)thiazol-2-

yl)phenoxy)ethyl)imidazolidin-2-one (12f). A solution of **11f** (100 mg, 0.17 mmol) in a 1:1 mixture of THF/MeOH (30 mL) and in the presence of catalytic amount of Pd/C 10% (20% wt/wt) was hydrogenated with hydrogen balloon for 2 h at room temperature. After filtration over PTFE membrane filters, volatiles were removed and the crude was co-evaporated with mixtures of CH₂Cl₂/MeOH (5 x 10 mL). The residue was purified by CCTLC on the Chromatotron (CH₂Cl₂/MeOH, 97:3) to give **12f** (40 mg, 39%) as a white solid. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.48 (d, *J* = 8.5 Hz, 1H, Ar), 7.73 (s, 1H, Ar), 7.57 - 7.49 (m, 3H, Ar), 7.45 (d, *J* = 8.1 Hz, 2H, Ar), 7.35 (t, *J* = 7.5 Hz, 2H, Ar), 7.30 - 7.14 (m, 4H, Ar), 6.90 (s, 1H, Ar), 4.46 (br s, 1H, NHCON), 4.37 (t, *J* = 5.5 Hz, 2H, OCH₂), 3.74 (t, *J* = 5.5 Hz, 2H, OCH₂CH₂), 3.54 (dd, *J* = 9.0, 6.7 Hz, 2H, CH₂CH₂NHCON), 3.33 (dd, *J* = 9.1, 6.6 Hz, 2H, CH₂CH₂NHCON), 3.17 - 3.02 (m, 4H, ThiazCH₂CH₂), 2.75 (t, *J* = 7.7 Hz, 2H, TrizCH₂), 1.68 (quin, *J* = 7.5 Hz, 2H, TrizCH₂CH₂), 1.38 (sex, *J* = 7.5 Hz, 2H, CH₂CH₃), 0.90 (t, *J* = 7.4 Hz, 3H, CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 162.6 (NHCON), 160.4 (OC_{Ar}), 156.0 (C_{Ar}), 149.6 (C_{Ar}), 141.1 (C_{Ar}), 139.0 (C_{Ar}),

138.5 (C_{Ar}), 130.0 (CH_{Ar}), 129.0 (CH_{Ar}), 128.9 (CH_{Ar}), 127.2 (CH_{Ar}), 127.2 (CH_{Ar}), 127.1 (CH_{Ar}), 122.7 (C_{Ar}), 118.8 (CH_{Ar}), 115.3 (CH_{Ar}), 112.6 (CH_{Ar}), 104.6 (CH_{Ar}), 68.2 (OCH₂), 46.5 (<u>C</u>H₂CH₂NHCON), 43.2 (OCH₂<u>C</u>H₂), 38.5 (CH₂<u>C</u>H₂NHCON), 35.3 (ThiazCH₂CH₂), 33.4 (ThiazCH₂CH₂), 31.6 (TrizCH₂<u>C</u>H₂), 25.5 (Triz<u>C</u>H₂), 22.5 (<u>C</u>H₂CH₃), 14.0 (CH₃); HPLC (*Gradient A, Agilent*): R_t = 9.6 min; HRMS (ES, positive mode) m/z: calculated for C₃₄H₃₆N₆O₂S 592.2621; Found 592.2610 (-1.83 ppm); Anal. Calc. for C₃₄H₃₆N₆O₂S: C. 68.89; H. 6.12; N. 14.18; S. 5.41; Found: C. 68.38; H. 6.27; N. 13.90; S. 5.00.

4-(1-(3-(2-(2-oxoimidazolidin-1-yl)ethoxy)-4-(4-phenethylthiazol-2-yl)phenyl)-1H-

1,2,3-triazol-4-yl)butanoic acid (12g). Methyl ester 11g (150 mg, 0.27 mmol) dissolved in THF (4 mL) was treated with 1 mL of an aqueous solution of LiOH (23 mg, 0.54 mmol) for 3 h at room temperature. Change from colorless to yellow was observed after the addition of the base. The crude was quenched with aq HCI 1N to pH = 1 and the acidic solution was concentrated under reduced pressure. The resulting solid was filtered and washed with H₂O (3 x 5 mL) to give pure **12g** (136 mg, 93%) as a white solid. M.p.: 174.5 - 177.5 °C; ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm): 8.47 (d, J = 8.5 Hz, 1H, Ar), 7.80 (s, 1H, Ar), 7.52 (d, J = 2.0 Hz, 1H, Ar), 7.28 (dd, J = 8.5, 2.0 Hz, 1H, Ar), 7.22 - 7.03 (m, 5H, Ar), 6.87 (s, 1H, Ar), 4.81 (br s, 1H, NHCON), 4.36 (t, J = 5.5 Hz, 2H, OCH₂), 3.72 (t, J = 5.5 Hz, 2H, OCH₂CH₂), 3.61 (s, 3H, Me), 3.53 (dd, J = 9.0, 6.6 Hz, 2H, CH₂CH₂NHCON), 3.33 (dd, J = 9.1, 6.6 Hz, 2H, CH₂CH₂NHCON), 3.14 - 2.93 (m, 4H, CH₂CH₂Ph), 2.79 (t, J = 7.5 Hz, 2H, TrizCH₂), 2.37 (t, J = 7.4 Hz, 2H, CH₂COOMe), 2.02 (quin, J = 7.5 Hz, 2H, TrizCH₂CH₂); ¹³C NMR (DMSO-d₆, 75 MHz) δ (ppm): 174.2 (COO), 162.2 (NHCON), 159.4 (OC_{Ar}), 155.6 (C_{Ar}), 156.4 (C_{Ar}), 147.7 (C_{Ar}), 141.4 (C_{Ar}), 138.0 (C_{Ar}), 129.0 (CH_{Ar}), 128.4 (CH_{Ar}), 128.3 (CH_{Ar}), 125.9 (CH_{Ar}), 121.3 (CH_{Ar}), 120.4 (C_{Ar}), 115.9 (CH_{Ar}), 112.0 (CH_{Ar}), 104.3 (CH_{Ar}), 67.6 (OCH₂), 45.3 (<u>C</u>H₂CH₂NHCON), 42.4 (OCH₂<u>C</u>H₂), 37.6 (CH₂CH₂NHCON), 34.8 (CH₂CH₂Ph), 33.0 (CH₂CH₂Ph), 32.7 (CH₂COOH), 24.5 (TrizCH₂CH₂), 24.2 (TrizCH₂); HRMS (ES, positive mode) m/z: calculated for C₂₉H₃₂N₆O₄S 560.2206; Found 560.2200 (-1.11 ppm). HPLC (*Gradient A, Agilent*): R_t = 8.2 min; HRMS (ES, negative mode) m/z: calculated for $C_{28}H_{30}N_6O_4S$ 546.2049; Found 546.2059 (1.81 ppm); Anal. Calc. for $C_{28}H_{30}N_6O_4S$: C. 61.52; H. 5.53; N. 15.37; S. 5.86; Found: C. 61.17; H. 5.60; N. 15.21; S. 5.81.

General procedure for N-Cbz deprotection. A solution of the corresponding Cbzprotected compound (1 eq) in a 1:1 mixture of THF/MeOH (20 mL) containing Pd/C (10%) (20% wt/wt) and TFA (0.5 - 1.5 mL), was hydrogenated at room temperature for 2 h, under atmospheric pressure using a balloon filled with hydrogen gas (3 cycles of vacuum + hydrogen). The Pd/C was filtered through Whatman PTFE filter paper, the solvent was removed under reduced pressure, and co-evaporated with mixtures of CH₂Cl₂/MeOH several times (5 x 10 mL). The residue was purified by HPFC on a SP1 Isolera Biotage using reverse phase columns (From 0% of CH₃CN to 100% of CH₃CN in 45 min) to give the final deprotected compounds as trifluoroacetate salts.

