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List of acronyms 

3D    Three-dimensional 

AIG    Anchorage Independent Growth 

APGI    Australian Pancreatic Genome Initiative 

APMA    Australian Pancreatic Cancer Matrix Atlas 

CC3    Cleaved Caspase-3 

CDM    Cell-derived matrix 

ECFP    Enhanced Cyan Fluorescent Protein 

ECM    Extracellular Matrix 

FACS    Fluorescence-Activated Cell Sorting 

FAK    Focal Adhesion Kinase 

FAKi    Focal Adhesion Kinase inhibitor 

FLIM    Fluorescence Lifetime Imaging Microscopy 

FOV    Field of view 

FRET    Förster Resonance Energy Transfer 

FUCCI    Fluorescent Ubiquitination-based Cell Cycle Indicator 

GFP    Green Fluorescent Protein 

GLCM    Gray-Level Co-occurrence Matrix 

ICGC    International Cancer Genome Consortium 

IHC    Immunohistochemistry 

IVIS    In Vivo Imaging System 

KPC    Pdx1-Cre ; LSL-KrasG12D/+, LSL-Trp53R172H/+ 

Luc    Luciferase 



 
 

 
 

NF2    Neurofibromatosis type 2 (alternative gene name for Merlin) 

PanIN    Pancreatic intraepithelial neoplasia 

PC    Pancreatic Cancer 

PDAC    Pancreatic Ductal Adenocarcinoma 

PDCL    Patient Derived Cell Line 

PDX    Patient Derived Xenograft 

PTK2    Protein Tyrosine Kinase 2 (alternative gene name for FAK) 

pTyr    phosphotyrosine 

ROI    Region of interest 

SHG    Second Harmonic Generation 

shRNA   short hairpin RNA 

TIF    Telomerase-Immortalized Fibroblast 

TKCC    The Kinghorn Cancer Centre 

TMA    Tumor Microarray 

TWOMBLI   The Workflow Of Matrix BioLogy Informatics 

 
 



 
 

 
 

Fig. S1. Epithelial FAK inhibition reduces cell polarization while stromal FAK inhibition 

Supplementary Figure 1: 
A B
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decreases ECM deposition by fibroblasts. 

A. Representative H&E Images of Normal Pancreas, Early PanIN, Late PanIN and PDAC, (scale 

bar, 100 µm). B. Representative images of APGI TMA cores stained with picrosirius red showing 

low, moderate/low, moderate/high and high coverage (scale bar, 200 µm). C. Representative 

images of 0: weak/negative, 1: weak/mild, 2: moderate or 3: strong signal in APGI TMA cores 

stained with Total FAK (left) and pTyr-397-FAK (right, scale bar, 200 µm). D,E. Representative 

IF images of Normal, Early PanIN, Late PanIN and PDAC KPC tumors stained with DAPI (blue), 

pTyr-397-FAK (green), αSMA (D, red) or E-Cadherin (E, red) including overlay (scale bar, 50 

µm). F,G. Western blot analysis of pTyr-397-FAK and Total FAK in KPC cells treated for 2 hours 

with vehicle or FAKi. n=3 with sample integrity controls H. Schematic representation of cell 

polarization and Golgi orientation in scratch wound assays, showing examples of a polarized (left) 

and a non-polarized (right) cell. I. Representative images of KPC cell scratch wound assays treated 

with vehicle or FAKi and stained with anti-GM-130 (green), Phalloidin (red) and DAPI (blue, 

scale bar, 20 µm), and quantification of cell polarity, showing the percentage of cells with the 

Golgi orientated to the leading edge of the cell (within 45° of the scratch). n=3 biological repeats 

with 3 scratch wounds per repeat per condition, and 3 FOV per wound, with ≥ 12 cells per FOV 

analyzed. Results are mean ± SEM. p-values were determined using an ordinary one-way ANOVA 

with Tukey correction for multiple comparisons, ns p>0.05, * p<0.05, ** p< 0.01. Unless 

otherwise stated significance is compared to vehicle J. Schematic representation of Human PC 

surgical resection, representative images and quantification of Picrosirius red stained tumors from 

treatment naïve patients in the APMA cohort who received no treatment prior to surgery, or neo-

adjuvant gemcitabine/Abraxane. n=3 treatment naïve patients, n=4 neo-adjuvant 

gemcitabine/Abraxane patients, with 5 FOV per tumor. Results are mean ± SEM, p-values were 



 
 

 
 

determined using an unpaired two-tailed t-test with Welsh correction for unequal variance, * 

p<0.05.   



