

Supplementary Materials for

Learning the solution operator of parametric partial differential

equations with physics-informed DeepONets

Sifan Wang, Hanwen Wang, Paris Perdikaris*

*Corresponding author. Email: pgp@seas.upenn.edu

Published 29 September 2021, Sci. Adv. 7, eabi8605 (2021)
DOI: 10.1126/sciadv.abi8605

This PDF file includes:

Supplementary Materials and Methods
Supplementary Text
Tables S1 to S11
Figs. S1 to S25
References

Materials and Methods

Nomenclature

Table S1 summarizes the main symbols and notation used in this work.

Notation Description

u(·) an input function

s(·) a solution to a parametric PDE

G an operator

G✓ an unstacked DeepONet representation of the operator G

✓ all trainable parameters of a DeepONet

{xi}
m
i=1 m sensor points where input functions u(x) are evaluated

[u(x1), u(x2), . . . , u(xm)] an input of the branch net, representing the input function u

y an input of the trunk net, a point in the domain of G(u)

N number of input samples in the training data-set

M number of locations for evaluating the input functions u

P number of locations for evaluating the output functions G(u)

Q number of collocation points for evaluating the PDE residual

GRF a Gaussian random field

SDF a signed distance function

l length scale of a Gaussian random field

Loperator(✓) a loss function to fit available observations

Lphysics(✓) a loss function to fit the underlying physical laws

Table S1: Nomenclature: Summary of the main symbols and notation used in this work.

Data generation

In most examples, we model random input functions u(x) using mean-zero Gaussian random

fields (GRF) (68) as

u(x) ⇠ GP (0, kl (x1,x2)) ,

with an exponential quadratic covariance kernel kl (x1, x2) = exp
�
� kx1 � x2k

2
/2l2

�
with a

length scale parameter l > 0. The parameter l will be used to control the complexity of the

sampled input functions, and in general larger l > 0 leads to smoother u.

In general, a DeepONet training data-set is a triplet [u,y, G(u)(y)] with following structure

[u,y, G(u)(y)] =

2

6666666664

2

666666664

...
u(i)(x1),u(i)(x2), · · · ,u(i)(xm)
u(i)(x1),u(i)(x2), · · · ,u(i)(xm)

...
u(i)(x1),u(i)(x2), · · · ,u(i)(xm)

...

3

777777775

,

2

6666666664

...
y(i)
1

y(i)
2
...

y(i)
P
...

3

7777777775

,

2

6666666664

...
G(u(i))(y(i)

1)

G(u(i))(y(i)
2)

...
G(u(i))(y(i)

P)
...

3

7777777775

3

7777777775

. (19)

It is important to highlight that each input function u(i) = [u(i)(x1),u(i)(x2), · · · ,u(i)(xm)]

repeats itself for P times. In other words, suppose that u 2 U , G(u) 2 V are scalar-valued

functions, {u(i)
}
N
i=1 are N sample functions, and, for each sample u(i), G(u(i)) is evaluated

at P different locations {y(i)
}
P
j=1 ⇢ Rd, then the tensor dimensions constituting a DeepONet

training data-set u,y, G(u)(y) are (N ⇥ P, m), (N ⇥ P, d), (N ⇥ P, 1) respectively.

Hyper-parameter settings

In all examples considered in this work, the branch net and the trunk net are equipped with

hyperbolic tangent activation functions (Tanh), except for the Eikonal benchmark (airfoils),

where ELU activations were employed. Physics-informed DeepONet models are trained via

mini-batch gradient descent with a batch-size of 10,000 using the Adam optimizer (69) with

default settings. In this work, we tuned these hyper-parameters manually, without attempting

to find the absolute best hyper-parameter setting. This process can be automated in the future

leveraging effective techniques for meta-learning and hyper-parameter optimization (70).

Case Input functions m #u Train P Q # u Test Iterations

Anti-derivative l = 0.2 100 104 1 100 1,000 4 ⇥ 104

ODE (regular) l = 0.2 100 104 1 100 1,000 4 ⇥ 104

ODE (irregular) l = 0.01 200 104 1 200 1,000 3 ⇥ 105

Diffusion-reaction l = 0.2 100 104 100 100 1,000 1.2 ⇥ 105

Burgers’ � 100 103 100 2,500 1,000 2 ⇥ 105

Advection l = 0.2 100 103 200 2,500 1,000 3 ⇥ 105

Eikonal (circles) � 100 103 100 1,000 1,000 8 ⇥ 104

Eikonal (airfoils) � 250 103 250 1,000 500 1.2 ⇥ 105

Table S2: Default hyper-parameter settings for each benchmark employed in this work (unless
otherwise stated).

Case Trunk width Trunk depth Branch width Branch depth

Anti-derivative operator 50 5 50 5

1D ODE (regular input) 50 5 50 5

1D ODE (irregular input) 200 5 200 5

Diffusion-reaction 50 5 50 5

Advection 100 7 100 7

Burger 100 7 100 7

Eikonal (circles) 50 6 50 6

Eikonal (airfoils) 100 7 100 7

Table S3: Physics-informed DeepONet architectures for each benchmark employed in this work
(unless otherwise stated).

Case Trunk width Trunk depth Branch width Branch depth

Antiderivative operator 100 3 100 3

1D ODE (regular input) 50 5 50 5

1D ODE (irregular input) 50 5 50 5

Diffusion-reaction 50 5 50 5

Table S4: Conventional DeepONet () architectures for each corresponding benchmark (unless
otherwise stated).

Performance metrics

The error metric employed throughout all numerical experiments to assess model performance

is the relative L
2 norm. Specifically, the reported test errors correspond to the mean of the

relative L
2 error of a trained physics-informed DeepONet model over all examples in the test

data-set, i.e

Test error :=
1

N

NX

i=1

kG✓(u(i))(y) � G(u(i))(y)k2

kG(u(i))(y)k2
, (20)

where N denotes the number of examples in the test data-set and y is typically a set of equi-

spaced points in the domain of G(u). Here G✓(u(i))(y) denotes the predicted DeepONet outputs,

while G(u(i))(y) corresponds to the ground truth target functions.

Computational cost

Training: Table S5 summarizes the computational cost (hours) of training DeepONet and

physics-informed DeepONet models with different network architectures. The size of different

models as well as network architectures are listed table S4 and S3, respectively. All networks are

trained using a single NVIDIA V100 GPU. It can be observed that training a physics-informed

DeepONet model is generally slower than training a conventional DeepONet. This is expected

as physics-informed DeepONets require to compute the PDE residual via automatic differenti-

ation, yielding a lager computational graph, and, therefore, a higher computational cost.

35

Case Model (Architecture) Training time (hours)

Anti-derivative
DeepONet 0.03

Physics-informed DeepONet 0.15

ODE (regular)
DeepONet 0.03

Physics-informed DeepONet 0.15

ODE (irregular)
Physics-informed DeepONet (MLP) 1.61

Physics-informed DeepONet (FF) 1.37

Diffusion-reaction
DeepONet 1.13

Physics-informed DeepONet 2.27

Burgers’
Physics-informed DeepONet (MLP) 7.61

Physics-informed DeepONet (Modified MLP) 9.25

Advection Physics-informed DeepONet 7.31

Eikonal (circles) Physics-informed DeepONet 0.76

Eikonal (airfoils) Physics-informed DeepONet 0.38

Table S5: Computational cost (hours) for training DeepONet and physics-informed DeepONet
models across the different becnhmarks and architectures employed in this work. Reported
timings are obtained on a single NVIDIA V100 GPU.

Inference: A trained physics-informed DeepONet model can rapidly predict the entire

spatio-temporal solution of the Burgers equation in ⇠10ms. Inference with DeepONets is triv-

ially parallelizable, allowing for the solution of O(103) PDEs in a fraction of a second, yielding

up to three orders of magnitude in speed up compared to a traditional spectral solver (58) (see

Figure 4 in the manuscript).

Supplementary Text

A comparison against DeepONets: Learning anti-derivative operator

In this section, we demonstrate the motivation of the proposed physics-informed DeepONet.

Although DeepONets () and their variants (e.g. DeepM&Mnets (45)) have demonstrated

great potential in approximating operators and solving multi-physics and multi-scale problems,

it is worth pointing out that the learned operator may not be consistent with the underlying

physical laws that generated the observed data (e.g., due to the finite capacity of neural networks

or lack of sufficient training data). To this end, let us consider a pedagogical example involving

a simple initial value problem

ds(x)

dx
= u(x), x 2 [0, 1], (21)

with an initial condition s(0) = 0. Here, our goal is to learn the anti-derivative operator

G : u(x) �! s(x) = s(0) +

Z x

0

u(t)dt, x 2 [0, 1]. (22)

To generate a training data-set, we randomly sample 10,000 different functions u from a zero-

mean Gaussian process prior with an exponential quadratic kernel using a length scale of l = 0.2

(68). We also obtain the corresponding 10,000 ODE solutions s by integrating the ODE 21

using an explicit Runge-Kutta method (RK45) (71). For each observed pair of (u, s), we choose

m = 100 sensors {xi}
m
i=1 uniformly distributed on the time interval [0, 1] and randomly select

P = 1 observations of s(·) in [0, 1]. To generate the test data-set, we repeat the same procedure

with m = 100 and P = 100. The final test data-set contains 1, 000 different samples of random

input functions u.