1-(2-(5-(4-(3-Ammoniumpropyl)-1H-1,2,3-triazol-1-yl)-2-(4-phenethylthiazol-2-

yl)phenoxy)ethyl)imidazolidin-2-one 2,2,2 *trifluoroacetate* (12*h*). Following the general procedure of Cbz removal, 11h (160 mg, 0.25 mmol), Pd/C 10 % (32 mg) and TFA (1.2 mL) were reacted. Work-up and purification gave 12h (76 mg, 49%) as a colorless oil. ¹H NMR (CD₃OD, 400 MHz) \bar{o} (ppm): 8.47 (s, 1H, Ar), 8.46 (d, *J* = 8.6 Hz, 1H, Ar), 7.71 (d, *J* = 2.1 Hz, 1H, Ar), 7.59 (dd, *J* = 8.6, 2.1 Hz, 1H, Ar), 7.33 - 7.17 (m, 5H, Ar), 7.15 (s, 1H, Ar), 4.49 (t, *J* = 5.5 Hz, 2H, OCH₂), 3.75 (t, *J* = 5.5 Hz, 2H, OCH₂C<u>H₂</u>), 3.60 (dd, *J* = 9.3, 6.9 Hz, 2H, C<u>H₂CH₂NHCON</u>), 3.37 (dd, *J* = 9.3, 6.9 Hz, 2H, CH₂C<u>H₂NHCON</u>), 3.18 - 3.03 (m, 6H, C<u>H₂CH₂Ph, CH₂NH₃⁺), 2.93 (t, *J* = 7.4 Hz, 2H, TrizCH₂), 2.12 (quin, *J* = 7.6 Hz, 2H, C<u>H₂CH₂NH₃⁺); ¹³C NMR (CD₃OD, 75 MHz) \bar{o} (ppm): 165.1 (NHCON), 162.0 (OC_{Ar}), 157.5 (C_{Ar}), 157.1 (C_{Ar}), 148.4 (C_{Ar}), 142.8 (C_{Ar}), 139.6 (C_{Ar}), 130.8 (CH_{Ar}), 129.5 (CH_{Ar}), 129.4 (CH_{Ar}), 127.0 (CH_{Ar}), 123.9 (C_{Ar}), 121.8 (CH_{Ar}), 117.0 (CH_{Ar}), 113.6 (CH₄r), 105.8 (CH_{Ar}), 68.5 (OCH₂), 47.0 (<u>C</u>H₂CH₂NHCON), 43.8 (OCH₂CH₂), 40.2 (CH₂NH₃⁺), 23.2 (TrizCH₂); HPLC (*Gradient A, Agilent*): $R_t = 7.2$ min; HRMS (ES, positive mode) m/z:</u></u>

calculated for $C_{27}H_{31}N_7O_2S$ 517.2260; Found 517.2266 (1.17 ppm); Anal. Calc. for $C_{27}H_{31}N_7O_2S$.TFA: C. 55.14; H. 5.11; N. 15.52; S. 5.08; Found: C. 54.99; H. 5.24; N. 15.09; S. 5.00.

1-(2-(2-(4-(2-([1,1'-Biphenyl]-4-yl)ethyl)thiazol-2-yl)-5-(4-(3-ammoniumpropyl)-1H-

1,2,3-triazol-1-yl)phenoxy)ethyl)imidazolidin-2-one 2,2,2 trifluoroacetate (12i). Following the general Cbz deprotection procedure, 11i (107 mg, 0.15 mmol), Pd/C 10 % (21 mg) and TFA (1 mL) were reacted, to give **12i** (26 mg, 25%) as a colorless oil. ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm): 8.77 (s, 1H, Ar), 8.49 (d, J = 8.6 Hz, 1H, Ar), 7.88 -7.55 (m, 8H, Ar), 7.53 - 7.41 (m, 2H, Ar), 7.36 - 7.31 (m, 2H, Ar), 6.40 (br s, 1H, NHCON), 4.47 (t, J = 5.7 Hz, 2H, OCH₂), 3.64 (t, J = 5.6 Hz, 2H, OCH₂CH₂), 3.49 (dd, J = 9.0, 6.7Hz, 2H, CH₂CH₂NHCON), 3.22 (dd, J = 9.0, 6.7 Hz, 2H, CH₂CH₂NHCON), 3.17 - 3.03 (m, 4H, ThiazCH₂CH₂), 2.93 (t, J = 7.5, 2H, CH₂NH₃⁺), 2.83 (t, J = 8.5 Hz, 2H, TrizCH₂), 1.98 (quin, J = 7.6 Hz, 2H, CH₂CH₂NH₃⁺); ¹³C NMR (DMSO-d₆, 75 MHz) δ (ppm): 162.2 (NHCON), 159.4 (OC_{Ar}), 155.6 (C_{Ar}), 155.4 (C_{Ar}), 147.0 (C_{Ar}), 140.7 (C_{Ar}), 140.0 (C_{Ar}), 137.9 (C_{Ar}), 137.8 (C_{Ar}), 129.0 (CH_{Ar}), 128.9 (CH_{Ar}), 128.9 (CH_{Ar}), 127.2 (CH_{Ar}), 126.6 (CH_{Ar}), 126.5 (CH_{Ar}), 121.5 (C_{Ar}), 120.6 (CH_{Ar}), 116.1 (CH_{Ar}), 112.1 (CH_{Ar}), 104.5 (CH_{Ar}), 67.6 (OCH₂), 45.4 (<u>C</u>H₂CH₂NHCON), 42.4 (OCH₂<u>C</u>H₂), 37.6 (CH₂NH₃⁺), 37.5 (CH₂CH₂NHCON), 34.3 (ThiazCH₂CH₂), 32.6 (ThiazCH₂CH₂), 26.7 (CH₂CH₂NH₃⁺), 22.0 (TrizCH₂); HPLC (*Gradient A, Agilent*): $R_t = 8.4$ min; HRMS (ES, positive mode) m/z: calculated for C₃₃H₃₅N₇O₂S 593.2573; Found 593.2572 (-0.09 ppm); Anal. Calc. for C₃₃H₃₅N₇O₂S.TFA: C. 59.40; H. 5.13; N. 13.85; S. 4.53; Found: C. 59.67; H. 5.41; N. 13.66; S. 4.25.

4-(1-(3-Methoxy-4-(4-phenethylthiazol-2-yl)phenyl)-1H-1,2,3-triazol-4-yl)butan-1-

ammonium 2,2,2 trifluoroacetate (12j). A solution of **11j** (60 mg, 0.11 mmol) in CH_2CI_2 (7 mL) was treated with Pd/C 10 % (20 mg) and TFA (1 mL) according to the general Cbz deprotection procedure. Work-up and purification afforded **12j** (20 mg, 36%) as a

colorless oil. ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 8.45 (s, 1H, Ar), 8.45 (d, *J* = 8.3 Hz, 1H, Ar), 7.67 (d, *J* = 2.1 Hz, 1H, Ar), 7.55 (dd, *J* = 8.6, 2.1 Hz, 1H, Ar), 7.36 - 7.16 (m, 5H, Ar), 7.15 (s, 1H, Ar), 4.12 (s, 3H, OCH₃), 3.20 - 3.02 (m, 4H, CH₂CH₂Ph), 3.00 (t, *J* = 7.5 Hz, 2H, CH₂NH₃⁺), 2.87 (t, *J* = 7.3 Hz, 2H, TrizCH₂), 1.95 - 1.85 (m, 2H, TrizCH₂CH₂), 1.84 - 1.75 (m, 2H, CH₂CH₂NH₃⁺); ¹³C NMR (CD₃OD, 100 MHz) δ (ppm): 162.1 (OC_{Ar}), 158.6 (C_{Ar}), 156.8 (C_{Ar}), 149.4 (C_{Ar}), 142.8 (C_{Ar}), 139.8 (C_{Ar}), 130.5 (CH_{Ar}), 129.5 (CH_{Ar}), 129.4 (CH_{Ar}), 127.0 (CH_{Ar}), 123.8 (C_{Ar}), 121.6 (CH_{Ar}), 116.9 (CH_{Ar}), 113.2 (CH_{Ar}), 104.8 (CH_{Ar}), 56.7 (OCH₃), 40.4 (CH₂NH₃⁺), 36.7 (CH₂CH₂Ph), 34.2 (CH₂CH₂Ph), 28.0 (CH₂CH₂NH₃⁺), 27.1 (TrizCH₂CH₂), 25.6 (TrizCH₂); HPLC (*Gradient A, Agilent*): *R_t* = 8.1 min; HRMS (ES, positive mode) m/z: calculated for C₂₄H₂₇N₅OS 433.1936; Found 433.1931 (-1.25 ppm); Anal. Calc. for C₂₄H₂₇N₅OS.TFA: C. 57.03; H. 5.15; N. 12.79; S. 5.85; Found: C. 57.25; H. 5.31; N. 12.61; S. 5.39.

4-(1-(3-Methoxy-4-(4-(2-([1,1'-Biphenyl]-4-yl)ethyl)thiazol-2-yl)phenyl)-1H-1,2,3-