 
 

 
 

 

Fig. S2. Stromal FAK inhibition in fibroblast-derived matrices reduces collagen deposition, 

birefringence and organization  

A,B. Representative images of picrosirius red stained CDMs, (scale bar, 100 µm, A) and 

quantification of total collagen I and III coverage (B), following treatment with vehicle or FAKi 

Supplementary Figure 2: 
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during CDM production. C-E. Representative polarized light images of picrosirius red stained 

CDMs, (scale bar, 500 µm, C) and quantification of total birefringent signal (D) and distribution 

of mature fiber contribution (E) of CDMs following treatment with vehicle or FAKi during CDM 

production. F,G. Representative grey-scale images (F), of polarized light images (shown in C), 

and quantification of matrix anisotropy (G). H-N. Representative binary masks of fibril overlay 

(H) of inset shown in F. and quantification of matrix organization following treatment with vehicle 

(grey), 250 nM (red) or 1 µM (blue) FAKi, including curvature (I), fractal dimension (J), 

lacunarity (K), normalized branchpoints (L), endpoints (M) and HGU (N); normalization was 

calculated to average fibril length, to account for changes in matrix quantity. n=3 biological 

repeats, with 3 matrices per repeat and treatment group, and 5 FOV per matrix. O,P. Quantification 

of individual cell velocity (O) and persistence (P) on CDMs upon stromal FAK inhibition. n=3 

biological repeats with 3 CDMs per condition per repeat, 3 FOV per CDM and 15 cells per FOV. 

Results are mean ± SEM. p-values were determined using an ordinary one-way ANOVA with 

Tukey correction for multiple comparisons, ns p>0.05, * p<0.05, ** p< 0.01, *** p<0.001. Unless 

otherwise stated significance is compared to vehicle.   
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Fig. S3. Stromal FAK inhibition in fibroblast-contracted collagen matrices reduces collagen 

birefringence, organization and stiffness, whilst late FAKi treatment does not improve 

gemcitabine/Abraxane performance during KPC cell invasion.  

A,B. Quantification of cleaved caspase-3 (A) and Ki67 (B) in TIFs in contracted collagen matrices 

treated with vehicle or FAKi. C-E. Quantification of Collagen I and III coverage (C), total 

polarized light signal (D)  and high (red), medium (yellow) and low (green) birefringent signal (E) 

of picrosirius red stained collagen matrices treated with vehicle or FAKi, Results are mean ± SD 

(E). F,G. Representative bright field images (F) and polarized light images (G) of picrosirius red 

stained collagen matrices treated with vehicle or FAKi (scale bar, 100 µm). H. Schematic of 

GLCM analysis of collagen texture, indicating areas of low (red) and high (purple) GLCM 

correlation. I,J. Quantification of GLCM correlation against neighbor index (I, µm) and mean 

correlation distance (J) in collagen matrices treated with vehicle or FAKi. K. Representative SHG 

images highlighting fibrillar collagen I organization of collagen matrices treated with vehicle or 

FAKi (scale bar, 100 µm). L,M. Quantification of compression (L, bulk modulus) and shear 

rheology (M) of contracted matrices treated with vehicle or FAKi. N,O. Quantification of cleaved 

caspase-3 (N) and Ki67 stained KPC cells (O) invading into vehicle primed and vehicle treated 

matrices, vehicle primed matrices treated during invasion with 250 nM FAKi or 1 µM FAKi, 250 

nM FAKi or 1 µM FAKi primed matrices, and under chronic treatment with 250 nM FAKi or 1 