We represent the operator G using the unstacked DeepONet G✓ where both the branch net

and the trunk net are two-layer fully-connected neural networks with 100 neurons per hidden

layer. Each network is equipped with ReLU activation functions. The network parameters can

35

be trained by minimizing the following loss

L(✓) =
1

N

NX

i=1

��G✓(u
(i))(y(i)) � s

(i)(y(i))
��2 , (23)

where u(i) = [u(i)(x1), u(i)(x2), . . . , u(i)(xm)] represent the input function, and s
(i)(y(i)) de-

notes the associated solution of equation 21 evaluated at y
(i).

We train the DeepONet model by minimizing the above loss function via gradient descent

using the Adam optimizer (69) for 40, 000 iterations. Note that the final output of DeepONet

is a function of input coordinates x. Thus, we can compute the residual ds(x)
dx of the inferred

solution s(x) using automatic differentiation (55), and compare the computed residual with

u(x) at the sensors {xi}
m
i=1. Figure S1 shows the comparison of the predicted s(x) and ds(x)

dx

against the ground truth for one representative random sample from the test data-set. We can

observe a good agreement between the predicted and the exact solution s(x) when using ReLU

activation functions. However, the predicted residual ds(x)
dx seems to approximate u(x) with step

functions, which leads to a large approximation error. One may postulate that this is due to

the non-smoothness of ReLU activations. However, as shown in the same Figure S1, similar

poor predictions of both u(x) and s(x) are obtained by repeating the same process using a

DeepONet equipped with tanh activations, under exactly the same hyper-parameter settings.

Thus, despite the guarantee of universal approximation theorem for operators (36), it is possible

that DeepONet models may not appropriately learn the correct solution operator in the sense that

the predicted output functions are not compatible with the ground truth operator that generated

the training data.

Physics-informed neural networks (PINNs) (14) can seamlessly integrate the data measure-

ments and physical governing laws by penalizing residuals of partial differential equations in

the loss function of a neural network using automatic differentiation (55). Motivated by PINNs

and our findings in the previous section, we propose a novel model class referred to as ”physics-

0.0 0.5 1.0
x

�0.4

�0.3

�0.2

�0.1

0.0

s
(x

)

0.0 0.5 1.0
x

�0.75

�0.50

�0.25

0.00

0.25

u
(x

)

Exact ReLU Tanh

Figure S1: Learning the anti-derivative operator: Predicted solution s(x) and residual u(x)
versus the ground truth for a representative input function. The results are obtained by training
a conventional DeepONet model () equipped with different activation functions after 40,000
iterations of gradient descent using the Adam optimizer.

informed” DeepONets that enables the DeepONet output functions to be consistent with physi-

cal constraints via minimizing the residual of the underlying governing laws in the same manner

as PINNs. Specifically, we consider minimizing the following composite loss function

L(✓) = Loperator(✓) + Lphysics(✓), (24)

where Loperator(✓) is exactly the same as the loss 23 and

Lphysics(✓) =
1

Nm

NX

i=1

mX

j=1

����
dG✓(u(i))(y)

dy

���
y=xj

� u
(i)(xj)

����
2

. (25)

Figure S2 presents the predicted s(x) and ds(x)
dx for the same random sample (see Figure S1)

by minimizing the loss function 24 for 40,000 iterations of gradient descent using the Adam

optimizer. Evidently, both predictions achieve an excellent agreement with the correspond-

ing reference solutions. This can be further verified by the mean of relative L
2 error of the

model predictions reported table S6, from which we may conclude that the physics-informed

DeepONet not only attains comparable accuracy to the original DeepONet, but also satisfies

the underlying ODE constraint. Another crucial finding is that physics-informed DeepONets

are data-efficient and therefore effective in small data regime. To illustrate this, we train both

35

a DeepONet and a physics-informed DeepONet for different number of training data points

(i.e, different number of samples u) and report the mean of the relative L
2 error of s(x) over

1,000 realizations from the test data-set in Figure S3. We observe that conventional DeepONets

require more than 10x training data to achieve the same accuracy as their physics-informed

counterpart.

0.0 0.5 1.0
x

�0.4

�0.3

�0.2

�0.1

0.0

s
(x

)

0.0 0.5 1.0
x

�0.75

�0.50

�0.25

0.00

0.25

u
(x

)

Exact Predicted

Figure S2: Learning anti-derivative operator: Exact solution and residual versus the predictions
of a trained physics-informed DeepONet for the same input function as in Figure S1.

Model

Relative L
2 error

Relative L
2 error of s Relative L

2 error of u

DeepONet (ReLU) 5.16e � 03 ± 4.58e � 03 1.39e � 01 ± 5.58e � 02

DeepONet (Tanh) 1.89e � 01 ± 1.51e � 01 6.14e � 01 ± 2.36e � 01

Physics-informed DeepONet (Tanh) 2.49e � 03 ± 2.74e � 03 6.29e � 03 ± 3.65e � 03

Table S6: Learning anti-derivative operator: Mean and standard deviation of relative L
2 pre-

diction errors of DeepONet and physics-informed DeepONet equipped with ReLU or Tanh
activations over 1,000 examples in the test data-set.

A comparison between physics-informed neural networks and DeepONets

Here we would like to discuss the fundamental differences between physics-informed neural

networks (14) and the proposed physics-informed DeepONets. The goal of physics-informed

neural networks (PINNs) is to parametrize and learn the solution of a single partial differential

102 103 104

Train data

10�3

10�2

10�1

100

R
el

.
L

2
er

ro
r

Original

Physics-informed

Figure S3: Learning anti-derivative operator: Mean of the relative L
2 prediction error of the

original DeepONet () and the physics-informed DeepONet as a function of the number of u

samples.

0 2 4
Iteration ⇥104

10�5

10�3

10�1

L
os

s

ReLU

Tanh

(a)

0 2 4
Iteration ⇥104

10�5

10�3

10�1

L
os

s

Loperator

Lphysics

(b)

Figure S4: Learning an anti-derivative operator: (a) Training loss convergence of a conven-
tional DeepONet model equipped with different activation functions for 40,000 iterations of
gradient descent using the Adam optimizer. (b) Training loss convergence of a physics-informed
DeepONet equipped with Tanh activations for 40,000 iterations of gradient descent using the
Adam optimizer.

equation (PDE), for the case where the PDE parameters are given and remain fixed during

model training. These parameters include, but are not limited to, boundary/initial conditions,

coefficients, source terms, etc. Consequently, a trained PINNs model can yield an approximated

solution a given PDE system with specified parameters, but cannot generalize to other input

parameters (at least not unless the model is re-trained). That being said, we should remark that

35

some transfer learning techniques may be applied in this setting to accelerate the re-training

process and enable a PINNs model to learn the associated solutions corresponding to other

input parameters, with a reduced computational cost (see (72), for example).

In contrast to PINNs, the proposed physics-informed DeepONets aim to parametrize the

PDE solution operator that maps different input parameters to the associated PDE solutions. In

this setting, one needs to specify a distribution over functions or the function space associated

with any variable input parameters before training. As a consequence, from a practical stand-

point, perhaps the most important distinction between PINNs and physics-informed DeepONets

is that the latter can quickly and accurately infer PDE solutions corresponding to different input

parameters through simple model evaluations and without requiring any re-training. It worth

pointing out that physics-informed DeepONet can be also applied to solve a single PDE if we

fix the input of the branch network in DeepONet architecture. As such, physics-informed Deep-

ONets can be regarded as a class of deep learning models that greatly enhance and generalize

the capabilities of PINNs.

