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Supplementary Results

S S/AISCI, = 0.2~0.8 V, sulfur oxidation

S H?/H", SHE, O V

SR S/S%*, = -0.9~-0.7 V, sulfur reduction
i Al/AP*, -1.66 V

i Na/Na*, -2.71V

i Li/Li*, -3.04 V

Supplementary Figure S1 The estimated equilibrium electrochemical potentials of sulfur reduction

and sulfur oxidation.
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Supplementary Figure S2 CV curves of bare CNT in AlCls/urea with a scan rate of 0.5 mV s™. The

CV data show much lower current density (y axis), suggesting the low electrochemical activity of

CNT in ionic liquid.
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Supplementary Figure S3 The electrochemical oxidation of sulfur in AlICIls/EmimCl electrolyte.
The molar ratio of AICI; to EmimCl is 1.3:1. (a) CV curves of S/ICNT from 1.0 V to 2.4 V at a scan
rate of 0.5 mV s™. The severely decreased peak currents can be seen from the 1st cycle and 4th cycle,
indicating the poor reversibility of sulfur in this electrolyte. (b) Charge-discharge curves of SICNT
from 1.0 V t0 2.4 V at 0.2 A g™*. The discharge capacity dramatically decreases from 230 mAh g™ to

41 mAh g* from 1st to 5th cycles, confirming the instability of sulfur in this electrolyte during

electrochemical oxidation.
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Supplementary Figure S4 The models, crystal structures and space groups of elemental sulfur,

AISCI; and Al,S3. The purple, yellow and green atoms denote Al, S and ClI, respectively.
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Supplementary Figure S5 The XRD patterns of S/ICNT composite cathodes at different cut-off
voltages based on (a) AISCI; and (b) Al,S3 products. The corresponding wavelengths are 0.7290 nm
and 0.6868 nm, respectively. For sulfur oxidation, the diffraction peaks of AISCI; can be clearly
observed at 2.4 V. These peaks disappear after discharging to 1.0 V due to the reversible conversion
from AISCI; to sulfur. For sulfur reduction, the peaks assigned to Al,S; are seen at 0.2 V, and these

peaks disappear at 1.8 V, suggesting the transformation from Al,S3 to sulfur during charge process.
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Supplementary Figure S6 (a) High-resolution TEM image of Sg; (b) The transformed FFT patterns.
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Supplementary Figure S7 The optimized models of AISCI; and Al,S;. The angles between a-axis

and c-axis correspond well with the STEM observation as shown in Figure 2b and 2d.
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Supplementary Figure S8 TEM image of AISCI; and its elemental mapping of Al, S, CI. AISCI;
was obtained by disassembly of the AlI-S battery after charging to 2.4 V. Obvious Al and CI are

observed on these images, suggesting the formation of AISCI; during charging process.
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Supplementary Figure S9 The optimized theoretical structures of AICI, ", Al,Cl7, Sg, SCls*, AISCI,

and A|QS3.
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Supplementary Figure S10 The Al K edge NEXAFS spectra of sulfur cathodes at different charging

potentials. Compared to the obvious peak shift of S and CI (Figure 3a and 3b), no peak shift is visible

during charging process. These results indicate that the Al valence remains unchanged during

cycling.
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Supplementary Figure S11 The cell configurations for the in-situ Raman testing in Figure 4d.
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Supplementary Figure S12 The in-situ Raman spectra of sulfur cathode in Al-S battery. The
decreased peak density of sulfur is visible during charging process, while the peaks emerge as the

battery is discharged.
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Supplementary Figure S13 N, adsorption-desorption isotherms (77 K) for pristine CNT and
composite electrode with 20 wt.% sulfur in S/CNT. The pristine CNT shows a specific surface area
of 217 m? g™* with a pore volume of 4.36 cm® g™*. After processing the SICNT electrode with 20 wt.%
sulfur, its specific surface area decreases to 154 m? g™, and meanwhile the pore volume decreases to

0.84 cm® g™*. These decreases are attributed to the sulfur presence inside the CNT host.
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Supplementary Figure S14 The charge-discharge curves of Al-S batteries from 1% cycle to 5 cycle
at 0.2 A g*. A pre-activation process with several electrochemical cycles is needed to activate the

assembled fresh Al-S battery.
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S/CNT cathode Separator Al anode

Supplementary Figure S15 Digital photos of sulfur cathode, separator and Al anode disassembled

from the cycled Al-S batteries.
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Supplementary Figure S16 The SEM image of cycled Al anode and its elemental mappings. There
are obvious S and Cl signals for Al anode after cycling. This confirms the dissolution of SCl;" and its

migration to the anode side, leading to the capacity decay.
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Supplementary Figure S17 Charge-discharge curves of Al-S batteries at 0.5 Ag*and 1Ag™.
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Supplementary Figure S18 (a) Cycling performance of AI-S battery at 0.5 A g™; (b) The

charge-discharge curves at different cycles.
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Supplementary Figure S19 (a) Cycling performance of Al-S battery at 1 A g™; (b) The

charge-discharge curves at different cycles.
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Supplementary Figure S20 Charge-discharge curves of Al-S batteries with different sulfur content

in SICNT composites. The applied current density is 0.2 Ag™.
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Supplementary Figure S21 Charge-discharge curves of Al-S batteries with different areal loadings

of sulfur. The applied current density is 0.2 Ag™.