µM FAKi. P. Schematic representation of vehicle primed matrices followed by KPC cell seeding 

and late epithelial treatment with vehicle or FAKi during cell invasion for 11 days prior to 72 hours 

of treatment with saline or gemcitabine/Abraxane chemotherapy. Q. Quantification of KPC cells 

positive for cleaved caspase-3 invading into and on top of matrices treated during invasion with 

vehicle/saline alone (grey), vehicle/gemcitabine/Abraxane alone (grey stripes), 250 nM 



 
 

 

FAKi/saline (pink), 250nM FAKi/gemcitabine/Abraxane (pink stripes), 1 µM FAKi/saline (green) 

or 1 µM FAKi/gemcitabine/Abraxane (green stripes). R. Quantification of KPC cells positive for 

Ki67 invading into and on top of matrices treated during invasion with vehicle/saline alone (grey), 

vehicle/gemcitabine/Abraxane alone (grey stripes), 250 nM FAKi/saline (pink), 250nM 

FAKi/gemcitabine/Abraxane (pink stripes), 1 µM FAKi/saline(green) or 1 µM 

FAKi/gemcitabine/Abraxane (green stripes). For Q. and R. vehicle/saline and 

vehicle/gemcitabine/Abraxane are internal controls also utilized in Fig 4. D and E. n=3 biological 

repeats, with 3 matrices per repeat, and 3 FOV per matrix for quantification. Unless otherwise 

stated, results are mean ± SEM. p-values were determined using an ordinary one-way ANOVA 

with Tukey correction for multiple comparisons, ns p>0.05, *p<0.05, ** p<0.01, *** p<0.001. 

Unless otherwise stated significance is compared to control.  
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Fig. S4. FAKi priming disrupts tumor-ECM feedback by reducing fibrillar collagen content 

and birefringence while improving gemcitabine/Abraxane performance in vivo. 

A. Schematic representation of subcutaneous KPC-FAK xenograft establishment, treatment 

timeline and intravital imaging of surgically exposed tumors to monitor FAK activity. B,C. 

Schematic representation of the FAK biosensor (B) and quantification and representative images 

of ECFP fluorescence lifetime (C, nanoseconds, scale bar 50 µm) in mice treated with vehicle or 

FAKi. n=100 single cells were analyzed per animal (n=3 animals per treatment group). D. 

Representative maximum projection images of SHG signal (magenta) and tissue autofluorescence 

(green, scale bar, 50 µm) and quantification of peak SHG signal intensity in tumors treated with 

vehicle or FAKi. 5 FOV per animal, n=8 per treatment group. p-values were determined using an 

unpaired two-tailed t-test with Welsh correction for unequal variance, ns p>0.05, *p<0.05. 

Significance is compared to vehicle. E,F. Representative images of Ki67 staining (E, scale bar, 50 

µm) and quantification of Ki67 positive cells as a percentage of total cells (F) in subcutaneous 

KPC xenograft tumors primed with vehicle or FAKi followed by treatment with saline or 

gemcitabine/Abraxane. G,H. Representative images of cleaved caspase-3 staining, with arrows 

highlighting positive cells (G, scale bar, 50 µm) and quantification of cleaved caspase-3 positive 

cells as a percentage of total cells (H) in subcutaneous KPC xenograft tumors primed with vehicle 

or FAKi followed by treatment with saline or gemcitabine/Abraxane. I-L. Representative images 

of bright field, (I, scale bar, 50 µm) and polarized light microscopy (K, birefringence, scale bar, 

100 µm, arrows indicate signal) of picrosirius red stained sections with quantification of total 

picrosirius red birefringent signal (J) and contribution to total signal emitted from collagen fibers 

with high (red), medium (yellow) or low (green) birefringence (L) of KPC tumors primed with 

vehicle or FAKi followed by treatment with vehicle/saline or gemcitabine/Abraxane. n=5 animals 



 
 

 
 

per treatment group and 6 FOV per animal. Results are mean ± SEM. p-values were determined 

using an ordinary one-way ANOVA with Tukey correction for multiple comparisons, ns p>0.05, 

* p<0.05, ** p<0.01, *** p<0.001. Unless otherwise stated significance is compared to control.  