To illustrate the above points, here we provide a simple example in which PINNs and

physics-informed DeepONets can be compared in equal footing. Specifically, one of the bench-

marks considered in the main manuscript corresponding to the following ODE system

ds(x)

dx
= u(x), x 2 [0, 1], (26)

s(0) = 0, (27)

where u(x) is generated by sampling a Gaussian Random Field (GRF) with a length scale

l = 0.2. Since a standard PINNs model cannot tackle parametric equations, for each forcing

term u(x), we employ a separate physics-informed neural network to solve the associated ODE

system. Here, the solution is represented by a 5-layer full-connected neural network with 50

neurons per hidden layer and tanh activations. We sample N = 100 input functions and train

Model Rel. L
2 error Training time (hours)

Physics-informed neural network 0.07% ± 0.08% 2.53

Physics-informed DeepONet 0.33% ± 0.32% 0.15

Table S7: Linear ODE: Relative L
2 prediction error of PINNs and physics-informed Deep-

ONets averaged over all examples in the test data-set.

each physics-informed neural network for 40, 000 iterations using the Adam optimizer. A com-

parison of PINNs and physics-informed DeepONets is summarized in Table S7. One can see

that the computational cost of training PINNs is much greater than training a physics-informed

DeepONet because we need to train PINNs for N = 100 times. Moreover, for this simple

example, PINNs can achieve better predictive accuracy, since each PINNs model is trained to

learn the solution of just a single ODE case. On the other hand, physics-informed DeepONets

are called to solve the much harder task of learning the ODE solution operator, in which thou-

sands of ODE cases are concurrently considered during model training. From our experience

so far, we can empirically claim that if one can be successful in employing PINNs to solve

a given ODE/PDE system, then one should be able to use physics-informed DeepONets to

solve the parametric version of the same PDE with reasonable accuracy. More interestingly,

in follow-up work (73), we have shown that physics-informed DeepONets can be employed

to solve even more complex problems involving long-time integration for which conventional

PINNs approaches fail consistently.

Another question worth asking is: Can we modify the vanilla PINN architecture to solve

parametric PDEs? The answer is yes, and the formulation is very simple. Indeed, one can con-

catenate the input coordinates and the parameters before passing them through a deep neural

network, and formulate a physics-informed loss in the same manner. Taking the previous bench-

mark as an example, we can represent the solution operator G(u) by a fully-connected neural

network s✓(x,u) where x denotes the input coordinates and u = [u(x1), . . . , u(xm)] denotes a

forcing term evaluated at a set of equi-spaced points {xi}
m
i=1 in [0, 1]. Then, a parameterized

PINNs model can be trained by minimizing the following the loss function

L(✓) = LIC(✓) + Lphysics(✓) (28)

=
1

N

NX

i=1

��s✓(0,u(i))
��2 +

1

NQ

NX

i=1

QX

j=1

����
ds✓(x,u(i))(x)

dx

���
x=xj

� u
(i)(xj)

����
2

, (29)

where we use the same notation as in physics-informed DeepONets.

To investigate the performance of parameterized PINNs and compare them against the pro-

posed physics-informed DeepONets, we performed a series of numerical studies for solving

different parameteric PDEs under exactly the same hyper-parameter settings (# iterations, opti-

mizer, learning rate, activations, etc.) The resulting test errors of the trained models are sum-

marized in table S8. One can observe that the test errors of parameterized PINNs are noticeably

worse than the physics-informed DeepONet, especially for Eikonal equation benchmark. We

believe that the remarkable results of physics-informed DeepONet benefit from the theoretical

justification of operator approximation theorems (35, 36, 44), as well as the dot product oper-

ation in the DeepONet architecture that merges the branch and trunk network outputs, which

potentially enhances their expressivity and trainability. Moreover, we expect that DeepONet

architecture is less prone to the “curse of dimensionality” as discussed in (44), allowing one

to accommodate higher-dimensional representations of input functions (i.e. a larger number

of input sensor locations m). On the other hand, conventional parameterized PINNs require

one to sample collocation points in the joint space of input parameters and domain coordinates,

leading to difficulties in training as the dimensionality of the inputs is increased.

Case Model Test error

ODE
Physics-informed DeepONet 0.33% ± 0.32%

Parameterized PINN 5.25% ± 5.72%

Diffusion-reaction
Physics-informed DeepONet 0.25% ± 0.12%

Parameterized PINN 1.06% ± 0.74%

Eikonal equation (circles)
Physics-informed DeepONet 0.42% ± 0.11%

Parameterized PINN 27.45% ± 24.12%

Table S8: Relative L
2 prediction error of parameterized PINNs and physics-informed Deep-

ONets across various parametric PDE benchmarks, averaged over all examples in the test data-
set. All models are trained under exactly the same hyper-parameter setting (# iterations, opti-
mizer, learning rate, activations, etc.).

Linear ODE system

Recall that the one-dimensional ODE system is described by

ds(x)

dx
= u(x), x 2 [0, 1], (30)

s(0) = 0. (31)

Our goal is to learn the solution operator from u(x) to the solution s(x) using physics-informed

DeepONets. We represent the operator by a DeepONet G✓ where both branch net and trunk

net are 5-layer fully-connected neural networks with 50 neurons per hidden layer and equipped

with tanh activations. The corresponding loss function is expressed as

L(✓) = Loperator(✓) + Lphysics(✓) (32)

=
1

N

NX

i=1

��G✓(u
(i))(0)

��2 +
1

NQ

NX

i=1

QX

j=1

����
dG✓(u(i))(y)

dy

���
y=xj

� u
(i)(xj)

����
2

. (33)

Regular input functions

Here, u(i) = [u(i)(x1), u(i)(x2), . . . , u(i)(xm)], and we sample N = 10, 000 input functions u(x)

from a GRF with length scale l = 0.2. Moreover, we take Q = m = 100 and {xj}
Q
j=1 are equi-

spaced grid points in [0, 1]. From the expression of the loss function, it is worth emphasizing

that all ”training data” comes the measurements of u(x), and the zero initial condition on s(0)

(i.e. no other observations of s(x) are available). Some visualizations of the trained physics-

informed DeepONet are presneted in Figure S5.

Moreover, we investigate the performance of the original DeepONet () in solving this

parametric ODE example. To this end, we train a DeepONet by minimizing the loss function

Loperator(✓) under exactly the same hyper-parameter setting. Representative predicted solutions

s(x) for different input samples u are shown in Figure S6. We observe that the conventional

DeepONet learns a degenerate map that can fit the initial condition s(0) = 0, but returns er-

roneous predictions for all x > 0. These observations can be further quantified in Table S9,

which reports the mean and standard deviation of the relative L
2 prediction error for the output

functions s and their corresponding ODE residual u over 1,000 examples in the test data-set.

Remarkably, the proposed physics-informed DeepONet is trained in the absence of any paired

input-output data, but still obtains comparable accuracy to the results shown in Table S9, where

the model is trained with a large amount of paired input-output observations.

Irregular input functions

Furthermore, we show that physics-informed DeepONets can accommodate extremely irregular

input functions by using appropriate trunk network architectures. To illustrate this, we consider

a GRF with a length scale l = 0.01 as a prior on the input function space. We take Q = m = 200

and repeat the same data generation procedure as before. In this example, the training data-set

contains N = 10, 000 different u samples, while the test data-set contains 1,000 realizations.

Given that the input functions are sampled from a GRF with a relatively small length scale,

the associated solutions are expected to exhibit high frequencies. Therefore, we represent the

latent operator by a DeepONet with Fourier feature embeddings (56), which are able to learn

35

high-frequency components more effectively. Generally, A random Fourier mapping � is de-

fined as

�(v) =


cos(Bv)
sin(Bv)

�
, (34)

where each entry in B 2 Rm⇥d is sampled from a Gaussian distribution N (0, �2) and � > 0 is a

user-specified hyper-parameter. Then, a Fourier feature network (56) can be simply constructed

using a random Fourier features mapping � as a coordinate embedding of the inputs, followed

by a conventional fully-connected neural network.

In particular, we encode the input functions by a branch net that is a 5-layer fully-connected

neural network with 200 neurons per hidden layer. In addition, we apply a Fourier feature em-

bedding (56) initialized with � = 50 to the input coordinates y before passing the embedded in-

puts through a trunk network with the same architecture as the branch net. Some visualizations

of the trained model are shown in Figure S7. The results of training the same physics-informed

DeepONet without Fourier feature embeddings are presented in Figure S8. One may observe

that using a conventional fully-connected trunk networks cannot accurately capture the high-

frequency oscillations, leading to a large prediction error. These observations can be further

quantified in Table S10, which summarizes the mean and standard derivation of the relative L
2

prediction error of trained physics-informed DeepONets constructed with different network ar-

chitectures. Although here we have illustrated that an appropriate network architecture plays a

prominent role in the performance of DeepONets, a comprehensive investigation of DeepONet

architectures is beyond the scope of the present study and will be investigated in future work.

Finally, we describe the details of out-of-distribution prediction of the trained physics-

informed DeepONet with Fourier feature networks. We create a test data-set by sampling input

functions from a GRF with a larger length-scale of l = 0.2 (recall that the training data for this

case is generated using l = 0.01). The corresponding relative L
2 prediction error averaged over

1, 000 test examples is measured as 0.7%. Some visualizations of the model predictions for this

out-of-distribution prediction task are shown in the Figure S9.

