Supplementary Information

Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Al–S batteries

Huan Li^{1†}, Rongwei Meng^{2†}, Yong Guo², Biao Chen³, Yan Jiao¹, Chao Ye¹, Yu Long², Anton Tadich,⁴ Quan-Hong Yang², Mietek Jaroniec⁵ and Shi-Zhang Qiao^{*1}

¹School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia;

²Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;

³School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.

⁴Australian Synchrotron (ANSTO), 800 Blackburn Rd, Clayton, VIC 3168, Australia

⁵Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute,

Kent State University, Kent, OH 44242, USA.

[†]These authors contribute equally to this work.

* Corresponding author e-mail: <u>s.qiao@adelaide.edu.au</u>

Supplementary Results

------ S/AISCI₇, $\approx 0.2^{\circ}0.8$ V, sulfur oxidation ------ H²/H⁺, SHE, 0 V ------ S/S²⁻, $\approx -0.9^{\circ}-0.7$ V, sulfur reduction ------ AI/AI³⁺, -1.66 V ------ Na/Na⁺, -2.71 V ------ Li/Li⁺, -3.04 V

Supplementary Figure S1 The estimated equilibrium electrochemical potentials of sulfur reduction and sulfur oxidation.

Supplementary Figure S2 CV curves of bare CNT in AlCl₃/urea with a scan rate of 0.5 mV s⁻¹. The CV data show much lower current density (y axis), suggesting the low electrochemical activity of CNT in ionic liquid.

Supplementary Figure S3 The electrochemical oxidation of sulfur in AlCl₃/EmimCl electrolyte. The molar ratio of AlCl₃ to EmimCl is 1.3:1. (a) CV curves of S/CNT from 1.0 V to 2.4 V at a scan rate of 0.5 mV s⁻¹. The severely decreased peak currents can be seen from the 1st cycle and 4th cycle, indicating the poor reversibility of sulfur in this electrolyte. (b) Charge-discharge curves of S/CNT from 1.0 V to 2.4 V at 0.2 A g⁻¹. The discharge capacity dramatically decreases from 230 mAh g⁻¹ to 41 mAh g⁻¹ from 1st to 5th cycles, confirming the instability of sulfur in this electrolyte during electrochemical oxidation.

Supplementary Figure S4 The models, crystal structures and space groups of elemental sulfur, $AlSCl_7$ and Al_2S_3 . The purple, yellow and green atoms denote Al, S and Cl, respectively.

Supplementary Figure S5 The XRD patterns of S/CNT composite cathodes at different cut-off voltages based on (a) AlSCl₇ and (b) Al_2S_3 products. The corresponding wavelengths are 0.7290 nm and 0.6868 nm, respectively. For sulfur oxidation, the diffraction peaks of AlSCl₇ can be clearly observed at 2.4 V. These peaks disappear after discharging to 1.0 V due to the reversible conversion from AlSCl₇ to sulfur. For sulfur reduction, the peaks assigned to Al_2S_3 are seen at 0.2 V, and these peaks disappear at 1.8 V, suggesting the transformation from Al_2S_3 to sulfur during charge process.

Supplementary Figure S6 (a) High-resolution TEM image of S_8 ; (b) The transformed FFT patterns.

Supplementary Figure S7 The optimized models of $AlSCl_7$ and Al_2S_3 . The angles between a-axis and c-axis correspond well with the STEM observation as shown in Figure 2b and 2d.

Supplementary Figure S8 TEM image of AlSCl₇ and its elemental mapping of Al, S, Cl. AlSCl₇ was obtained by disassembly of the Al–S battery after charging to 2.4 V. Obvious Al and Cl are observed on these images, suggesting the formation of AlSCl₇ during charging process.

Supplementary Figure S9 The optimized theoretical structures of $AlCl_4^-$, $Al_2Cl_7^-$, S_8 , SCl_3^+ , $AlSCl_7$ and Al_2S_3 .

Supplementary Figure S10 The Al K edge NEXAFS spectra of sulfur cathodes at different charging potentials. Compared to the obvious peak shift of S and Cl (Figure 3a and 3b), no peak shift is visible during charging process. These results indicate that the Al valence remains unchanged during cycling.

Supplementary Figure S11 The cell configurations for the *in-situ* Raman testing in Figure 4d.

Supplementary Figure S12 The *in-situ* Raman spectra of sulfur cathode in Al–S battery. The decreased peak density of sulfur is visible during charging process, while the peaks emerge as the battery is discharged.

Supplementary Figure S13 N₂ adsorption-desorption isotherms (77 K) for pristine CNT and composite electrode with 20 *wt*.% sulfur in S/CNT. The pristine CNT shows a specific surface area of 217 m² g⁻¹ with a pore volume of 4.36 cm³ g⁻¹. After processing the S/CNT electrode with 20 *wt*.% sulfur, its specific surface area decreases to 154 m² g⁻¹, and meanwhile the pore volume decreases to 0.84 cm³ g⁻¹. These decreases are attributed to the sulfur presence inside the CNT host.