triazol-4-yl)butan-1-ammonium 2,2,2 trifluoroacetate (12k). Following the general Cbz deprotection procedure, **11k** (120 mg, 0.19 mmol), Pd/C 10 % (24 mg) and TFA (1 mL) were reacted. Work-up and purification yielded **12k** (42 mg, 36%) as a colorless oil. ¹H NMR (DMSO-d₆, 400 MHz) \bar{o} (ppm): 8.76 (s, 1H, Ar), 8.48 (d, *J* = 8.6 Hz, 1H, Ar), 7.82 - 7.70 (m, 3H, NH₃⁺), 7.73 (d, *J* = 2.1 Hz, 1H, Ar), 7.68 - 7.61 (m, 3H, Ar), 7.58 (d, *J* = 8.2 Hz, 2H, Ar), 7.48 - 7.41 (m, 3H, Ar), 7.38 - 7.27 (m, 3H, Ar), 4.13 (s, 3H, OCH₃), 3.20 - 3.05 (m, 4H, ThiazCH₂CH₂), 2.85 (t, *J* = 7.5 Hz, 2H, CH₂NH₃⁺), 2.77 (t, *J* = 7.3 Hz, 2H, TrizCH₂), 1.75 (quin, *J* = 7.2 Hz, 2H, TrizCH₂CH₂), 1.63 (quin, *J* = 7.2 Hz, 2H, CH₂CH₂NH₃⁺); ¹³C NMR (DMSO-d₆, 100 MHz) \bar{o} (ppm): 159.3 (OC_{Ar}), 156.6 (C_{Ar}), 155.3 (CA_r), 147.7 (CA_r), 140.7 (CA_r), 140.0 (CA_r), 138.0 (CA_r), 137.8 (CA_r), 129.0 (CHA_r), 128.9 (CH_{Ar}), 126.6 (CHA_r), 126.5 (CHA_r), 121.2 (CHA_r), 120.5 (CHA_r), 120.4 (CHA_r), 118.8 (CA_r), 116.0 (CHA_r), 111.9 (CHA_r), 103.7 (CHA_r), 56.5 (OCH₃), 38.6 (CH₂NH₃⁺), 34.3 (ThiazCH₂CH₂), 32.6 (ThiazCH₂CH₂), 26.5 (CH₂CH₂NH₃⁺), 25.6 (TrizCH₂CH₂), 24.4 (TrizCH₂), HPLC (*Gradient A, Agilent*): *R*_f = 9.6 min; HRMS (ES, positive mode) m/z:
calculated for $C_{30}H_{31}N_5OS$ 509.2249; Found 509.2256 (1.37 ppm); Anal. Calc. for $C_{30}H_{31}N_5OS.TFA$: C. 61.62; H. 5.17; N. 11.23; S. 5.14; Found: C. 61.26; H. 5.08; N. 11.22; S. 5.13.

1-(2-(5-(4-(4-Ammoniobutyl)-1H-1,2,3-triazol-1-yl)-2-(4-phenylthiazol-2-yl)phenoxy)

ethyl)imidazolidin-2-one 2,2,2 trifluoroacetate (12n). According to the general Cbz deprotection procedure, **11n** (90 mg, 0.14 mmol), Pd/C 10 % (18 mg) and TFA (1 mL) were reacted. After work-up and purification compound **12n** (21 mg, 26%) was obtained as a colorless oil. ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 8.64 (d, J = 8.6 Hz, 1H, Ar), 8.46 (s, 1H, Ar), 8.54 (dd, J = 8.2, 1.3 Hz, 2H, Ar), 7.81 (s, 1H, Ar), 7.71 (d, J = 2.0 Hz, 1H, Ar), 7.61 (dd, J = 8.6, 2.0 Hz, 1H, Ar), 7.45 (dd, J = 8.3, 7.0 Hz, 2H, Ar), 7.36 (d, J = 7.4 Hz, 1H, Ar), 4.51 (t, J = 5.5 Hz, 2H, OCH₂), 3.78 (t, J = 5.5 Hz, 2H, OCH₂CH₂), 3.64 (dd, J =9.3, 6.9 Hz, 2H, CH₂CH₂NHCON), 3.39 (dd, J = 9.2, 6.9 Hz, 2H, CH₂CH₂NHCON), 3.03 (t, J = 7.4 Hz, 2H, CH₂NH₃⁺), 2.87 (t, J = 7.2 Hz, 2H, TrizCH₂), 1.92 - 1.83 (m, 2H, TrizCH₂CH₂), 1.83 - 1.73 (m, 2H, CH₂CH₂NH₃⁺); ¹³C NMR (CD₃OD, 100 MHz) δ (ppm): 165.1 (NHCON), 162.0 (OC_{Ar}), 157.5 (C_{Ar}), 155.8 (C_{Ar}), 149.3 (C_{Ar}), 139.7 (C_{Ar}), 135.9 (C_{Ar}), 131.0 (CH_{Ar}), 129.8 (CH_{Ar}), 129.2 (CH_{Ar}), 127.4 (CH_{Ar}), 123.9 (C_{Ar}), 121.6 (CH_{Ar}), 116.0 (CH_{Ar}), 113.6 (CH_{Ar}), 105.6 (CH_{Ar}), 68.4 (OCH₂), 47.0 (<u>C</u>H₂CH₂NHCON), 43.9 (OCH₂CH₂), 40.4 (CH₂NH₃⁺), 39.3 (CH₂CH₂NHCON), 28.0 (CH₂CH₂NH₃⁺), 27.1 $(TrizCH_2CH_2)$, 25.6 $(TrizCH_2)$; HPLC (*Gradient A, Agilent*): $R_t = 7.5$ min; HRMS (ES, positive mode) m/z: calculated for C₂₆H₂₉N₇O₂S 503.2103; Found 503.2100 (-0.66 ppm); Anal. Calc. for C₂₆H₂₉N₇O₂S.TFA: C. 54.45; H. 4.90; N. 15.87; S. 5.19; Found: C. 54.66; H. 4.48; N. 15.90; S. 5.15.

1-(2-(5-(4-(4-Ammoniumbutyl)-1H-1,2,3-triazol-1-yl)-2-(4-(3-phenylpropyl)thiazol-2-

*yl)phenoxy)ethyl)imidazolidin-2-one 2,2,2 trifluoroacetate (12p).*The general Cbz deprotection procedure was followed with **11p** (160 mg, 0.24 mmol), Pd/C 10 % (32 mg) and TFA (1.3 mL) to give, after work-up and purification, compound **12p** (16 mg, 11%) as a colorless oil. ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 8.50 (s, 1H, Ar), 8.48 (d, *J* = 8.5 Hz,

1H, Ar), 7.71 (d, J = 2.1 Hz, 1H, Ar), 7.58 (dd, J = 8.6, 2.0 Hz, 1H, Ar), 7.38 - 7.06 (m, 6H, Ar), 4.49 (t, J = 5.6 Hz, 2H, OCH₂), 3.75 (t, J = 5.5 Hz, 2H, OCH₂CH₂), 3.61 (dd, J = 9.3, 6.9 Hz, 2H, CH₂CH₂NHCON), 3.00 (t, J = 7.5 Hz, 2H, CH₂CH₂NHCON), 3.37 (dd, J = 9.3, 6.9 Hz, 2H, CH₂CH₂NHCON), 3.00 (t, J = 7.5 Hz, 2H, CH₂NH₃⁺), 2.93 - 2.84 (m, J = 7.0 Hz, 4H, ThiazCH₂, CH₂Ph), 2.71 (t, J = 7.6 Hz, 2H, TrizCH₂), 2.09 (quin, J = 7.6 Hz, 2H, ThiazCH₂CH₂), 1.99 - 1.85 (m, 2H, TrizCH₂CH₂), 1.78 - 1.72 (m, 2H, CH₂CH₂NH₃⁺); ¹³C NMR (CD₃OD, 75 MHz) δ (ppm): 165.1 (NHCON), 162.0 (OC_{Ar}), 157.8 (C_{Ar}), 157.5 (C_{Ar}), 149.3 (C_{Ar}), 143.4 (C_{Ar}), 139.6 (C_{Ar}), 130.8 (CH_{Ar}), 129.5 (CH_{Ar}), 129.4 (CH_{Ar}), 126.8 (CH_{Ar}), 123.9 (C_{Ar}), 121.6 (CH_{Ar}), 116.6 (CH_{Ar}), 113.6 (CH_{Ar}), 105.7 (CH_{Ar}), 68.5 (OCH₂), 46.9 (CH₂CH₂NHCON), 43.9 (OCH₂CH₂), 40.4 (CH₂NH₃⁺), 39.3 (CH₂CH₂NHCON), 36.4 (CH₂CH₂CH₂Ph), 32.4 (CH₂CH₂CH₂Ph), 31.7 (CH₂CH₂CH₂Ph), 28.0 (CH₂CH₂NH₃⁺), 27.1 (TrizCH₂CH₂), 25.6 (TrizCH₂); HPLC (*Gradient A, Agilent*): $R_t = 7.7$ min; HRMS (ES, positive mode) m/z: calculated for C₂₉H₃₅N₇O₂S 545.2573; Found 545.2573 (0.03 ppm); Anal. Calc. for C₂₉H₃₅N₇O₂S.TFA: C. 56.44; H. 5.50; N. 14.86; S. 4.86; Found: C. 56.04; H. 5.66; N. 14.59; S. 4.48.