  



 
 

 

 

Fig. S5. FAKi priming disrupts the vasculature at secondary PDAC sites and reduces the 

ability of KPC cells to grow in the absence of cell-environment interaction. 

A,B. Representative images of CD31 staining in KPC liver metastases (scale bar, 50 µm, A) and 

quantification of open vessels (B) per FOV in mice treated with vehicle/saline (grey, n=8 mice), 

vehicle/gemcitabine/Abraxane (yellow, n=9 mice), FAKi/saline (blue, n=9 mice) or 

FAKi/gemcitabine/Abraxane (green, n=10 mice). 8 FOV per animal were analyzed. C-E. 

Schematic representation of an Anchorage Independent Growth (AIG) assay (C) and 

quantification of the normalized number of KPC cell clusters, (D) and average cluster size (E) 

following treatment for 7 days with vehicle or FAKi. n=3 biological repeats with three replicates 

per repeat per treatment group. 10 FOV per replicate were analyzed for cluster size. F. Schematic 

representation of an AIG assay highlighting early vehicle or FAKi treatment followed by 72 hours 

treatment with saline or gemcitabine/Abraxane. Results are mean ± SEM. p-values were 

determined using an ordinary one-way ANOVA with Tukey correction for multiple comparisons, 

* p<0.05, ** p<0.01, *** p<0.001. Unless otherwise stated significance is compared to control. 
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Fig. S6. Validation of total FAK and pTyr397-FAK status in PDAC patient-derived 

xenografts (PDXs) and cell lines (PDCLs). 

A,B. Schematic representation of PDX xenograft establishment (A) and representative images and 

quantification of DAB coverage (B) in pTyr-397-FAK stained TKCC05 (orange, left) and 

TKCC10 (purple, right) PDX tumors (scale bar, 50µm). C. Schematic representation of PDCL 
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generation followed by orthotopic PDCL tumor establishment. D. Representative images and 

quantification of DAB coverage in pTyr-397-FAK stained TKCC05 (orange, left) and TKCC10 

(purple, right) PDCL-derived tumors (scale bar, 50 µm). n=3 mice per PDX and PDCL tumor, 

with 6 FOV per tumor for IHC analysis and DAB quantification. E. Representative intensity-

merged ECFP fluorescence lifetime maps of FAK activity in TKCC05-FAK and TKCC10-FAK 

cells (scale bar, 100 µm) and quantification of ECFP fluorescence lifetime. n= 3 biological repeats, 

with 50 cells per repeat per cell line. Results are mean ± SEM. p-values were determined using an 

unpaired two-tailed t-test with welsh correction for unequal variance, * p<0.05. F,G. 

Quantification of cleaved caspase-3 (F) and Ki67 (G) stained TKCC05 cells in vehicle primed and 

vehicle treated matrices (grey), vehicle primed matrices treated during invasion with 250 nM FAKi 

(red) or 1 µM FAKi (blue), 250 nM FAKi (light pink) or 1 µM FAKi (light blue) primed matrices, 

and under chronic treatment with 250 nM FAKi (dark pink) or 1 µM FAKi (dark blue). H,I. 

Quantification of cleaved caspase-3 (H) and Ki67 (I) stained TKCC10 cells in vehicle primed and 

vehicle treated matrices (grey), vehicle primed matrices treated during invasion with 250 nM FAKi 

(red) or 1 µM FAKi (blue), 250 nM FAKi (light pink) or 1 µM FAKi (light blue) primed matrices, 

and under chronic treatment with 250 nM FAKi (dark pink) or 1 µM FAKi (dark blue). n=3 

biological repeats, with 3 matrices per repeat, and 3 FOV per matrix for quantification. Results are 

mean ± SEM. p-values were determined using an ordinary one-way ANOVA with Tukey 

correction for multiple comparisons, ns p>0.05. 

  



 
 

 
 

 

Fig. S7. IVIS monitoring of orthotopic TKCC05 tumor growth. 