0 1
x

�0.1

0.0

0.1

s
(x

)

0 1
x

�1.0

�0.5

0.0

P
oi

nt
-w

is
e

er
ro

r

⇥10�3

0 1
x

�0.5

0.0

0.5

u
(x

)

0 1
x

�1

0

1

P
oi

nt
-w

is
e

er
ro

r

⇥10�2

(a)

0 1
x

�1.0

�0.5

0.0

s
(x

)

0 1
x

0

1

P
oi

nt
-w

is
e

er
ro

r

⇥10�3

0 1
x

�2

�1

0

u
(x

)

0 1
x

�2

0

2

P
oi

nt
-w

is
e

er
ro

r

⇥10�2

(b)

0 1
x

0.0

0.2

0.4

s
(x

)

0 1
x

0

2

P
oi

nt
-w

is
e

er
ro

r

⇥10�3

0 1
x

0

1

u
(x

)

0 1
x

�1

0

1

P
oi

nt
-w

is
e

er
ro

r

⇥10�2

(c)

Figure S5: Solving a 1D parametric ODE: Predicted solutions s(x) and corresponding ODE
residuals u(x) for a trained physics-informed DeepONet, across three different examples in the
test data-set.

0 1
x

�0.4

�0.2

0.0

s
(x

)

0 1
x

�0.4

�0.2

0.0

s
(x

)

0 1
x

�0.25

0.00

0.25

0.50

s
(x

)

0 1
x

0.0

0.5

1.0

s
(x

)

Exact Predicted

Figure S6: Solving a 1D parametric ODE: Exact solutions versus the predicted solutions of a
trained DeepONet for four different input samples. We observe that the conventional DeepONet
() learns a degenerate operator.35

Model

Relative L
2 error

Relative L
2 error of s Relative L

2 error of u

DeepONet 8.80e � 01 ± 4.72e � 01 9.15e � 01 ± 1.86e � 01

Physics-informed DeepONet 3.25e � 03 ± 3.19e � 03 6.97e � 03 ± 3.95e � 03

Table S9: Solving a 1D parametric ODE: Mean and standard deviation of the relative L
2 predic-

tion errors of a trained DeepONet and physics-informed DeepONet model over 1,000 examples
in the test data-set.

0.0 0.5 1.0
x

0.0

0.1

0.2

s
(x

)

0.0 0.5 1.0
x

�2

0

2

u
(x

)

Exact Predicted

(a)

0.0 0.5 1.0
x

0.0

0.1

0.2

s
(x

)
0.0 0.5 1.0

x

0

2

u
(x

)

Exact Predicted

(b)

0.0 0.5 1.0
x

0.00

0.05

0.10

0.15

s
(x

)

0.0 0.5 1.0
x

0

2

u
(x

)

Exact Predicted

(c)

0.0 0.5 1.0
x

0.00

0.05

0.10

s
(x

)

0.0 0.5 1.0
x

�2

0

2

u
(x

)

Exact Predicted

(d)

Figure S7: Solving a 1D parametric ODE with irregular input functions: Predicted solutions
s(x) and corresponding ODE residuals u(x) for a trained physics-informed DeepONet with a
with Fourier feature architecture, across four different examples in the test data-set.

Architecture

Relative L
2 error

Relative L
2 error of s Relative L

2 error of u

Fully-connected network 3.48e � 1 ± 2.34e � 1 6.81e � 1 ± 6.31e � 2

Fourier feature network 8.45e � 3 ± 6.65e � 3 8.25e � 3 ± 1.54e � 3

Table S10: Solving a 1D parametric ODE with irregular input functions: Mean and standard
deviation of the relative L

2 prediction errors of physics-informed DeepONet represented by
different network architectures over 1,000 examples in the test data-set.

0.0 0.5 1.0
x

0.0

0.1

0.2

s
(x

)

0.0 0.5 1.0
x

�2

0

2

u
(x

)

Exact Predicted

(a)

0.0 0.5 1.0
x

0.0

0.1

0.2

s
(x

)

0.0 0.5 1.0
x

0

2

u
(x

)

Exact Predicted

(b)

0.0 0.5 1.0
x

0.00

0.05

0.10

0.15

s
(x

)

0.0 0.5 1.0
x

0

2
u
(x

)

Exact Predicted

(c)

0.0 0.5 1.0
x

0.0

0.1

s
(x

)

0.0 0.5 1.0
x

�2

0

2

u
(x

)

Exact Predicted

(d)

Figure S8: Solving a 1D parametric ODE with irregular input functions: Predicted solutions
s(x) and corresponding ODE residuals u(x) for a trained physics-informed DeepONet with a
conventional fully-connected architecture, across four different examples in the test data-set.

Diffusion-reaction system

Recall that the diffusion-reaction system is given by

@s

@t
= D

@
2
s

@x2
+ ks

2 + u(x), (x, t) 2 (0, 1] ⇥ (0, 1], (35)

We approximate the operator by a physics-informed DeepONet architecture G✓, where the

branch and trunk networks are two separate 5-layer fully-connected neural networks with 50

neurons per hidden layer. For a given input function u(i), we define the corresponding PDE

residual as

R
(i)
✓ (x, t) =

dG✓(u(i))(x, t)

dt
� D

d
2
G✓(u(i))(x, t)

dx2
� k[G✓(u

(i))(x, t)]2, (36)

where {u(i)
}
N
i=1 = {[u(i)(x1), u(i)(x2), . . . , u(i)(xm)]}N

i=1 represents the input functions, and

{xi}
m
i=1 is a collection of equi-spaced sensor locations in [0, 1]. The parameters of the physics-

0.0 0.5 1.0
x

�0.2

0.0

0.2
s
(x

)

0.0 0.5 1.0
x

�1

0

1

u
(x

)

Exact Predicted

(a)

0.0 0.5 1.0
x

0.0

0.5

1.0

s
(x

)

0.0 0.5 1.0
x

0.5

1.0

1.5

2.0

u
(x

)

Exact Predicted

(b)

0.0 0.5 1.0
x

0.0

0.5

1.0

s
(x

)

0.0 0.5 1.0
x

�1

0

1

2
u
(x

)

Exact Predicted

(c)

0.0 0.5 1.0
x

0.0

0.1

s
(x

)

0.0 0.5 1.0
x

�0.5

0.0

0.5

1.0

u
(x

)

Exact Predicted

(d)

Figure S9: Solving a 1D parametric ODE with irregular input functions: Predicted solutions
s(x) and corresponding ODE residuals u(x) for a trained physics-informed DeepONet with
a with Fourier feature architecture, across four different out-of-distribution examples sampled
from a GRF with a length scale l = 0.2 (recall that the training data for this case is generated
using l = 0.01).

0 2 4
Iteration ⇥104

10�6

10�4

10�2

100

L
os

s

Loperator

Lphysics

Figure S10: Solving a 1D parametric ODE: Training loss convergence of a physics-informed
DeepONet for 40,000 iterations of gradient descent using the Adam optimizer without any
paired input-output data, except the initial condition.

informed DeepONet can be trained by minimizing the loss function

L(✓) = Loperator(✓) + Lphysics(✓) (37)

=
1

NP

NX

i=1

PX

j=1

���G✓(u
(i))(x(i)

u,j, t
(i)
u,j)

���
2

+
1

NQ

NX

i=1

QX

j=1

���R(i)
✓ (x(i)

r,j, t
(i)
r,j) � u

(i)(x(i)
r,j)

���
2

. (38)

0 1 2 3
Iteration ⇥105

10�4

10�2

100

L
os

s Loperator

Lphysics

(a)

0 1 2 3
Iteration ⇥105

10�7

10�4

10�1

102

L
os

s

Loperator

Lphysics

(b)

Figure S11: Solving a 1D parametric ODE with irregular input functions: (a)(b) Training loss
convergence of a physics-informed DeepONets using a conventional fully-connected neural
network, and a Fourier feature network, respectively, for 300,000 iterations of gradient descent
using the Adam optimizer.

Here, for each u(i), {(x(i)
u,j, t

(i)
u,j}

P
j=1 are uniformly sampled points from the boundary of [0, 1] ⇥

[0, 1] (excluding t = 1), while {(x(i)
r,j, t

(i)
r,j)}

Q
j=1 is a set of collocation points satisfying x

(i)
r,j =

xj , and {t
(i)
r,j)}

Q
j=1 are uniformly sampled in [0, 1]. Consequently, Loperator(✓) enforces the zero

initial and boundary conditions, and Lphysics(✓) penalizes the parametric PDE residual at the

Q collocation points. In this example, we set P = Q = 100 and randomly sample N =

10, 000 input functions u(x) from a GRF with length scale l = 0.2. To generate the test data-

set, we sample N = 1, 000 input functions u(x) from the same GRF and solve the diffusion-

reaction system using a second-order implicit finite difference method on a 100 ⇥ 100 equi-

spaced grid (71). Hence, the test data-set will contain 1, 000 realizations evaluated on a 100 ⇥

100 uniform grid. We train the physics-informed DeepONet by minimizing the loss function

37 for 120, 000 iterations of gradient descent using the Adam optimizer with default settings.