1-(2-(5-(4-(4-Ammoniumbutyl)-1H-1,2,3-triazol-1-yl)-2-(4-(2-(3,4-dihydro-2H-1 λ ²-

quinolin-5-yl)ethyl)thiazol-2-yl)phenoxy)ethyl)imidazolidin-2-one 2,2,2

trifluoroacetate (12q). Following the general Cbz deprotection procedure, **11q** (115 mg, 0.16 mmol) was hydrogenated to give **12q** (24 mg, 15%) as a colorless oil. ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 8.47 (s, 1H, Ar), 8.46 (d, *J* = 8.9 Hz, 1H, Ar), 7.71 (d, *J* = 2.1 Hz, 1H, Ar), 7.59 (dd, *J* = 8.6, 2.0 Hz, 1H, Ar), 7.15 (s, 1H, Ar), 6.93 - 6.82 (m, 2H, Ar), 6.63 (d, *J* = 8.7 Hz, 1H, Ar), 4.49 (t, *J* = 5.5 Hz, 2H, OCH₂), 3.75 (t, *J* = 5.5 Hz, 2H, OCH₂CH₂), 3.61 (dd, *J* = 9.3, 6.9 Hz, 2H, CH₂CH₂NHCON), 3.37 (dd, *J* = 9.3, 6.9 Hz, 2H, CH₂CH₂NHCON), 3.27 (t, *J* = 5.5 Hz, 2H, PhNHCH₂), 3.08 (t, *J* = 7.5 Hz, 2H, ThiazCH₂CH₂), 3.03 - 2.92 (m, 4H, ThiazCH₂CH₂, CH₂NH₃⁺), 2.88 (t, *J* = 7.2 Hz, 2H, PhNHCH₂CH₂), 1.89 - 1.72 (m, 4H, TrizCH₂CH₂, CH₂CH₂NH₃⁺); ¹³C NMR (CD₃OD, 100

MHz) δ (ppm): 165.1 (NHCON), 161.0 (OC_{Ar}), 157.5 (C_{Ar}), 157.3 (C_{Ar}), 149.3 (C_{Ar}), 141.5 (C_{Ar}), 139.7 (C_{Ar}), 134.9 (C_{Ar}), 130.8 (CH_{Ar}), 130.8 (CH_{Ar}), 128.0 (CH_{Ar}), 125.6 (C_{Ar}), 123.8 (C_{Ar}), 121.6 (CH_{Ar}), 118.2 (CH_{Ar}), 116.9 (CH_{Ar}), 113.6 (CH_{Ar}), 105.7 (CH_{Ar}), 68.4 (OCH₂), 46.9 (CH₂CH₂NHCON), 43.8 (OCH₂CH₂), 43.8 (PhNHCH₂), 40.4 (CH₂NH₃⁺), 39.3 (CH₂CH₂NHCON), 36.0 (ThiazCH₂CH₂), 34.5 (ThiazCH₂CH₂), 28.0 (CH₂CH₂NH₃⁺), 27.5 (PhNHCH₂CH₂CH₂), 27.1 (TrizCH₂CH₂), 25.6 (TrizCH₂), 22.8 (PhNHCH₂CH₂CH₂); HPLC: (*Gradient from 2% of CH*₃CN *to 30% of CH*₃CN, *Agilent*), *R_t* = 1.4 min; HRMS (ES, positive mode) m/z: calculated for C₃₁H₃₈N₈O₂S 586.2838; Found 586.2859 (3.60 ppm); Anal. Calc. for C₃₁H₃₈N₈O₂S.2TFA: C. 51.59; H. 4.95; N. 13.75; S. 3.93; Found: C. 51.11; H. 4.86; N. 13.26; S. 3.56.

1-(2-(5-(4-(4-Ammoniumbutyl)-1H-1,2,3-triazol-1-yl)-2-(4-(2-(2,3-dihydrobenzofuran-6yl)ethyl)thiazol-2-yl)phenoxy)ethyl)imidazolidin-2-one 2,2,2 trifluoroacetate (12r). Following the general procedure of Cbz deprotection, **11r** (106 mg, 0.15 mmol) was hydrogenated with Pd/C 10 % (21 mg) and TFA (1 mL). Work-up and purification yielded **12r** (43 mg, 42%) as a colorless oil. ¹H NMR (D₂O, 400 MHz, 90 °C) δ (ppm): 8.58 (d, J = 8.5 Hz, 1H, Ar), 8.55 (s, 1H, Ar), 7.84 (d, J = 2.0 Hz, 1H, Ar), 7.67 (dd, J = 8.6, 2.0 Hz, 1H, Ar), 7.35 (d, J = 1.9 Hz, 1H, Ar), 7.30 (s, 1H, Ar), 7.25 (dd, J = 8.1, 1.9 Hz, 1H, Ar), 7.06 (d, J = 8.0 Hz, 1H, Ar), 4.40 (t, J = 5.5 Hz, 2H, OCH₂CH₂N), 4.17 (t, J = 8.7 Hz, 2H, OCH_2CH_2Ph), 4.06 (t, J = 5.5 Hz, 2H, OCH_2CH_2N), 3.92 (dd, J = 9.7, 6.8 Hz, 2H, CH_2CH_2NHCON), 3.78 (dd, J = 9.5, 6.8 Hz, 2H, CH_2CH_2NHCON), 3.67 (t, J = 8.7 Hz, OCH₂CH₂Ph), 3.48 - 3.21 (m, 8H, ThiazCH₂CH₂, CH₂NH₃⁺, TrizCH₂), 2.38 - 2.26 (m, 2H, TrizCH₂CH₂, CH₂CH₂NH₃⁺); ¹³C NMR (D₂O, 100 MHz, 90 °C) δ (ppm): 164.5 (NHCON), 160.7 (OC_{Ar}), 158.2 (OC_{Ar}), 156.3 (C_{Ar}), 156.1 (C_{Ar}), 149.1 (C_{Ar}), 138.1 (C_{Ar}), 134.2 (C_{Ar}), 129.7 (CH_{Ar}), 127.9 (CH_{Ar}), 127.8 (CH_{Ar}), 125.3 (CH_{Ar}), 122.7 (CH_{Ar}), 120.8 (CH_{Ar}), 115.7 (C_{Ar}), 112.9 (C_{Ar}), 109.1 (CH_{Ar}), 105.2 (CH_{Ar}), 71.7 (O<u>C</u>H₂CH₂Ph), 68.4 (O<u>C</u>H₂CH₂N), 46.3 (CH₂CH₂NHCON), 43.2 (OCH₂CH₂N), 39.9 (CH₂NH₃⁺), 38.4 (CH₂CH₂NHCON), 34.7 $(ThiazCH_{2}CH_{2}), \ 33.3 \ (ThiazCH_{2}CH_{2}), \ 29.8 \ (OCH_{2}\underline{C}H_{2}Ph), \ 27.0 \ (\underline{C}H_{2}CH_{2}NH_{3}^{+}), \ 25.9$

(TrizCH₂<u>C</u>H₂), 24.7 (Triz<u>C</u>H₂); HPLC (*Gradient A, Agilent*): R_t = 7.2 min; HRMS (ES, positive mode) m/z: calculated for C₃₀H₃₅N₇O₃S 573.2522; Found 573.2520 (-0.43 ppm); Anal. Calc. for C₃₀H₃₅N₇O₃S.TFA: C. 55.89; H. 5.28; N. 14.26; S. 4.66; Found: C. 54.96; H. 5.72; N. 13.67; S. 4.89.

1-(2-(5-(4-(4-Ammoniumbutyl)-1H-1,2,3-triazol-1-yl)-2-(4-(2-(dibenzo[b,d]furan-1-

yl)ethyl)thiazol-2-yl)phenoxy)ethyl)imidazolidin-2-one 2,2,2 trifluoroacetate (12s). Following the general procedure of hydrogenation, **11s** (176 mg, 0.23 mmol) was treated with Pd/C 10 % (35 mg) and TFA (1.2 mL) to give, after the work-up and purification, compound **12s** (19 mg, 13%) as a colorless oil. ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm): 8.66 (s, 1H, Ar), 8.48 (d, J = 8.6 Hz, 1H, Ar), 8.09 (dd, J = 7.7, 1.4 Hz, 1H, Ar), 8.03 (d, J = 1.8 Hz, 1H, Ar), 7.80 - 7.30 (m, 11H, Ar, NH_3^+), 6.18 (br s, 1H, NHCON), 4.48 (t, J = 5.8Hz, 2H, OCH₂), 3.64 (t, J = 5.7 Hz, 2H, OCH₂CH₂), 3.49 (dd, J = 8.9, 6.8 Hz, 2H, CH_2CH_2NHCON), 3.27 - 3.20 (m, 4H, Thiaz CH_2CH_2), 2.87 (t, J = 7.4 Hz, 2H, $CH_2NH_3^+$), 2.79 (t, J = 7.2 Hz, 2H, TrizCH₂), 1.78 (quin, J = 7.4 Hz, 2H, TrizCH₂CH₂), 1.68 (quin, J = 7.6 Hz, 2H, CH₂CH₂NH₃⁺); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 162.1 (NHCON), 159.4 (OC_{Ar}), 155.7 (OC_{Ar}), 155.6 (OC_{Ar}), 155.3, (NHCOO), 154.0 (C_{Ar}), 147.7 (C_{Ar}), 137.9 (C_{Ar}), 136.3 (C_{Ar}), 129.1 (CH_{Ar}), 128.0 (CH_{Ar}), 127.4 (CH_{Ar}), 123.5 (C_{Ar}), 123.0 (CH_{Ar}), 121.4 (C_{Ar}), 121.0 (CH_{Ar}), 120.5 (CH_{Ar}), 120.4 (CH_{Ar}), 116.1 (CH_{Ar}), 112.0 (CH_{Ar}), 111.6 (CH_{Ar}), 111.2 (CH_{Ar}), 104.3 (CH_{Ar}), 67.6 (OCH₂), 45.3 (<u>C</u>H₂CH₂NHCON), 42.4 (OCH₂<u>C</u>H₂), 38.7 (CH₂NH₃⁺), 37.5 (CH₂CH₂NHCON), 34.7 (ThiazCH₂CH₂), 33.2 (ThiazCH₂CH₂), 26.5 $(\underline{C}H_2CH_2NH_3^+)$, 25.5 (TrizCH₂ $\underline{C}H_2$), 24.4 (Triz $\underline{C}H_2$); HPLC (*Gradient A, Waters*): $R_t = 7.0$ min; HRMS (ES, positive mode) m/z: calculated for C₃₄H₃₅N₇O₃S 621.2522; Found 621.2517 (-0.78 ppm); Anal. Calc. for C₃₄H₃₅N₇O₃S.TFA: C. 58.77; H. 4.93; N. 13.33; S. 4.36; Found: C. 59.15; H. 5.09; N. 13.46; S. 4.21

Synthesis of truncated analogues 13 and 14

4-Bromo-2-(2-(2-oxoimidazolidin-1-yl)ethoxy)benzothioamide (A).