22



2400 [

Al-S batteries : Li-ion batteries : Pb-acid batteries

- ! !
21800 | i i
= [ I !
8 1200 - | |
s T | !
= 300 - i !
© i |
k7S 200 + | 1
2 | i
100 ! !
L | |

0 NN h\l NNV NN ! K 1

Alfoil Sulfur AICI, Urea Graphite Licoo, UPFiin  phfoil Pbo, H,SO,
EC/DEC/DMC

Supplementary Figure S22 The price comparison of electrode materials and electrolytes for Al-S,

Li-ion and Pb-acid batteries.
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Supplementary Table S1 The performance comparison with the reported cathode materials in ionic

liquid electrolytes

. Specific . Final
. Discharge . Cycling .
Reported materials Electrolyte capacity / . capacity / Ref
voltage / V N life 1
mAh g mAh g
Sulfur .
o This
oxidation S/CNT AlCls/urea ~1.7-19V ~225 200 ~105 N
wor
(This work)
S/carbon cloth AICl/EmImC1 ~0.6V ~1300 20 ~1000 1
S/CNF paper | Li*-AlCl;/EmImCI ~0.75V ~1000 50 ~600 2
Sulfur S/CMK-3 AICI;/NBMPBr | ~02-0.6V | ~1400 20 ~600 3
reduction S/Co+C AICI/EmImCl | ~0.1-08V | ~1600 200 ~500 4
S/CNF+coated
AICl/EmImC1 ~095V ~1250 10 ~600 5
separator
Binder-free
AlCl;/BmImCl ~05-07V ~240 5 ~180 6
V505
V,0 ~0.55V
Metal e AICly/EmImCI ~305 20 273 7
oxides nanowires ~02V
Anatase TiO, AlCl/EmImCl ~05V ~120 N/A N/A 8
Co304 AICl/EmImC1 ~02-07V ~490 100 ~122 9
CosS, AlCI/EmImCI ~07V ~290 150 ~90 10
Metal MogS AICl;/BmImCI ~0.55V, 167 50 70 11
0 mlm ~ ~
eta 68 3 038V
sulfides
CuS AICl/EmImCl ~01-10V ~250 100 ~100 12
MoS, AICl/EmImCl ~04-08V ~253 100 ~67 13
Metal
. VCls AICl/EmImCl ~1.0V ~76 10 ~10 14
chlorides
polypyrrole N/A ~70 100 ~50
Polymers AlCI;/EmImCI 15
polythiophene ~08-12V ~90 100 ~70
3D graphitic
AICIl/EmImCl ~15-22V ~60 7500 ~60 16
foam
Graphitic
Carbon paper AICIl;/EmImCI ~1.6-20V ~85 50 ~85 17
carbons
Graphene
. AICl/EmImC1 ~1.6-20V ~110 10000 ~123 18
nanoribbons
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Supplementary Table S2 The DFT-based energy (EDFT), zero-point energy (ZPE), entropy (TS)

and Gibbs free energy (G) of different solids and ions

Al AlCI ALCly AISCl, AlLS; S AP e cr
Epr -3.75 2243 3797 -28.1 25.18 -4.13 -0.27 -3.54 -5.05
ZPE 0.032 0.12 0.27 0315 0.25 0.041 0 0.04 0
TS 0.055 0.44 0.73 0.89 0.35 0.085 0.14 0.34 0.08
G -3.77 22.76 -38.43 -28.67 -25.28 -4.17 0.42 -3.84 -5.13
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Supplementary Table S3 The price list of electrode materials for Al-S, Li—ion and Pb—acid

batteries based on the Sigma-Aldrich and Alfa Aesar catalogs.

Price /
Battery Components Product SKU-pack size :
AUSS kg
anode Al foil Z185140-1EA 50.2
cathode sulfur 13825-1KG-R 58.4
Al-S battery
AlICl, 11019-6KG 96
electrolyte

urea U5128-5KG 43

anode graphite 332461-12KG 36.4
cathode LiCoO, 442704-100G-A 2090

Li-ion battery
LiPF in
electrolyte 901685-500ML 1490
EC/DEC/DMC
anode Pb foil GF03246465-2EA 131
AC217530025
Pb-acid battery cathode PO, 272
(from Alfa Aesar)
electrolyte H,SO, 1603131000 22
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