Some visualizations for different input samples can be found in Appendix Figure S12.

To investigate the performance of a conventional DeepONet model () in the case where

some training data are available. Specifically, we still use the same 10, 000 input functions

35

sampled before and for each u, and we randomly select P = 100 solution measurements out

of the associated reference numerical solutions on the 100 ⇥ 100 grid. Then, we train the

conventional DeepONet model under exactly the same hyper-parameter settings.

Furthermore, we study the effect of batch size in training physics-informed DeepONets.

The resulting test error of training physics-informed DeepONets for different batch size are

summarized in Figure S13. One may conclude that large batch size can effectively enhance the

model predictive accuracy.

Finally, we perform a series of systematic studies to quantify the convergence of physics-

informed DeepONets with respect to the number of input sensor locations, as well as the depth

and the width of the branch and trunk networks. As shown in Figure S14, the test error generally

decreases as the number of input sensor locations increases. A similar trend is observed also

as the size of the network (i.e. the depth and width of the branch and trunk network) increases.

In particular, increasing the depth of the network tends to yield better predictive accuracy than

increasing the width. In addition, the number of sensors should be enough to capture all neces-

sary frequency information of the input functions. The smaller the length scale of the GRF, the

larger number of sensors are required.

Burgers’ equation

The governing law takes the form

ds

dt
+ s

ds

dx
� ⌫

d
2
s

dx2
= 0, (x, t) 2 (0, 1) ⇥ (0, 1], (39)

s(x, 0) = u(x), x 2 (0, 1), (40)

subject to periodic boundary conditions

s(0, t) = s(1, t), (41)
ds

dx
(0, t) =

ds

dx
(1, t), (42)

Figure S12: Solving a parametric diffusion-reaction system: Predicted solution of a trained
physics-informed DeepONet for three different examples in the test data-set.

103 104

Batch size

10�2

4 ⇥ 10�3

6 ⇥ 10�3

R
el

.
L

2
er

ro
r

Figure S13: Solving a parametric diffusion-reaction system: Relative L
2 prediction error of

physics-informed DeepONets trained using a different batch-size, averaged over 1,000 exam-
ples in the test data-set.

25 50 75 100
Sensors

10�3

10�2

10�1

100

R
el

.
L

2
er

ro
r

(a)

2 4 6 8 10
Depth

10�3

10�2

10�1

100

R
el

.
L

2
er

ro
r

Width = 20

Width = 50

Width = 100

(b)

100 200 300 400 500
Width

10�3

10�2

10�1

100

R
el

.
L

2
er

ro
r

Depth = 2

Depth = 3

Depth = 4

(c)

Figure S14: Solving a parametric diffusion-reaction system: (a)(b)(c) Relative L
2 prediction

error of physics-informed DeepONets trained using: (a) different number of input sensors; (b, c)
depth and width of the branch and trunk networks, respectively, averaged over 1,000 examples
in the test data-set.

Suppose that the solution operator is approximated by a physics-informed DeepONet G✓.

For a specific input function u(i), the PDE residual is defined by

R
(i)
✓ (x, t) =

dG✓(u(i))(x, t)

dt
+ G✓(u

(i))(x, t)
dG✓(u(i))(x, t)

dx
� ⌫

d
2
G✓(u(i))(x, t)

dx2
, (43)

where u(i) denotes the input function evaluated a collection of fixed sensors {xi}
m
i=1 that are

uniformly spaced in [0, 1]. Then, the physics-informed loss function is given by

L(✓) = LIC(✓) + LBC(✓) + Lphysics(✓), (44)

0.0 0.5 1.0
Iteration ⇥105

10�5

10�4

10�3

10�2

10�1
L
os

s
Tanh

ReLU

(a)

0.0 0.5 1.0
Iteration ⇥105

10�4

10�2

100

L
os

s

Loperator

Lphysics

(b)

Figure S15: Solving a parametric diffusion-reaction system: (a) Training loss convergence of a
DeepONet equipped with different activations for 120,000 iterations of gradient descent using
the Adam optimizer (with paired input-output training data). (b) Training loss convergence of a
physics-informed DeepONet equipped with Tanh activations for 120,000 iterations of gradient
descent using the Adam optimizer (without paired input-output training data).

where

LIC(✓) =
1

NP

NX

i=1

PX

j=1

���G✓(u
(i))(x(i)

ic,j, 0) � u
(i)(x(i)

ic,j)
���
2

(45)

LBC(✓) =
1

NP

NX

i=1

PX

j=1

���G✓(u
(i))(0, t(i)bc,j) � G✓(u

(i))(1, t(i)bc,j)
���
2

(46)

+
1

NP

NX

i=1

PX

j=1

�����
dG✓(u(i))(x, t)

dx

����
(0,t

(i)
bc,j)

�
dG✓(u(i))(x, t)

dx

����
(1,t

(i)
bc,j)

�����

2

(47)

Lphysics(✓) =
1

NQ

NX

i=1

QX

j=1

���R(i)
✓ (x(i)

r,j, t
(i)
r,j)

���
2

. (48)

Here, for every input sample u(i), x(i)
ic,j = xj and {(0, t(i)ic,j)}

P
j=1, {(1, t(i)ic,j)}

P
j=1 and {(x(i)

r,j, t
(i)
r,j)}

Q
j=1

are randomly sampled in the computational domain for enforcing the initial and boundary con-

ditions and the PDE residual, respectively. In this example, we take P = m = 100, Q = 2, 500.

To obtain a set of training and test data, we randomly sample 2,000 input functions from a

GRF ⇠ N (0, 252(�� + 52I)�4), and select a subset of N = 1, 000 samples as training data.

For each sample u, we solve the Burgers equation 39 using conventional spectral methods.

0.0 0.5 1.0
Iteration ⇥105

10�6

10�4

10�2

100

L
os

s
Batch size = 256

Loperator

Lphysics

0.0 0.5 1.0
Iteration ⇥105

10�6

10�4

10�2

100

L
os

s

Batch size = 1024

Loperator

Lphysics

0.0 0.5 1.0
Iteration ⇥105

10�6

10�4

10�2

100

L
os

s

Batch size = 4096

Loperator

Lphysics

0.0 0.5 1.0
Iteration ⇥105

10�6

10�4

10�2

100

L
os

s

Batch size = 8192

Loperator

Lphysics

Figure S16: Solving a parametric diffusion-reaction system: Training loss convergence of
physics-informed DeepONets trained using a different batch-size.

Specifically, assuming periodic boundary conditions, we start from a given initial condition

s(x, 0) = u(x), x 2 [0, 1] and integrate the equation 39 up to the final time t = 1. Synthetic

test data for this example are generated using the Chebfun package (58) with a spectral Fourier

discretization and a fourth-order stiff time-stepping scheme (ETDRK4) (74) with time-step size

10�4. Temporal snapshots of the solution are saved every �t = 0.01 to give us 101 snapshots

in total. Consequently, the test data-set contains 1,000 realizations evaluated at a 100 ⇥ 101

spatio-temporal grid.

We employ two separate 7-layer fully-connected neural networks to represent the branch

net and the trunk net, respectively. Each network is equipped with Tanh activation functions

and has 100 units per hidden layer. The physics-informed DeepONet is trained by minimizing

the loss function 44 via gradient descent using the Adam optimizer for 200, 000 iterations.

Figure S17c shows the predicted solution of a trained physics-informed DeepONet for the worst

sample in the test data-set, with a resulting relative L
2 error of 17%. Moreover, a discrepancy

between the exact and the predicted initial condition u(x) can be observed in Figure S17a.

