Supplementary Online Content Grzesiak E, Bent B, McClain MT, et al. Assessment of the feasibility of using noninvasive wearable biometric monitoring sensors to detect influenza and the common cold before symptom onset. *JAMA Netw Open.* 2021;4(9):e2128534. doi:10.1001/jamanetworkopen.2021.28534 - **eTable 1.** Features Used in Random Forest Models - **eFigure 1.** Feature Sets for Every Model - **eFigure 2.** Confusion Matrices for Best Performing Model Across Viral Challenges and Infection Status Comparisons - **eFigure 3.** Confusion Matrices for Best Performing Model Across Viral Challenges and Infection Severity Comparisons - **eFigure 4.** Relative Feature Importance for Best Performing Model for Each Viral Challenge, Infection Status Grouping, and Infection Severity Grouping - **eTable 2.** Racial Demographics, Sex, and Median Age Across Infection Severity Groups for H1N1Influenza Viral Challenge and Rhinovirus Viral Challenge - **eTable 3.** Mean Accuracy, Precision, Sensitivity, F1-Score, AUC of Every Infection Status Model TestedAcross Viral Challenges, Number of Hours Post-Inoculation, and Infection Severity Comparisons - **eTable 4.** Mean Accuracy, Precision, Sensitivity, Specificity, F1-Score, AUC of Every Infection Severity Model Tested Across Individual Viral Challenges, Number of Hours Post-Inoculation, and Infection Severity Comparisons - **eTable 5.** Mean Accuracy, Precision, Sensitivity, Specificity, F1-Score, AUC of Every Infection Severity Model Tested Across Combined Viral Challenges, Number of Hours Post-Inoculation, and Infection Severity Comparisons This supplementary material has been provided by the authors to give readers additional information about their work. | Feature
Name | Sensor | Definition | Calculation | Final Feature | | | |-----------------|--------------|--|--|---|--|--| | Median RHR | HR,
ACC | Median Resting
Heart Rate | HR when: 5 min weighted rolling ACC window < resting threshold | median(RHR) - median(RHR) _{baseline} | | | | Median
rTemp | Temp,
ACC | Median Resting
Temperature | Temp when: 5 min weighted rolling ACC window < resting threshold | median(rTemp) - median(rTemp) _{baseline} | | | | Median ACC | ACC | Median Root
Mean Squared 3-
axis
Accelerometer | $sqrt[ACC_x^2 + ACC_y^2 + ACC_z^2]$ | median(ACC) - median(ACC) _{baseline} | | | | Mean HRV | | Mean Heart Rate
Variability | mean(RR) | mean(rolling 5 min mean HRV) -
mean(rolling 5 min mean HRV) _{baseline} | | | | Median HRV | | Median Heart Rate
Variability | median(RR) | mean(rolling 5 min median HRV) -
mean(rolling 5 min median HRV) _{baseline} | | | | rMSSD | | Root Mean Square
of Successive RR
Interval
Differences | sqrt[mean((RR _{i+1} - RR _i)²)] | mean(rolling 5 min rMSSD) -
mean(rolling 5 min rMSSD) _{baseline} | | | | NN50 | IBI | Number of
Successive RR (w/
Filtering, NN)
Intervals That
Differ by More
Than 50 ms | $sum[RR_{i+1} - RR_i > 50 ms]$ | mean(rolling 5 min NN50) -
mean(rolling 5 min NN50) _{baseline} | | | | pNN50 | | % of NN Intervals
That Differ by
More Than 50 ms | (NN50 x 100) / N | mean(rolling 5 min median pNN50) -
mean(rolling 5 min median
pNN50) _{baseline} | | | | SDNN | | Standard
Deviation of NN
Intervals | std[NN50] | mean(rolling 5 min median SDNN) -