Following the general procedure for the synthesis of thioamides (**8a-g**), the bromobenzonitrile **4a**¹ (1.15 g, 3.71 mmol) dissolved in DMF (25 mL) was treated with a solution of (NH₄)₂S 20% aq (17.6 mL, 0.26 mol). After the work-up, the crude was purified by flash column chromatography (CH₂Cl₂/MeOH, 100:2) to give thioamide **A** (845 mg, 69%) as a yellow solid. M.p.: Decompose without melting; ¹H NMR (DMSO-d₆, 400 MHz) δ (ppm): 10.03 (br s, 1H, SCNH₂), 9.35 (br s, 1H, SCNH₂), 8.64 (d, *J* = 8.3 Hz, 1H, Ar), 7.31 (d, *J* = 1.9 Hz, 1H, Ar), 7.17 (dd, *J* = 8.4, 1.8 Hz, 1H, Ar), 6.35 (br s, 1H, NHCON), 4.16 (t, *J* = 5.2 Hz, 2H, OCH₂), 3.47 (dd, *J* = 9.0, 6.7 Hz, 2H, CH₂CH₂NHCON), 3.42 (t, *J* = 5.1 Hz, 2H, OCH₂CH₂), 3.22 (t, *J* = 7.9 Hz, 2H, CH₂CH₂NHCON); ¹³C NMR (DMSO-d₆, 75 MHz) δ (ppm): 197.6 (SCNH₂), 162.3 (NHCOO), 154.1 (OCA_r), 132.6 (CH_{Ar}), 129.7 (CA_r), 123.9 (CH_{Ar}), 123.2 (CH_{Ar}), 115.6 (CA_r), 67.6 (OCH₂), 45.6 (CH₂CH₂NHCON), 42.6 (OCH₂CH₂), 37.6 (CH₂CH₂NHCON); MS (ESI, positive mode) m/z: 346.0 [M+H]⁺, with a Br isotopic pattern.

1-(2-(2-(4-Phenethylthiazol-2-yl)-5-bromophenoxy)ethyl)imidazolidin-2-one (13).

Following the general Hantzsch procedure, thioamide **A** (200 mg, 0.58 mmol) and commercially available 1-bromo-4-phenylbutan-2-one (132 mg, 0.58 mmol) were reacted for 4 h. After the work-up, the final residue was purified by CCTLC on the Chromatotron (CH₂Cl₂/MeOH, 98:2) to yield **13** (241 mg, 85%) as a white solid. M.p.: 160-162 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.20 (d, *J* = 8.4 Hz, 1H, Ar), 7.36 - 6.99 (m, 7H, Ar), 6.83 (s, 1H, Ar), 4.64 (br s, 1H, NHCON), 4.25 (t, *J* = 5.3 Hz, 2H, OCH₂), 3.69 (t, *J* = 5.3 Hz, 2H, OCH₂C<u>H₂</u>), 3.52 (dd, *J* = 9.0, 6.7 Hz, 2H, C<u>H₂CH₂NHCON</u>), 3.31 (dd, *J* = 9.1, 6.6 Hz, 2H, CH₂C<u>H₂NHCON</u>), 3.11 - 2.97 (m, 4H, ThiazCH₂CH₂); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 162.7 (NHCON), 160.6 (OC_{Ar}), 155.9 (C_{Ar}), 155.7 (C_{Ar}), 141.7 (C_{Ar}), 130.0 (CH_{Ar}), 128.6 (CH_{Ar}), 128.5 (CH_{Ar}), 126.1 (CH_{Ar}), 124.8 (CH_{Ar}), 124.0 (C_{Ar}), 121.9 (C_{Ar}), 115.9

(CH_{Ar}), 114.9 (CH_{Ar}), 68.5 (OCH₂), 46.7 (<u>C</u>H₂CH₂NHCON), 43.3 (OCH₂<u>C</u>H₂), 38.5 (CH₂<u>C</u>H₂NHCON), 35.7 (ThiazCH₂CH₂), 33.5 (ThiazCH₂CH₂); HPLC (*Gradient A, Agilent*): $R_t = 9.9$ min; HRMS (ES, positive mode) m/z: calculated for C₂₂H₂₂BrN₃O₂S 471.0616; Found 471.0622 (1.32 ppm); Anal. Calc. for C₂₂H₂₂BrN₃O₂S: C. 55.94; H. 4.69; N. 8.90; S. 6.79; Found: C. 55.77; H. 4.73; N. 8.71; S. 6.62.

4-(4-(4-Ammoniobutyl)-1H-1,2,3-triazol-1-yl)-2-(2-(2-oxoimidazolidin-1-yl)ethoxy)

benzonitrile bis(2,2,2 trifluoroacetate) (14). A solution of 7a (5 mg, 0.01 mmol) in CH₂Cl₂ (3 mL) was treated with TFA (0.3 mL) for 2 h at room temperature. Volatiles were removed and the crude was co-evaporated several times with CH₂Cl₂/MeOH (5 x 10 mL). The final residue was purified HPFC on a SP1 Isolera Biotage using reverse phase columns (From 0% of CH₃CN to 100% of CH₃CN in 45 min) to yield 14 (3 mg, 60%) as a colorless oil. ¹H NMR (DMSO-d₆, 500 MHz) δ (ppm): 8.80 (s, 1H, Ar), 7.97 (d, J = 8.4 Hz, 1H, Ar), 7.76 (d, J = 1.9 Hz, 1H, Ar), 7.67 (dd, J = 8.5, 1.9 Hz, 1H, Ar), 7.40 - 6.65 (m, 3H, NH₃⁺), 6.42 (br s, 1H, NHCON), 4.37 (t, J = 5.3 Hz, 2H, OCH₂), 3.55 (dd, J = 8.9, 6.8 Hz, 2H, CH_2CH_2NHCON), 3.50 (t, J = 5.3 Hz, 2H, OCH_2CH_2), 3.25 (t, J = 7.9 Hz, 2H, CH_2CH_2NHCON), 2.82 - 2.72 (m, 4H, $CH_2NH_3^+$, $TrizCH_2$), 1.72 (quin, J = 7.5 Hz, 2H, TrizCH₂CH₂), 1.57 (quin, J = 7.8 Hz, 2H, CH₂CH₂NH₃⁺); ¹³C NMR (DMSO-d₆, 125 MHz) δ (ppm): 162.1 (NHCON), 161.1 (OC_{Ar}), 148.1 (C_{Ar}), 141.1 (C_{Ar}), 135.4 (CH_{Ar}), 120.6 (CH_{Ar}), 115.7 (CN), 111.9 (CH_{Ar}), 104.1 (CH_{Ar}), 100.0 (C_{Ar}), 68.8 (OCH₂), 46.0 (CH₂CH₂NHCON), 42.4 (OCH₂CH₂), 40.0 (CH₂NH₃⁺), 37.6 (CH₂CH₂NHCON), 27.8 (CH₂CH₂NH₃⁺), 25.6 (TrizCH₂CH₂), 24.5 (TrizCH₂); HPLC (*Gradient A, Agilent*): R_t = 4.8 min; HRMS (ES, positive mode) m/z: calculated for C₁₈H₂₃N₇O₂ 369.1913; Found 369.1904 (-2.65 ppm); Anal. Calc. for C₂₀H₂₄F₃N₇O₄: C. 49.69; H. 5.00; N. 20.28; Found: C. 49.90; H. 4.68; N. 19.84.

Figure S1. Noncompetitive hyperbolic inhibition of *Li*TryR by **19a**. Initial velocities were used for determination of the K_i value and assessment of the inhibition modality of **19a** by two different methods: DTNB-coupled assay (absorbance readings at 412 nm) (A) and trypanothione-dependent NADPH oxidation assay (absorbance readings at 340 nm) (B). Lineweaver–Burk plots of reciprocal initial velocities (v_i) versus reciprocals of four TS₂ concentrations (12.5, 25, 50 and 100 μ M) are shown. Experimental conditions in both experiments were similar to those described in the experimental section except that for the NADPH oxidation assay NADPH concentration was raised to 500 μ M, NADP⁺ to 100 μ M and 4.8 mM of oxidized glutathione was added. Data were fitted using the hyperbolic noncompetitive-mode equation described by Leskovac:

$$1/v = 1/V_{max} \times (\alpha K_i + [I] / \alpha K_i + \beta [I]) + \alpha K_m / V_{max} \times (K_i + [I] / \alpha K_i + \beta [I]) \times 1/[S]^2$$

Results of the fits are shown in Table S1.