This indicates that the physics-informed DeepONet cannot accurately reconstruct the initial

condition, which results in a large prediction error of the full solution. To enforce the initial

condition and improve the performance of physics-informed DeepONet, we consider assigning

weights to LIC(✓) and use a more powerful network architecture as the backbone of the branch

net and the trunk net. Specifically, we modify the loss function 44 as

L(✓) = �LIC(✓) + LBC(✓) + Lphysics(✓), (49)

where � is a hyper-parameter that aims to balance the interplay of different terms in the loss

function. Moreover, we employ a simple modified fully-connected neural network proposed by

Wang et. al (62), which has been empirically proven to outperform conventional multi-layer

percerptron (MLP) networks. Specifically, the forward pass of the proposed modified MLP

architecture is given by

U = �(XW
1 + b

1), V = �(XW
2 + b

2) (50)

H
(1) = �(XW

z,1 + b
z,1) (51)

Z
(k) = �(H(k)

W
z,k + b

z,k), k = 1, . . . , L (52)

H
(k+1) = (1 � Z

(k)) � U + Z
(k)

� V, k = 1, . . . , L (53)

f✓(x) = H
(L+1)

W + b, (54)

where X denotes the network inputs, and � denotes element-wise multiplication. The param-

eters of this model are essentially the same as in a standard fully-connected architecture, with

the addition of the weights and biases used by the two transformer networks, i.e.,

✓ = {W
1
, b

1
, W

2
, b

2
, (W z,l

, b
z,l)Ll=1, W, b} (55)

We train the physics-informed DeepONet using standard and modified MLP networks by

minimizing the modified loss function 49 for different � 2 {1, 5, 10, 20, 50, 100} under ex-

actly the same hyper-parameter setting. The resulting average relative L
2 prediction errors are

summarized in Figure S18a. Compared against conventional MLPs, the modified MLP ar-

chitecture is capable of consistently yielding much better prediction accuracy, which can be

further improved by assigning appropriate weights in the loss function. Among all these hyper-

parameters, the smallest test error ⇠ 1.38% is obtained for the modified fully-connected neural

network with � = 20. More visualizations for different input samples are shown in Figure S19.

We also investigate the effect of the viscosity parameter in the Burgers equation on the per-

formance of physics-informed DeepONets. In particular, we vary the viscosity ⌫ from 10�2 to

10�4 and train physics-informed DeepONets under exactly the same hyper-parameter settings

(network architecture, learning rate, batch size, weights, etc). As shown in Figure S20 the pre-

dicted solutions are in qualitative agreement with the corresponding ground truth. However, one

can observe a large discrepancy in regions where the solution exhibits steep gradients. This is

further validated by the averaged relative L
2 error reported in Table S11. This result is in agree-

ment with our previous experience, as well as the PINNs literature, and confirms the difficulties

that deep learning approaches face in presence of stiff dynamics. While our results appear qual-

itatively promising, there is certainly a need for further methodological advances for enhancing

the accuracy and robustness of physics-informed DeepONets in this setting. We believe that

these issues will be tackled in the future by designing of more specialized architectures, as well

as more effective optimization algorithms for training constrained neural network models, such

as PINNs and physics-informed DeepONets.

0.0 0.5 1.0
x

�0.5

0.0

0.5

u
(x

)

Input sample

Exact Predicted

(a)

0.0 0.5 1.0
x

�0.5

0.0

0.5

u
(x

)

Input sample

Exact Predicted

(b)

(c)

(d)

Figure S17: Solving a parametric Burgers’ equation: (a)(c) Exact solution and the initial con-
dition versus the predictions of a trained physics-informed DeepONet with a conventional MLP
architecture. The resulting relative L

2 error of the predicted solution is 17.1%. (b)(d) Exact
solution and the initial condition versus the predictions of a trained physics-informed Deep-
ONet with a modified MLP architecture (62) and � = 20. The resulting relative L

2 error of the
predicted solution is reduced to 3%.

Advection equation

To further investigate the performance of physics-informed DeepOnets in advection-dominated

problems, we have considered an additional benchmark involving a simple hyperbolic PDE

100 101 102

�

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
el

.
L

2
er

ro
r

MLP

Modified MLP

(a)

100 101 102 103

PDEs solved

10�2

10�1

100

101

102

T
im

e
(s

ec
)

MLP

Modified MLP

Numerical solver

(b)

Figure S18: Solving a parametric Burgers’ equation: (a) The average relative L
2 error of

training physics-informed DeepONets with standard or modified MLPs for different � 2

{1, 5, 10, 20, 50, 100} over 1,000 examples in the test data-set. The smallest errors for stan-
dard and modified MLPs are 2.8% and 1.3%, respectively. (b) Computational cost (sec) for
performing inference with a trained physics-informed DeepONet model (conventional or mod-
ified MLP architecture), as well as corresponding timing for solving a PDE with a conventional
spectral solver (58). Strikingly, a trained physics informed DeepOnet model can predict the
solution of O(103) time-dependent PDEs in a fraction of a second – up to three orders of mag-
nitude faster compared to a conventional PDE solver. Reported timings are obtained on a single
NVIDIA V100 GPU.

Viscosity ⌫ = 0.01 ⌫ = 0.001 ⌫ = 0.0001

Rel. L
2 error 1.38% ± 1.64% 21.62% ± 14.45% 24.76% ± 10.69%

Table S11: Solving a parametric Burger’s equation: Relative L
2 prediction error of a trained

physics-informed DeepONet averaged over all examples in the test data-set, for different vis-
cosity values.

system. Specifically, we have considered the following parametric advection problem

@s

@t
+ u(x)

@s

@x
= 0, (x, t) 2 (0, 1) ⇥ (0, 1), (56)

with the initial and boundary condition

s(x, 0) = f(x) (57)

s(0, t) = g(t) (58)

where f(x) = sin(⇡x) and g(t) = sin(⇡2 t). To make the input function u(x) strictly positive,

we let u(x) = v(x) � minx v(x) + 1 where v(x) is sampled from a GRF with a length scale

Figure S19: Solving a Burgers’ equation: Predicted solutions of a trained physics-informed
DeepONet with a modified MLP architecture for three different examples in the test data-set.

l = 0.2. The goal is to learn the solution operator G mapping variable coefficients u(x) to the

associated PDE solution s(x, t). A physics-informed loss can be formulated as follows

L(✓) = LBC(✓) + LIC(✓) + Lphysics(✓), (59)

where

LIC(✓) =
1

NP

NX

i=1

PX

j=1

���G✓(u
(i))(x(i)

ic,j, 0) � f(x(i)
ic,j)

���
2

, (60)

LBC(✓) =
1

NP

NX

i=1

PX

j=1

���G✓(u
(i))(0, t(i)bc,j) � g(t(i)bc,j)

���
2

, (61)

Lphysics(✓) =
1

NQ

NX

i=1

QX

j=1

�����
@G✓(u(i))(x(i)

r,j, t
(i)
r,j)

@t
� u

(i)(x(i)
r,j)

@G✓(u(i))(x(i)
r,j, t

(i)
r,j)

@x

�����

2

. (62)

Figure S20: Solving a parametric Burger’s equation: Predictions of a trained physics-informed
DeepONet for two representative initial conditions in the test data-set, corresponding to differ-
ent viscosity values of ⌫ = 10�3 (top), and 10�4 (bottom), respectively.

Here, we take N = 2, 000, P = 200 and Q = 2, 500. The input sample u(i) is evaluated

at equi-spaced points {xi}
m
i=1 in [0, 1]. To generate a set of test data, we sample N = 100

input functions from the same GRF and solve the advection equation using the Lax–Wendroff

scheme (7) on a 100 ⇥ 100 uniform grid.

The DeepOnet architecture consists of two modified fully-connected neural networks as the

branch and trunk network, respectively. Each network has 7 layers and 100 neurons per hid-

den layer. We train the physics-informed DeepONet by minimizing the above loss function for

300, 000 iterations. The resulting relative L
2 errors of the trained model over the test data-set

is 2.24%. Representative visualizations of the predicted solution for different input samples

are shown in Figure 5. We see that the predictions achieve a good agreement with the numer-

ical estimations overall, while some inaccuracies can be founded near the fast transition in the

ground truth. We believe that this is because the DeepONet cannot accurately approximate the

sharp gradients during training, which is also consistent with our observations for the Burgers’

1

equation with small viscosity.

Figure S21: Solving parametric a advection equation: Predicted solutions of a trained physics-
informed DeepONet for three examples in the test data-set.

Eikonal equation

Recall that the Eikonal equation is given by

krs(x)k2 = 1,

s(x) = 0, x 2 @⌦,

(63)

We use a DeepONet G✓ to represent the unknown operator. This allows us to define the PDE

residual

R
(i)
✓ (x, y) = krG✓(�

(i))(x, y)k2 =

������

s✓
dG✓(�(i))(x, y)

dx

◆2

+

✓
dG✓(�(i))(x, y)

dy

◆2
������
2

(64)

0 1 2 3
Iteration ⇥105

10�4

10�2

100

L
os

s

Loperator

Lphysics

Figure S22: Solving a parametric advection equation: Training loss convergence of a physics-
informed DeepONet over 300, 000 training iterations with gradient descent using the Adam
optimizer.