Supplementary Figure S14 The charge-discharge curves of Al–S batteries from 1^{st} cycle to 5^{th} cycle at 0.2 A g⁻¹. A pre-activation process with several electrochemical cycles is needed to activate the assembled fresh Al–S battery.

Supplementary Figure S15 Digital photos of sulfur cathode, separator and Al anode disassembled from the cycled Al–S batteries.

Supplementary Figure S16 The SEM image of cycled Al anode and its elemental mappings. There are obvious S and Cl signals for Al anode after cycling. This confirms the dissolution of SCl_3^+ and its migration to the anode side, leading to the capacity decay.

Supplementary Figure S17 Charge-discharge curves of Al–S batteries at 0.5 A g⁻¹ and 1 A g⁻¹.

Supplementary Figure S18 (a) Cycling performance of Al–S battery at 0.5 A g^{-1} ; (b) The charge-discharge curves at different cycles.

Supplementary Figure S19 (a) Cycling performance of Al–S battery at 1 A g⁻¹; (b) The charge-discharge curves at different cycles.

Supplementary Figure S20 Charge-discharge curves of Al–S batteries with different sulfur content in S/CNT composites. The applied current density is 0.2 A g^{-1} .

Supplementary Figure S21 Charge-discharge curves of Al–S batteries with different areal loadings of sulfur. The applied current density is 0.2 A g^{-1} .

Supplementary Figure S22 The price comparison of electrode materials and electrolytes for Al–S, Li-ion and Pb-acid batteries.

Supplementary Table S1 The performance comparison with the reported cathode materials in ionic

liquid electrolytes

Reported	d materials	Electrolyte	Discharge voltage / V	Specific capacity / mAh g ⁻¹	Cycling life	Final capacity / mAh g ⁻¹	Ref
Sulfur oxidation (This work)	S/CNT	AlCl ₃ /urea	~1.7 – 1.9 V	~225	200	~105	This work
Sulfur	S/carbon cloth	AlCl ₃ /EmImCl	$\sim 0.6 \ V$	~1300	20	~1000	1
	S/CNF paper	Li ⁺ -AlCl ₃ /EmImCl	$\sim 0.75 \ V$	~1000	50	~600	2
	S/CMK-3	AlCl ₃ /NBMPBr	$\sim 0.2-0.6 \; V$	~1400	20	~600	3
reduction	S/Co+C	AlCl ₃ /EmImCl	$\sim 0.1-0.8 \; V$	~1600	200	~500	4
	S/CNF+coated separator	AlCl ₃ /EmImCl	$\sim 0.95 \; V$	~1250	10	~600	5
Metal	Binder-free V ₂ O ₅	AlCl ₃ /BmImCl	$\sim 0.5-0.7 \; V$	~240	5	~180	6
	V ₂ O ₅ nanowires	AlCl ₃ /EmImCl	$\sim 0.55 \text{ V}$ $\sim 0.2 \text{ V}$	~305	20	~273	7
	Anatase TiO ₂	AlCl ₃ /EmImCl	$\sim 0.5 \ V$	~120	N/A	N/A	8
	Co ₃ O ₄	AlCl ₃ /EmImCl	$\sim 0.2-0.7 \; V$	~490	100	~122	9
	Co_3S_4	AlCl ₃ /EmImCl	$\sim 0.7 \ V$	~290	150	~90	10
Metal	Mo_6S_8	AlCl ₃ /BmImCl	~ 0.55 V, ~0.38 V	~167	50	~70	11
sumdes	CuS	AlCl ₃ /EmImCl	$\sim 0.1-1.0 \; V$	~250	100	~100	12
	MoS ₂	AlCl ₃ /EmImCl	$\sim 0.4-0.8 \; V$	~253	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	~67	13
Metal chlorides	VCl ₃	AlCl ₃ /EmImCl	$\sim 1.0 \ V$	~76	10	~10	14
Polymers	polypyrrole	AICI /EmImCl	N/A	~70	100	~50	15
	polythiophene	AIC13/EIIIIIICI	$\sim 0.8-1.2 \ V$	~90	100	~70	
Graphitic carbons	3D graphitic foam	AlCl ₃ /EmImCl	$\sim 1.5 - 2.2 \text{ V}$	~60	7500	~60	16
	Carbon paper	AlCl ₃ /EmImCl	$\sim 1.6-2.0 \ V$	~85	50	~85	17
	Graphene nanoribbons	AlCl ₃ /EmImCl	$\sim 1.6 - 2.0 \text{ V}$	~110	10000	~123	18

Supplementary Table S2 The DFT-based energy (EDFT), zero-point energy (ZPE), entropy (TS)

	Al	AlCl ₄ ⁻	Al ₂ Cl ₇	AlSCl ₇	Al_2S_3	S	Al ³⁺	SCl_3^+	Cl
E _{DFT}	-3.75	-22.43	-37.97	-28.1	-25.18	-4.13	-0.27	-3.54	-5.05
ZPE	0.032	0.12	0.27	0.315	0.25	0.041	0	0.04	0
TS	0.055	0.44	0.73	0.89	0.35	0.085	0.14	0.34	0.08
G	-3.77	-22.76	-38.43	-28.67	-25.28	-4.17	-0.42	-3.84	-5.13

and Gibbs free energy (G) of different solids and ions

Supplementary Table S3 The price list of electrode materials for Al–S, Li–ion and Pb–acid batteries based on the Sigma-Aldrich and Alfa Aesar catalogs.