Table S1. Estimation of β and K_i in the noncompetitive hyperbolic inhibition mechanism by **19a**.

Parameters	DTNB-coupled assay	NADPH oxidation assay	
<i>K</i> _i (μM) ^{&}	12.7 ± 3.5	2.5 ± 0.7	
β ^{&}	0.5 ± 0.1	0.2 ± 0.1	

[&] Estimated values ± standard error of K_i and β were obtained by fitting the v_i values for every **19a** concentration at the different TS₂ concentrations using an alpha value of 1.

Figure S2. 19a concentration dependence of the observed rate constant for *Li*TryR inactivation at 3.1 μ M TS₂. Progress curves for *Li*TryR enzymatic reactions in the presence of increasing concentrations of **19a** were fitted to Equation 1. Data are the results obtained in a representative assay from three independent experiments. The estimated *k*_{obs} values are shown in Table S2.

Figure S3. 19a concentration dependence of the observed rate constant for *Li*TryR inactivation at 6.2 μ M TS₂. Progress curves for *Li*TryR enzymatic reactions in the presence of increasing concentrations of **19a** were fitted to Equation 1. Data are the results obtained in a representative assay from three independent experiments. The estimated *k*_{obs} values are shown in Table S2.

Figure S4. 19a concentration dependence of the observed rate constant for *Li*TryR inactivation at 12.5 μ M TS₂. Progress curves for *Li*TryR enzymatic reactions in the presence of increasing concentrations of **19a** were fitted to Equation 1. Data are the results obtained in a representative assay from three independent experiments. The estimated *k*_{obs} values are shown in Table S2.

Figure S5. 19a concentration dependence of the observed rate constant for *LI*TryR inactivation at 25 μ M TS₂. Progress curves for *LI*TryR enzymatic reactions in the presence of increasing concentrations of **19a** were fitted to Equation 1. Data are the results obtained in a representative assay from three independent experiments. The estimated k_{obs} values are shown in Table S2.

Figure S6. 19a concentration dependence of the observed rate constant for LiTryR inactivation at 50 µM TS₂. Progress curves for LiTryR enzymatic reactions in the presence of increasing concentrations of **19a** were fitted to Equation 1. Data are the results obtained in a representative assay from three independent experiments. The estimated k_{obs} values are shown in Table S2.

Figure S7. 19a concentration dependence of the observed rate constant for *Li*TryR inactivation at 100 μ M TS₂. Progress curves for *Li*TryR enzymatic reactions in the presence of increasing concentrations of **19a** were fitted to Equation 1. Data are the results obtained in a representative assay from three independent experiments. The estimated *k*_{obs} values are shown in Table S2.

Table S2. Rate constants for *Li*TryR time-dependent inhibition by 19a at different TS₂ concentrations. k_{obs} values for each 19a concentration were obtained by fitting to Equation 1 the progress curves shown in Figures S2-S7. Results are the estimated values from the non-linear regression ± the associated standard errors.

	κ _{obs} (s ⁻¹)					
[19a] (µM)	3.1 μM TS ₂	6.2 μM TS ₂	$12.5 \ \mu M \ TS_2$	$25 \ \mu M \ TS_2$	50 μ M TS ₂	100 μM TS ₂
4,4	$1.5 \times 10^{-4} \pm 9.8 \times 10^{-7}$	1.6 x 10 ⁻⁴ ± 1.2 x 10 ⁻⁶	1.7 x 10 ⁻⁴ ± 1.8 x 10 ⁻⁶	1.4 x 10 ⁻⁴ ± 2.3 x 10 ⁻⁶	9.4 x 10 ⁻⁵ ± 1.5 x 10 ⁻⁶	6.0 x 10 ⁻⁵ ± 6.2 x 10 ⁻⁷
5,9	$2.1 \times 10^{-4} \pm 1.1 \times 10^{-6}$	$2.0 \times 10^{-4} \pm 1.1 \times 10^{-6}$	$1.9 \times 10^{-4} \pm 1.6 \times 10^{-6}$	$1.4 \times 10^{-4} \pm 1.8 \times 10^{-6}$	$9.4 \times 10^{-5} \pm 1.2 \times 10^{-6}$	$7.9 \times 10^{-5} \pm 6.3 \times 10^{-7}$
7,9	$2.2 \times 10^{-4} \pm 1.6 \times 10^{-6}$	$2.2 \times 10^{-4} \pm 1.4 \times 10^{-6}$	$1.9 \times 10^{-4} \pm 1.9 \times 10^{-6}$	$1.5 \times 10^{-4} \pm 2.0 \times 10^{-6}$	$1.0 \times 10^{-4} \pm 1.1 \times 10^{-6}$	8.4 x 10 ⁻⁵ ± 6.3 x 10 ⁻⁷
10,5	$2.7 \text{ x } 10^{-4} \pm 2.0 \text{ x } 10^{-6}$	$2.7 \text{ x } 10^{-4} \pm 1.7 \text{ x } 10^{-6}$	$2.8 \times 10^{-4} \pm 2.3 \times 10^{-6}$	$1.7 \times 10^{-4} \pm 2.4 \times 10^{-6}$	$1.3 \times 10^{-4} \pm 1.4 \times 10^{-6}$	9.4 x 10 ⁻⁵ ± 5.6 x 10 ⁻⁷
14,1	$3.1 \times 10^{-4} \pm 3.6 \times 10^{-6}$	$2.8 \times 10^{-4} \pm 2.7 \times 10^{-6}$	$2.7 \times 10^{-4} \pm 2.8 \times 10^{-6}$	$2.1 \times 10^{-4} \pm 2.9 \times 10^{-6}$	$1.3 \times 10^{-4} \pm 2.0 \times 10^{-6}$	9.0 x 10 ⁻⁵ ± 1.1 x 10 ⁻⁶
18,7	$2.9 \times 10^{-4} \pm 5.1 \times 10^{-6}$	$2.8 \times 10^{-4} \pm 3.7 \times 10^{-6}$	$2.5 \times 10^{-4} \pm 4.2 \times 10^{-6}$	$2.2 \times 10^{-4} \pm 3.3 \times 10^{-6}$	$1.5 \times 10^{-4} \pm 2.5 \times 10^{-6}$	8.8 x 10 ⁻⁵ ± 1.5 x 10 ⁻⁶

Figure S8. Effect of substrate concentration on the apparent inhibition constants K_i^{app} and K_i^{*app} upon binding of **19a** to *Li*TryR. (A) Plot of the estimated values of K_i^{app} (± SE) as a function of TS₂ concentration. The curve was fitted using Equation 3. (B) Plot of the estimated values of K_i^{*app} (± SE) as a function of TS₂ concentration. The curve was fitted using Equation 3. (B) estimated using Equation 4.

Figure S9. Effect of TS₂ concentration on the rate of *Li*TryR inactivation. Plot of the k_{obs} values (± standard errors) as a function of TS₂ concentration at six different **19a** concentrations (4.4, 5.9, 7.9, 10.5, 14.1 and 18.7 µM). Curves for competitive inhibition (dashed line) were fitted using the following equation: $k_{obs} = k / [1 + ([S] / K_m)].^{3.4}$ Curves for pure (dotted line; $\alpha = 1$) and mixed (solid line; $\alpha = 5$) noncompetitive inhibition were fitted using the following equation: $k_{obs} = [k \times (K_m + ([S] / \alpha)] / (K_m + S).^5]$

Figure S10. Progress curves for *Li*TryR enzymatic reactions in the absence of inhibitor at six different concentrations of TS₂: 3.1 μ M (\blacklozenge), 6.2 μ M (\triangle), 12.5 μ M (\blacktriangle), 25 μ M (X), 50 μ M (\circ) and 100 μ M (\bullet). Reaction progress curves were fitted to a linear trend line and R² values of each fit are shown in the figure. Oxidoreductase reactions were performed in a buffer containing 40 mM HEPES pH 7.5, 0.8 nM *Li*TryR, 1 mM EDTA, 300 μ M NADPH, 60 μ M NADP⁺, 150 μ M DTNB and 3.1 - 100 μ M TS₂.

Figure S11. *Li*TryR inhibition by **12b**. Concentration dependence of the observed rate constants of *Li*TryR inactivation by **12b** at different TS₂ concentrations. Plot of the k_{obs} values (± standard errors) as a function of inhibitor concentration at six different TS₂ concentrations (3.1, 6.2, 12.5, 25, 50 and 100 μ M). Data for *Li*TryR inactivation by **12b** were fitted using Equation 2 that describes the enzyme isomerization mechanism of time-dependent inhibition.