Here, �(i) = [(x(i)
1 , y

(i)
1), (x(i)

2 , y
(i)
2), . . . , (x(i)

m , y
(i)
m)] denotes a parametrized curve evaluated at

a set of fixed sensor locations {(x(i)
j , y

(i)
j)}m

j=1. Then, a physics-informed DeepONet can be

trained by minimizing the following loss function

L(✓) = LBC(✓) + Lphysics(✓) (65)

=
1

Nm

NX

i=1

mX

j=1

���G✓(�
(i))(x(i)

j , y
(i)
j)

���
2

+
1

NQ

NX

i=1

QX

j=1

���R(i)
✓ (x(i)

r,j, y
(i)
r,j) � 1

���
2

, (66)

where LBC(✓) and Lphysics(✓) are used to impose the zero boundary condition and the PDE resid-

ual, respectively. Moreover, for each input curve �(i), {(x(i)
r,j, y

(i)
r,j)}

Q
j=1 are uniformly sampled

in the given computational domain. Unlike the previous parametric PDE examples, it is worth

noting that the ”input functions” of this example are actually defining a variable computational

domain.

Case I: Circles

We start with a simple case corresponding to circular boundaries @⌦ centered at the origin, each

having a different radius. In this case, the corresponding signed distance function that solves

equation 63 can be analytically derived. For example, suppose that � is a circle with radius r,

then the signed distance function is given by

s(x, y) =
p

x2 + y2 � r (67)

To generate a set of training data, we randomly choose N = 1, 000 circles with radii sam-

pled from a uniform distribution. Then, for each input circle �(i) with radius r
(i), we have

{(x(i)
j , y

(i)
j)}Q

j=1 = {(r(i) cos ✓j, r
(i) sin ✓j)}

Q
j=1, where {✓j}

Q
j=1 are evenly spaced in [0, 2⇡].

Here, we consider a computational domain D = [�2, 2] ⇥ [�2, 2] and we set m = 100, Q =

1, 000.

The branch net and the trunk networks are two separate 6-layer fully-connected neural net-

work with 50 neurons per hidden layer. We train the physics-informed DeepONet by minimiz-

ing the loss function 65 for 80, 000 iterations of gradient descent using the Adam optimizer.

As shown in Figure S23, an excellent agreement can be achieved between the exact and the

predicted signed distance functions for a representative example in the test data-set. The rela-

tive L
2 prediction error averaged over 1,000 examples in the test data-set is 0.4%. More model

predictions for different input samples can be found in Figure S24.

Figure S23: Solving a parametric Eikonal equation (circles): Exact solutions versus the pre-
dicted solutions of a trained physics-informed DeepONet for a representative input sample. The
black dots represent the location of sensors on the circular boundary.

Case II: Airfoils

Below, we describe some details of the data-set and the training procedure. To obtain a set of

training and test data, we use the UIUC Airfoil Data Site (60) which contains a total of 1,552

Figure S24: Solving a parametric Eikonal equation (circles): Predicted signed distance func-
tions by a trained physics-informed DeepONet for three different examples in the test data-set.

airfoil geometries. We use the first 1,000 shapes as training data, and the rest are included in

the test data-set. Without loss of generality, we normalize the airfoil shapes to have zero mean

and unit variance.

In this example, the computation domain is the unit square [�3, 3] ⇥ [�3, 3] and the branch

net and the trunk net are two separate 6-layer fully-connected neural networks with 100 neurons

per hidden layer. Both two networks are equipped with ELU activation functions. We train

the physics-informed DeepONet for 120, 000 iterations of gradient descent using the Adam

optimizer.

0.0 2.5 5.0 7.5
Iteration ⇥104

10�5

10�3

10�1

L
os

s

Loperator

Lphysics

(a)

0.0 0.5 1.0
Iteration ⇥105

10�4

10�3

10�2

10�1

100

L
os

s

Loperator

Lphysics

(b)

Figure S25: Solving a parametric Eikonal equation: (a) Training loss convergence of a physics-
informed DeepONet equipped with Tanh activations, for 80,000 iterations of gradient descent
using the Adam optimizer. (b) Training loss convergence of a physics-informed DeepONet
equipped with ELU activations, for 120,000 iterations of gradient descent using the Adam op-
timizer.

REFERENCES AND NOTES

1. R. Courant, D. Hilbert, Methods of Mathematical Physics: Partial Differential Equations (John Wiley

& Sons, 2008).

2. T. J. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis

(Courier Corporation, 2012).

3. D. J. Lucia, P. S. Beran, W. A. Silva, Reduced-order modeling: New approaches for computational

physics. Prog. Aerosp. Sci. 40, 51–117 (2004).

4. J. N. Kutz, S. L. Brunton, B. W. Brunton, J. L. Proctor, Dynamic Mode Decomposition: Data-Driven

Modeling of Complex Systems (SIAM, 2016).

5. P. Benner, M. Ohlberger, A. Patera, G. Rozza, K. Urban, Model Reduction of Parametrized Systems

(Springer, 2017).

6. W. H. Schilders, H. A. Van der Vorst, J. Rommes, in Model Order Reduction: Theory, Research

Aspects and Applications (Springer, 2008), vol. 13.

7. A. Quarteroni, G. Rozza, in Reduced Order Methods for Modeling and Computational Reduction

(Springer, 2014), vol. 9.

8. I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear

Dyn. 41, 309–325 (2005).

9. B. Peherstorfer, K. Willcox, Data-driven operator inference for nonintrusive projection-based model

reduction. Comput. Methods Appl. Mech. Eng. 306, 196–215 (2016).

10. A. J. Majda, D. Qi, Strategies for reduced-order models for predicting the statistical responses and

uncertainty quantification in complex turbulent dynamical systems. SIAM Rev. 60, 491–549 (2018).

11. T. Lassila, A. Manzoni, A. Quarteroni, G. Rozza, Model order reduction in fluid dynamics:

Challenges and perspectives, in Reduced Order Methods for Modeling and Computational Reduction

(Springer, 2014), pp. 235–273.

12. D. C. Psichogios, L. H. Ungar, A hybrid neural network-first principles approach to process

modeling. AIChE J. 38, 1499–1511 (1992).

13. I. E. Lagaris, A. Likas, D. I. Fotiadis, Artificial neural networks for solving ordinary and partial

differential equations. IEEE Trans. Neural Netw. 9, 987–1000 (1998).

14. M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems involving nonlinear partial differential

equations. J. Comput. Phys. 378, 686–707 (2019).

15. L. Sun, H. Gao, S. Pan, J.-X. Wang, Surrogate modeling for fluid flows based on physics-

constrained deep learning without simulation data. Comput. Methods Appl. Mech. Eng. 361, 112732

(2020).

16. Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning for high-

dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput.

Phys. 394, 56–81 (2019).

17. S. Karumuri, R. Tripathy, I. Bilionis, J. Panchal, Simulator-free solution of high-dimensional

stochastic elliptic partial differential equations using deep neural networks. J. Comput. Phys. 404,

109120 (2020).

18. J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential

equations. J. Comput. Phys. 375, 1339–1364 (2018).

19. M. Raissi, A. Yazdani, G. E. Karniadakis, Hidden fluid mechanics: Learning velocity and pressure

fields from flow visualizations. Science 367, 1026–1030 (2020).

20. A. Tartakovsky, C. O. Marrero, P. Perdikaris, G. Tartakovsky, D. Barajas-Solano, Physics-informed

deep neural networks for learning parameters and constitutive relationships in subsurface flow

problems. Water Resour. Res. 56, e2019WR026731 (2020).

21. O. Hennigh, S. Narasimhan, M. A. Nabian, A. Subramaniam, K. Tangsali, M. Rietmann, J. del

Aguila Ferrandis, W. Byeon, Z. Fang, S. Choudhry, NVIDIA SimNet: An ai-accelerated multi-

physics simulation framework. arXiv:2012.07938 (2020).

22. S. Cai, Z. Wang, S. Wang, P. Perdikaris, G. Karniadakis, Physics-informed neural networks (pinns)

for heat transfer problems. J. Heat Transfer 143, 060801 (2021).

23. G. Kissas, Y. Yang, E. Hwuang, W. R. Witschey, J. A. Detre, P. Perdikaris, Machine learning in

cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI

data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 358, 112623

(2020).

24. F. Sahli Costabal, Y. Yang, P. Perdikaris, D. E. Hurtado, E. Kuhl, Physics-informed neural networks

for cardiac activation mapping. Front. Phys. 8, 42 (2020).

25. L. Lu, M. Dao, P. Kumar, U. Ramamurty, G. E. Karniadakis, S. Suresh, Extraction of mechanical

properties of materials through deep learning from instrumented indentation. Proc. Natl. Acad. Sci.

U.S.A. 117, 7052–7062 (2020).

26. Y. Chen, L. Lu, G. E. Karniadakis, L. Dal Negro, Physics-informed neural networks for inverse

problems in nano-optics and metamaterials. Opt. Express 28, 11618–11633 (2020).