Battery	Components	Product	SKU-pack size	Price / AUS\$ kg ⁻¹	
	anode	Al foil	Z185140-1EA	50.2	
	cathode	sulfur	13825-1KG-R	58.4	
Al-S battery		AlCl ₃	11019-6KG	96	
	electrolyte	urea	U5128-5KG	43	
	anode	graphite	332461-12KG	36.4	
Lijon hattom	cathode	LiCoO ₂	442704-100G-A	2090	
LI-IOII Datter y	electrolyte	LiPF ₆ in	901685-500ML	1490	
		EC/DEC/DMC	901009-900101L	1770	
	anode	Pb foil	GF03246465-2EA	131	
Ph_acid hattary	ttery cathode electrolyte	PbOs	AC217530025	272	
I D-aciu Datter y		1002	(from Alfa Aesar)		
		H_2SO_4	1603131000	22	

Supplementary References

Gao, T. *et al.* A rechargeable Al/S battery with an ionic-liquid electrolyte. *Angew. Chem. Int. Ed.*55, 9898-9901 (2016).

2 Yu, X., Boyer, M. J., Hwang, G. S. & Manthiram, A. room-temperature aluminum-sulfur batteries with a lithium-ion-mediated ionic liquid electrolyte. *Chem* **4**, 586-598 (2018).

3 Yang, H. *et al.* An aluminum-sulfur battery with a fast kinetic response. *Angew. Chem. Int. Ed.*57, 1898-1902 (2018).

4 Guo, Y. *et al.* Rechargeable aluminium-sulfur battery with improved electrochemical performance by cobalt-containing electrocatalyst. *Angew. Chem. Int. Ed.* **59**, 22963-22967 (2020).

5 Yu, X. & Manthiram, A. Electrochemical energy storage with a reversible nonaqueous room-temperature aluminum-sulfur chemistry. *Adv. Energy Mater.* **7**, 1700561 (2017).

6 Wang, H. *et al.* Binder-free V₂O₅ cathode for greener rechargeable aluminum battery. *ACS Appl. Mater. Interfaces* **7**, 80-84 (2015).

7 Jayaprakash, N., Das, S. K. & Archer, L. A. The rechargeable aluminum-ion battery. *Chem. Commun.* **47**, 12610-12612 (2011).

8 Koketsu, T. *et al.* Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO₂. *Nat. Mater.* **16**, 1142-1150 (2017).

9 Liu, J., Li, Z., Huo, X. & Li, J. Nanosphere-rod-like Co_3O_4 as high performance cathode material for aluminium ion batteries. *J. Power Sources* **422**, 49-56 (2019).

10 Li, H. *et al.* A highly reversible Co_3S_4 microsphere cathode material for aluminum-ion batteries. *Nano Energy* **56**, 100-108 (2019).

11 Geng, L., Lv, G., Xing, X. & Guo, J. Reversible electrochemical intercalation of aluminum in Mo₆S₈. *Chem. Mater.* **27**, 4926-4929 (2015).

12 Wang, S. *et al.* High-performance aluminum-ion battery with CuS@C microsphere composite cathode. *ACS Nano* **11**, 469-477 (2017).

13 Li, Z. Y., Niu, B. B., Liu, J., Li, J. L. & Kang, F. Y. Rechargeable aluminum-ion battery based on MoS₂ microsphere cathode. *ACS Appl. Mater. Interfaces* **10**, 9451-9459 (2018).

14 Suto, K. *et al.* Electrochemical properties of Al/vanadium chloride batteries with AlCl₃-1-ethyl-3-methylimidazolium chloride electrolyte. *J. Electrochem. Soc.* **163**, A742-A747

(2016).

15 Hudak, N. S. Chloroaluminate-doped conducting polymers as positive electrodes in rechargeable aluminum batteries. *J. Phy. Chem. C* **118**, 5203-5215 (2014).

16 Lin, M.-C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324-328 (2015).

17 Sun, H. B. *et al.* A new aluminium-ion battery with high voltage, high safety and low cost. *Chem. Commun.* **51**, 11892-11895 (2015).

18 Yu, X., Wang, B., Gong, D., Xu, Z. & Lu, B. Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries. *Adv. Mater.* **29**, 1604118 (2017).