Parameters	12b	
<i>K</i> _i (μM) ^{&}	10.0 ± 2.7	
α &	2.0 ± 1.3	
<i>K</i> _i [*] (μM) [#]	2.6 ± 0.6	
α* #	1.3 ± 0.6	

Table S3. Estimation of the kinetic parameters of *Li*TryR inactivation by **12b** in the reversible two-step mechanism of time-dependent inhibition (Scheme 4).

[&] Estimated values ± standard error of K_i and α for the first rapid equilibrium that generates the EI complex (Scheme 4). Both values were estimated by fitting to Equation 3 the K_i^{app} values obtained at six different TS₂ concentrations (3.1, 6.2, 12.5, 25, 50 and 100 µM) using Equation 2.

[#] Estimated values ± standard error of K_i^* and α^* for the overall two-step mechanism of time-dependent inactivation of *Li*TryR (Scheme 4). Both values were estimated by fitting to Equation 4 the K_i^{*app} values obtained at six different TS₂ concentrations (3.1, 6.2, 12.5, 25, 50 and 100 µM) using Equation 2.

Figure S12. *Li*TryR inhibition by **12q**. Concentration dependence of the observed rate constants of *Li*TryR inactivation by **12q** at different TS₂ concentrations. Plot of the k_{obs} values (± standard errors) as a function of inhibitor concentration at six different TS₂ concentrations (3.1, 6.2, 12.5, 25, 50 and 100 µM). Data for *Li*TryR inactivation by **12q** were fitted using the following equation: $k_{obs} = k_4 \times (1 + [I] / K_i^{app})$ that describes the simple reversible mechanism of slow binding of inhibition.³

Table S4. Estimation of the kinetic parameters of *Li*TryR inhibition by **12q** in the reversible single-step mechanism of time-dependent inhibition (Scheme S4).

Parameters	12q	
<i>Κ</i> _i (μΜ) ^{&}	13.6 ± 5.1	
α &	0.3 ± 0.2	

[&] Estimated values ± standard error of K_i and α for the slow and reversible equilibrium that generates the El complex (Scheme S4). Both values were estimated by fitting to Equation 3 the K_i^{app} values obtained at six different TS₂ concentrations using the equation for time-dependent inhibitors with a single-step binding mechanism.

Scheme S4. Reversible single-step mechanism of time-dependent inhibition of *Li*TryR by **12q**[&]

[&] A slow and reversible equilibrium between enzyme and inhibitor is governed by association and dissociation rate constants (k_3 and k_4 , respectively).

Figure S13. Residual activity of *Li*TryR after incubation with **19a**. *Li*TryR (400 nM) was incubated during 16 h in the absence of inhibitor (\blacklozenge) or in the presence of 25 µM of mepacrine (\blacklozenge) or **19a** (\triangle). Samples were diluted (2500-fold) and residual activity was evaluated. Oxidoreductase reactions were performed in a buffer containing 40 mM HEPES pH 7.5, 1 mM EDTA, 300 µM NADPH, 60 µM NADP⁺, 150 µM DTNB and 100 µM TS₂.

Scheme S5. Global mechanism for *Li*TryR inactivation in the presence of substrate (S) and slow-binding inhibitors (I) **12b-c**, **12r-s** and **19a**. E*I is a conformationally inactive form of E produced through a slow process governed by the forward isomerization rate (k_5) and the very small reverse rate constant (k_6).

Screening for PAINS

Figure S14. Concentration–response curves of representative triazole-based compounds **12b** (A) and **12c** (B). Hill coefficients are indicated in the boxes.

Figure S15. Oxidoreductase activity of *Li*TryR and hGR in the presence of 50 μ M TS₂ or GSSG, respectively. (A) Reaction progress curves of *Li*TryR (0.8 nM) in the absence (\blacklozenge) and in the presence 25 μ M **12b** (\blacktriangle) and 25 μ M **12c** (\Box). (B) Reaction progress curves of hGR (7 nM) in the absence (\blacklozenge) and in the presence of 25 μ M nifurtimox (\bullet), 25 μ M **12b** (\bigstar) and 25 μ M **12c** (\Box).

Figure S16. Calculated average (\pm standard error) contributions of individual *LI*TryR residues (monomers A and B in red and green, respectively) to the overall solvent-corrected interaction energy (kcal mol⁻¹) with **19a**. For simplicity, a cutoff of 1.0 was used. The averages were calculated from a conformational ensemble made up of 20 snapshots taken every 5 ns from the post-equilibrated 10–110 ns interval of the molecular dynamics trajectories and then cooled down to 273 K and energy minimized.

Inset: Box-and-whisker plots of the calculated total interaction energies (green, kcal mol⁻¹) and component contributions [DOI 10.1021/ct300497z]⁶ (van der Waals (light blue), electrostatic (orange), ligand desolvation (grey), receptor desolvation (yellow), and apolar (dark blue) for the binding of **19a** to L/TryR.

Figure S17. A. Theoretical model of *Li*TryR (enveloped in a semi-transparent surface) in complex with **19a** (sticks) bound in the central interfacial cavity. Each monomer is colored differently and both the flavin adenine dinucleotide (FAD) prosthetic group and the NADP cofactor are displayed as sticks for reference. In addition, two TS2 molecules (sticks, with C atoms in olive) have been included in the active site (as found in PDB entry 1BZL⁷) to highlight that the proposed inhibitor-binding site is separate from it and there is no overlap between the two. The atoms shown as spheres belong to the active site Cys52 and Cys57 in one active site (*left*) and the dimerization hotspot Glu436 residues from both subunits.

B. Monitoring of relevant distances shows the **19a**-induced disruptions in hydrogen bonds involving the Glu436 carboxylates OE1 and OE2 that are essential for enzyme dimerization (**a**,**b**), and the establishment of stable hydrogen bonds between OE1 and OE2 of Glu466 with the amino group of **19a** throughout the MD trajectory.

Table S5. Residues making up the interfacial cavity present in trypanothione-disulfide reductases (TryRs) from trypanosomatids and positionally equivalent residues in human glutathione-disulfide reductase (hGR). The overall lack of identity in several crucial regions is in consonance with the observed marked selectivity for *Li*TryR.

Leishmania sp./Trypanosoma sp. TryR	Human GR
lysine	Lys65
threonine	Asn71
glutamine	Val74
tyrosine	His75
leucine/threonine/histidine	Phe78
proline	Pro376
phenylalanine	Phe403
proline	Pro405
methionine	Tyr407
phenylalanine	Cys417
aspartic/glutamic	Leu438
serine/glycine/asparagine	Gly439
glutamic	Glu442
proline	Pro468
threonine	Thr469
serine	Ser470
glutamic	Glu472
glutamic	Glu473
	Leishmania sp./Trypanosoma sp. TryR lysine threonine glutamine tyrosine leucine/threonine/histidine proline phenylalanine aspartic/glutamic serine/glycine/asparagine glutamic proline threonine serine glutamic glutamic glutamic glutamic

1H NMR AND 13C NMR SPECTRA OF FINAL TRIAZOLE COMPOUNDS

Compound 12a

Compound 12b

ARP-IV-27

Compound 12c

ARP-V-47ColF19-23

Compound 12d

ARP-IV-42COLF18-25

Compound 12e

ARP-IV-36ColF13-14

Compound 12f

ARP-VII-33ColF3-13

Compound 12g

ARP-VIII-7SOLIDO

Compound 12h

ARP-VII-8COLF4

Compound 12i

ARP-VII-31ColF10-15

Compound 12j

ARP-V-2

Compound 12k

ARP-X-20COLF4-10

Compound 12l

ARP-II-17ColF9-10

Compound 12m

Compound 12n

Compound 12o

ARP-II-27ColF42-43

Compound 12p

Compound 12q

ARP-VIII-49ColF27-32

Compound 12r

ARP-VI-42Colf21_40oC

Compound 12s

Truncated compound 13

ARP-VIII-66COLF9-26

Truncated compound 14

Compound 19a

ARP-VII-47COLF10-13

Compound 19b

ARP-IX-10COLF22-24

Compound 19c

ARP-IX-19COLF25-29

Compound 19d

ARP-XI-1COLF13-18

Compound 19e

ARP-XI-7COLF45-56

Symmetrical compound 22

ARP-IX-3COLF12-13

HRMS of final compounds

Compound 12a

Compound 12b

Compound 12c

Compound 12d

Compound 12e

Compound Label	RT	Mas	55	Abund		Formula	1	Tgt Mass	Dift (ppm)
Cpd 1: C28 H32 N6 O2 S	1.559	516.	23101	129933	C28	3 H32 N6	02 S	516.23075	0.52
compound Label		RT	Alg	orithm		Mass			
pd 1: C28 H32 N6 O2 S		1.559	Find	By Form	ula	516.231	01		
1S Zoomed Spectrum									
x10 1 Cpd 1: C28 H32 I	N6 O2 S	: + Scar	า (1.5	59 min) 9	055_arp	_iv_36_	01.d		
				51	7.23829)			
3-				(M+H)+				
2.5-									
2-									
1.5-									
1						1			
0.5									
0.5-	512.3	38117	515	.21892		1			
0-L 508 509 510 9	512.3 511 512	513 5	14 5	15 516	11. 517 513	L. L 3 519 5	20 521	522 523 52	4 525 5