27. S. Goswami, C. Anitescu, S. Chakraborty, T. Rabczuk, Transfer learning enhanced physics informed

neural network for phase-field modeling of fracture. Theor. Appl. Fract. Mech. 106, 102447 (2020).

28. D. Z. Huang, K. Xu, C. Farhat, E. Darve, Learning constitutive relations from indirect observations

using deep neural networks. J. Comput. Phys. 416, 109491 (2020).

29. D. Elbrächter, P. Grohs, A. Jentzen, C. Schwab, Dnn expression rate analysis of high-dimensional

PDEs: Application to option pricing. arXiv:1809.07669 (2018).

30. J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations using deep

learning. Proc. Natl. Acad. Sci. U.S.A. 115, 8505–8510 (2018).

https://arxiv.org/abs/2012.07938
https://arxiv.org/abs/1809.07669

31. T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, Q. Liao, Why and when can deep-but not shallow-

networks avoid the curse of dimensionality: A review. Int. J. Autom. Comput. 14, 503–519 (2017).

32. Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural

operator: Graph kernel network for partial differential equations. arXiv:2003.03485 (2020).

33. Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar,

Multipole graph neural operator for parametric partial differential equations. arXiv:2006.09535

(2020).

34. Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier

neural operator for parametric partial differential equations. arXiv:2010.08895 (2020).

35. L. Lu, P. Jin, G. Pang, Z. Zhang, G. E. Karniadakis, Learning nonlinear operators via DeepONet

based on the universal approximation theorem of operators. Nat. Mach. Intell. 3, 218–229 (2021).

36. T. Chen, H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary

activation functions and its application to dynamical systems. IEEE Trans. Neural Netw. 6, 911–917

(1995).

37. A. D. Back, T. Chen, Universal approximation of multiple nonlinear operators by neural networks.

Neural Comput. 14, 2561–2566 (2002).

38. H. Kadri, E. Duflos, P. Preux, S. Canu, A. Rakotomamonjy, J. Audiffren, Operator-valued kernels

for learning from functional response data. J. Mach. Learn. Res. 17, 1–54 (2016).

39. M. Griebel, C. Rieger, Reproducing kernel hilbert spaces for parametric partial differential

equations. SIAM-ASA J. Uncertain. Quantif. 5, 111–137 (2017).

40. H. Owhadi, Do ideas have shape? plato’s theory of forms as the continuous limit of artificial neural

networks. arXiv:2008.03920 (2020).

41. N. H. Nelsen, A. M. Stuart, The random feature model for input-output maps between banach

spaces. arXiv:2005.10224 (2020).

https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2006.09535
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2005.10224

42. C. Schwab, J. Zech, Deep learning in high dimension: Neural network expression rates for

generalized polynomial chaos expansions in uq. Anal. Appl. 17, 19–55 (2019).

43. S. Wojtowytsch, W. E, Can shallow neural networks beat the curse of dimensionality? A mean field

training perspective. IEEE Trans. Artif. Intell. 1, 121–129 (2021).

44. S. Lanthaler, S. Mishra, G. E. Karniadakis, Error estimates for deeponets: A deep learning

framework in infinite dimensions. arXiv:2102.09618 (2021).

45. S. Cai, Z. Wang, L. Lu, T. A. Zaki, G. E. Karniadakis, DeepM&Mnet: Inferring the

electroconvection multiphysics fields based on operator approximation by neural networks.

arXiv:2009.12935 (2020).

46. C. Lin, Z. Li, L. Lu, S. Cai, M. Maxey, G. E. Karniadakis, Operator learning for predicting

multiscale bubble growth dynamics. arXiv:2012.12816 (2020).

47. B. Liu, N. Kovachki, Z. Li, K. Azizzadenesheli, A. Anandkumar, A. Stuart, K. Bhattacharya, A

learning-based multiscale method and its application to inelastic impact problems. arXiv:2102.07256

(2021).

48. P. C. Di Leoni, L. Lu, C. Meneveau, G. Karniadakis, T. A. Zaki, Deeponet prediction of linear

instability waves in high-speed boundary layers. arXiv:2105.08697 (2021).

49. Z. Mao, L. Lu, O. Marxen, T. A. Zaki, G. E. Karniadakis, DeepM&Mnet for hypersonics: Predicting

the coupled flow and finite-rate chemistry behind a normal shock using neural-network

approximation of operators. arXiv:2011.03349 (2020).

50. Y. Khoo, J. Lu, L. Ying, Solving parametric PDE problems with artificial neural networks.

arXiv:1707.03351 (2017).

51. N. Geneva, N. Zabaras, Modeling the dynamics of PDE systems with physics-constrained deep auto-

regressive networks. J. Comput. Phys. 403, 109056 (2020).

https://arxiv.org/abs/2102.09618
https://arxiv.org/abs/2009.12935
https://arxiv.org/abs/2012.12816
https://arxiv.org/abs/2102.07256
https://arxiv.org/abs/2105.08697
https://arxiv.org/abs/2011.03349
https://arxiv.org/abs/1707.03351

52. Y. Chen, B. Dong, J. Xu, Meta-mgnet: Meta multigrid networks for solving parameterized partial

differential equations. arXiv:2010.14088 (2020).

53. D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, S. Hoyer, Machine learning

accelerated computational fluid dynamics. arXiv:2102.01010 (2021).

54. A. Griewank, On automatic differentiation, in Mathematical Programming: Recent Developments

and Applications (Kluwer Academic Publishers, 1989), pp. 83–108.

55. A. G. Baydin, B. A. Pearlmutter, A. A. Radul, J. M. Siskind, Automatic differentiation in machine

learning: A survey. J. Mach. Learn. Res. 18, 1–43 (2018).

56. M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R.

Ramamoorthi, J. T. Barron, R. Ng, Fourier features let networks learn high frequency functions in

low dimensional domains. arXiv:2006.10739 (2020).

57. M. Raissi, H. Babaee, P. Givi, Deep learning of turbulent scalar mixing. Phys. Rev. Fluids 4, 124501

(2019).

58. T. A. Driscoll, N. Hale, L. N. Trefethen, Chebfun guide (2014).

59. J. J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, DeepSDF: Learning Continuous

Signed Distance Functions for Shape Representation, Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (2019), pp. 165–174.

60. M. S. Selig, Uiuc airfoil data site (1996).

61. S. Wang, H. Wang, P. Perdikaris, On the eigenvector bias of fourier feature networks: From

regression to solving multi-scale pdes with physics-informed neural networks. arXiv:2012.10047

(2020).

62. S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient pathologies in physics-

informed neural networks. arXiv:2001.04536 (2020).

https://arxiv.org/abs/2010.14088
https://arxiv.org/abs/2102.01010
https://arxiv.org/abs/2006.10739
https://arxiv.org/abs/2012.10047
https://arxiv.org/abs/2001.04536

63. S. Wang, X. Yu, P. Perdikaris, When and why PINNs fail to train: A neural tangent kernel

perspective. arXiv:2007.14527 (2020).

64. L. McClenny, U. Braga-Neto, Self-adaptive physics-informed neural networks using a soft attention

mechanism. arXiv:2009.04544 (2020).

65. J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J.

VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX: Composable transformations of Python+NumPy

programs (2018).

66. J. D. Hunter, Matplotlib: A 2D graphics environment. IEEE Ann. Hist. Comput. 9, 90–95 (2007).

67. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,

J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A.

Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W.

Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant, Array programming with numpy. Nature 585,

357–362 (2020).

68. C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning, Adaptive Computation and

Machine Learning (MIT Press, 2006).

69. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv:1412.6980 (2014).

70. C. Finn, P. Abbeel, S. Levine, International Conference on Machine Learning (PMLR, 2017), pp.

1126–1135.

71. A. Iserles, in A First Course in the Numerical Analysis of Differential Equations (Cambridge Univ.

Press, 2009), no. 44.

72. E. Haghighat, M. Raissi, A. Moure, H. Gomez, R. Juanes, A physics-informed deep learning

framework for inversion and surrogate modeling in solid mechanics. Comput. Methods Appl. Mech.

Eng. 379, 113741 (2021).

https://arxiv.org/abs/2007.14527
https://arxiv.org/abs/2009.04544
https://arxiv.org/abs/1412.6980

73. S. Wang, P. Perdikaris, Long-time integration of parametric evolution equations with physics-

informed deeponets. arXiv:2106.05384 (2021).

74. S. M. Cox, P. C. Matthews, Exponential time differencing for stiff systems. J. Comput. Phys. 176,

430–455 (2002).

https://arxiv.org/abs/2106.05384

	abi8605_coverpage
	Wang_abi8605_
	abi8605_coverpage
	abi8605_SupplementalMaterial_v3
	References

	references