A. Representative images of whole body IVIS imaging of TKCC05-Luc (Luciferase) orthotopic 

tumors over time during treatment with vehicle/saline, vehicle/Gemcitabine/Abraxane, 

FAKi/saline or FAKi/Gemcitabine/Abraxane.  
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Fig. S8. IVIS monitoring of orthotopic TKCC10 tumor growth. 

A. Representative images of whole body IVIS imaging of TKCC10-Luc (Luciferase) orthotopic 

tumors over time during treatment with vehicle/saline, vehicle/Gemcitabine/Abraxane, 

FAKi/saline or FAKi/Gemcitabine/Abraxane.  

Vehicle 
Saline

FAKi
Saline

Vehicle 
gem/Abraxane

FAKi
gem/Abraxane

D
ay 9

D
ay 16

D
ay 23

D
ay 27

D
ay 34

D
ay 41D

ay 48
D

ay 55
D

ay 62

D
ay 69

D
ay 74

D
ay 77

D
ay 83

D
ay 89

D
ay 97

D
ay 110

D
ay 117D

ay 124D
ay 133

D
ay 140

D
ay 147

D
ay 161

D
ay 164

A.

D
eveloped 
Tum

our

Supplementary Figure 8: 

TKCC10

E
ndpoint

E
ndpoint

E
ndpoint

E
ndpoint



 
 

 
 

 

Fig. S9. Merlin knock-down in TKCC05 cells improves sensitivity to FAKi in TKCC05 cells 

under anchorage-independent conditions. 

Supplementary Figure 9: 
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A-C. Quantification of Western blot analysis in TKCC05 pLKO.1, Merlin-48 and Merlin-95 cell 

lines on CDMs for Merlin (A), Total FAK (B) and pTyr-397-FAK levels (C) following 2 hours of 

treatment with vehicle or FAKi. n=3 biological repeats with 1 CDM per condition per repeat. 

Representative Blot shown in Fig. 8D. D. Representative whole well images and quantification of 

AIG assays of pLKO.1 and Merlin-95 TKCC05 cells treated with vehicle or FAKi for 8 days. For 

D. pLKO.1 is an internal control also utilized in Fig 8. E and F. E-G. Schematics of epithelial 

(cancer cell) and stromal (fibroblast) targeting (E), outside-in and inside-out FAK signaling axis 

(F), the effects we observed upon uncoupling inside-out, outside-in crosstalk via FAKi priming 

(G) and stratification of PC patients for FAKi priming according to their Merlin status (H). n=3 

biological repeats with four technical replicates per treatment per repeat. Results are mean ± SEM. 

p-values were determined using an ordinary one-way ANOVA with Tukey correction for multiple 

comparisons, ns p>0.05, * p<0.05, ** p< 0.01, *** p< 0.001. 

 
 
 
  



 
 

 
 

Other Supplementary Materials for this manuscript include the following:  

Movie S1. KPC cell adhesion, migration and streaming on CDMs upon late epithelial treatment 

with vehicle or FAKi (scale bar, 200 µm). Representative images from this Movie 72 hours post-

seeding are shown in Fig. 2E. 

Movie S2. KPC cell adhesion, migration and streaming on CDMs upon early stromal priming with 

vehicle or FAKi (scale bar, 200 µm). Representative images from this Movie 72 hours post-seeding 

are shown in Fig. 2L. 

Movie S3. FAKi priming reduces collagen crosslinking visualized by Second Harmonic 

Generation (SHG) imaging (scale bar, 100 µm). 

Movie S4. FAKi reduces FAK activity in vivo shown by FLIM-FRET imaging of the FAK 

biosensor in live tumors (scale bar, 50 µm). 

Movie S5. FAKi priming prior to chemotherapy increases the number of cells in S-G2/M phase in 

live KPC tumors (scale bar, 50 µm). 

Movie S6. FAKi priming prior to chemotherapy increases the number of cells in S-G2/M phase in 

residual metastases at secondary sites (scale bar, 50 µm). 
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