Compound 12f

Compound 12g

Compound 12h

Compound 12i

Compound 12j

Compound 12k

Compound 12l

S93

Compound 12m

Compound 12n

Compound 12o

Compound 12p

Compound 12q

Compound 12r

Compound 12s

Truncated compound 13

Truncated compound 14

Compound Table Dif Compound Label RT Mass Abund Formula Tgt Mass (ppm) Cpd 1: C18 H23 N7 O2 369.19035 127100 C18 H23 N7 O2 369.19132 0.446 -2.65Compound Label RT Algorithm Mass Cpd 1: C18 H23 N7 O2 0.446 Find By Formula 369.19035 MS Zoomed Spectrum x10 5 Cpd 1: C18 H23 N7 O2: +ESI Scan (0.446 min) Frag=150.0V 11603_arp_ix_53_01.d 370.19763 (M+H)+ 1.2 1 0.8 0.6 0.4 392.17980 0.2 (M+Na)+ 366.16823 0 362 364 366 368 370 372 374 376 378 380 382 384 386 388 390 392 394 396 398 400 Counts vs. Mass-to-Charge (m/z)

Compound 19a

Compound 19b

Compound Table

Con	npound Label	RT	Mas	s	Abund		Formula	Tgt Mass	Diff (ppm)	
Cpd	1: C38 H37 N7 O2 S	0.911	655.2	7482	25574	C38	H37 N7 O2 S	655.27294	2.87	
Compo	und Label		RT	Alg	orithm		Mass			
Cpd 1: C	38 H37 N7 O2 S		0.911	Find	By Form	ula	655.27482			
MS Zoom	ed Spectrum									
x10 ⁴	x10 4 Cpd 1: C38 H37 N7 O2 S: +ESI Scan (0.911 min) Frag=150.0V 11072_arp_ix_10_01.d Subtract									
2.5-					65	6.28214				
					(M+H)+				
2-										
1.5-										
0.5-										
0-		651.2	9144	654	.26471					
Ū	647 648 649 (650 651	652 65	53 6 Cou	54 655 nts vs. M	656 657 ass-to-C	/ 658 659 660 harae (m/z)	661 662 663	3 664 6	65

Compound 19c

Compound Table Diff Compound Label RT Mass Abund Formula Tgt Mass (ppm) Cpd 1: C38 H37 N7 O3 S 1.803 671.26731 189537 C38 H37 N7 O3 S 671.26786 -0.81 Compound Label RT Algorithm Mass Cpd 1: C38 H37 N7 O3 S Find By Formula 671.26731 1.803 MS Zoomed Spectrum x10 5 Cpd 1: C38 H37 N7 O3 S: +ESI Scan (1.803 min) Frag=150.0V 11127_arp_ix_19_01.d 672.27462 (M+H)+ 1.75 1.5 1.25 1 0.75 0.5 694.25810 (M+Na)+ 0.25 667.80625 0 664 666 668 670 672 674 676 678 680 682 684 686 688 690 692 694 696 698 700 702 Counts vs. Mass-to-Charge (m/z)

Compound 19d

Compound Table

Cor	npound Label	RT	Mass	Abund	Formula	Tgt Mass	Dift (ppm)
Cpd	1: C40 H41 N7 O2 S	1.125	683.304	97 49936	C40 H41 N7 O2 S	683.30424	1.06
Compo	und Label		RT A	lgorithm	Mass		
Cpd 1: 0	C40 H41 N7 O2 S		1.125 Fi	nd By Form	ula 683.30497		
MS Zoom	ed Spectrum						
x10 ⁴	Cpd 1: C40 H41 I	N7 O2 S	: +ESI Sca	n (1.125 m	in) Frag=150.0V 11877_	_arp_xi_1_01.d	
5-		684.31 (M+H	229)+				
4-							
3-							
2-							
1-						706.29311 (M+Na)+	
0-	680.89	969				L	
•	676 678 680 6	82 684	686 688 6 Co	690 692 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	94 696 698 700 702 70 ass-to-Charge (m/z)	04 706 708 7	10 712 714

Compound 19e

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff (ppm)
Cpd 1: C40 H41 N7 O3 S	1.534	699.29	928 80554	C40 H41 N7 O3 S	699.29916	0.17
Compound Label		RT	Algorithm	Mass		
Cpd 1: C40 H41 N7 O3 S		1.534	Find By Form	iula 699.29928		
MS Zoomed Spectrum						
	N7 03 S	+ESLSc	an (1 534 m	in) Frag=150 0V 11878	am xi 7 01 d	
X10 4 opa o to			an (1.554 m	ini) i lug=100.00 i 1070_	up_xi_/_01.u	
8- 8-	700.30	650	an (1.554 m		_up_xi_/_01.u	
8- 7-	700.300 (M+H	650)+	an (1.554 m	, i i ugʻi oo.ov i i o.oʻ	aip_xi_/_01.a	
8- 7- 6-	700.300 (M+H	650)+	an (1.004 m	,	<u>ap_xi_</u> , <u>o</u> na	
8- 7- 6- 5-	700.300 (M+H	650)+	an (1.554 m	m) + rag - 100.0 + 11070_	<u>up_n_;_on</u>	
8- 7- 6- 5- 4-	700.300 (M+H	650)+	an (1.554 m	m) + rag - 100.0 + 11070_	<u>aip_x_7_01.a</u>	
8- 7- 6- 5- 4- 3-	700.300 (M+H	650)+	an (1.554 m	m) + rag - 100.0 + 11070_	<u>p_x_</u> ,_ona	
8- 7- 6- 5- 4- 3- 2-	700.300 (M+H	650)+	an (1.004 m	m) + rag - 100.0 + 11070_	722.28646	
8- 7- 6- 5- 4- 3- 2- 1-	700.300 (M+H	650)+	an (1.004 m	m) + rag - 100.0 + 11070_	722.28646 (M+Na)+	

Symmetrical compound 22

Compound Table

HPLC of final compounds

Compound 12a

Compound 12b

Compound 12c

Compound 12d

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	5.491	MM	0.0651	155.29810	39.76358	1.4191
2	8.022	vv	0.0707	1.07884e4	2390.53101	98.5809

Compound 12e

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.978	BV	0.1014	45.92241	6.92196	0.5068
2	2.093	VB	0.0863	27.28303	4.28348	0.3011
3	7.275	BV	0.0651	35.57291	8.45944	0.3926
4	8.386	BV	0.0638	9.26013	2.26117	0.1022
5	9.033	BB	0.0684	6.53143	1.45422	0.0721
6	9.381	BV	0.1092	17.61098	2.25389	0.1944
7	9.659	vv	0.0705	8755.60840	1946.05225	96.6310

Compound 12f

Compound 12g

Compound 12h

Compound 12i

Compound 12j

Compound 12k

Compound 12l

Compound 12m

Compound 12n

Compound 12o

Compound 12p

Compound 12q

Compound 12r

Compound 12s

Truncated compound 13

Truncated compound 14

Compound 19a

Compound 19b

Compound 19c

Compound 19c

Compound 19d

Symmetrical compound 22

REFERENCES

(1) Revuelto, A.; Ruiz-Santaquiteria, M.; De Lucio, H.; Gamo, A.; Carriles, A. A.; Gutiérrez, K. J.; Sánchez-Murcia, P. A.; Hermoso, J. A.; Gago, F.; Camarasa, M. J.; Jiménez-Ruiz, A.; Velázquez, S. Pyrrolopyrimidine *vs* imidazole-phenyl-thiazole scaffolds in nonpeptidic dimerization inhibitors of *Leishmania infantum* trypanothione reductase. *ACS Infect. Dis.* **2019**, *5*, 873-891.

(2) Leskovac, V. Comprehensive enzyme kinetics; Kluwer Academic/Plenum Publishers: New York, 2003.

(3) Copeland, R. A. Enzymes: A practical introduction to structure, mechanism, and data analysis; 2nd ed.; John Wiley & Sons, Inc.: New York, 2000.

(4) Copeland, R. A. Evaluation of enzyme inhibitors in drug discovery: A guide for medicinal chemists and pharmacologists; 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2013.

(5) de Lucio, H.; Toro, M. A.; Camarasa, M. J.; Velázquez, S.; Gago, F.; Jiménez-Ruiz, A. Pseudoirreversible slow-binding inhibition of trypanothione reductase by a protein-protein interaction disruptor. *Br. J. Pharmacol.* **2020**, *177*, 5163-5176.

(6) Klett, J.; Núñez-Salgado, A.; Dos Santos, H. G.; Cortés-Cabrera, A.; Perona, A.; Gil-Redondo, R.; Abia, D.; Gago, F.; Morreale, A. MM-ISMSA: An ultrafast and accurate scoring function for protein-protein docking. *J. Chem. Theory Comput.* **2012**, *8*, 3395-408.

(7) Bond, C. S.; Zhang, Y.; Berriman, M.; Cunningham, M. L.; Fairlamb, A. H.; Hunter, W. N. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. *Structure*. **1999**, *7*, 81-89.