mean(rolling 5 min median
SDNN) _{baseline} | | | **eTable 1**. Features Used in Random Forest Models. Feature names, definitions, sensors they were derived from, and calculations. **eFigure 1**. Feature Sets for Every Model. We used the feature set shown in **a** for each model shown in **b**. The same 9 features are calculated per 12 hr window post-inoculation. Feature sets are only included in models that cover the same time periods. **eFigure 2.** Confusion Matrices for Best Performing Model Across Viral Challenges and Infection Status Comparisons. Number of hours post-inoculation of best performance is noted per matrix. Predicted Predicted Predicted Predicted **eFigure 3**. Confusion Matrices for Best Performing Model Across Viral Challenges and Infection Severity Comparisons. Number of hours post-inoculation of best performance is noted per matrix. **eFigure 4**. Relative Feature Importance for Best Performing Model for Each Viral Challenge, Infection StatusGrouping, and Infection Severity Grouping а | Influenza | Non-Inf | Mild | Moderate | Total | | |--------------------|--------------|------------|------------|------------|------------| | Median Age (range) | | 40 (26-55) | 32 (18-55) | 33 (23-53) | 37 (18-55) | | Sex (N) | Sex (N) Male | | 10 | 8 | 27 | | | Female | 1 | 9 | 2 | 12 | | Race (N) | White | 7 | 11 | 7 | 25 | | | Black | 0 | 2 | 0 | 2 | | | Asian | 2 | 3 | 1 | 6 | | | Other | 1 | 3 | 2 | 6 | b | Rhinovirus | Non-Inf | Mild | Moderate | Total | | |--------------------|--------------|------------|------------|------------|------------| | Median Age (range) | | 21 (20-24) | 20 (20-21) | 22 (21-33) | 21 (20-33) | | Sex (N) | Sex (N) Male | | 3 | 1 | 11 | | | Female | 2 | 2 | 3 | 7 | | Race (N) | White | 7 | 4 | 3 | 14 | | | Black | 2 | 0 | 0 | 2 | | | Asian | 0 | 1 | 1 | 2 | **eTable 2**. Racial Demographics, Sex, and Median Age Across Infection Severity Groups for **a** H1N1 Influenza Viral Challenge and **b** Rhinovirus Viral Challenge. | Model | Time
PI | Accuracy
[SD] (%) | Precision
(%) | Sensitivity
(%) | Specificity (%) | F1-
Score
(%) | AUC [95% CI] | |--|------------|----------------------|------------------|--------------------|-----------------|---------------------|-------------------| | flu-infected,
clinical | 0-12 | 79 [41] | 72 | 80 | 79 | 76 | 0.68 [0.46, 0.89] | | flu-infected, data-
driven | 0-12 | 77 [42] | 79 | 90 | 50 | 84 | 0.62 [0.41, 0.84] | | RV-infected, both | 0-12 | 78 [42] | 78 | 78 | 78 | 78 | 0.77 [0.54, 0.99] | | combined-
infected, data-
driven | 0-12 | 78 [41] | 81 | 83 | 68 | 82 | 0.66 [0.50, 0.82] | | combined-
infected, clinical | 0-12 | 69 [46] | 69 | 58 | 78 | 63 | 0.55 [0.37, 0.73] | | flu-infected,
clinical | 0-24 | 92 [27] | 90 | 90 | 93 | 90 | 0.85 [0.70, 1.00] | | flu-infected, data-
driven | 0-24 | 83 [37] | 86 | 90 | 70 | 88 | 0.82 [0.64, 0.99] | | RV-infected, both | 0-24 | 78 [42] | 78 | 78 | 78 | 78 | 0.77 [0.54, 0.99] | | combined-
infected, data-
driven | 0-24 | 78 [41] | 81 | 83 | 68 | 82 | 0.66 [0.50, 0.82] | | combined-
infected, clinical | 0-24 | 76 [43] | 76 | 68 | 83 | 72 | 0.75 [0.60, 0.90] | | flu-infected,
clinical | 0-36 | 92 [27] | 90 | 90 | 93 | 90 | 0.85 [0.70, 1.00] | | flu-infected, data-
driven | 0-36 | 89 [31] | 87 | 100 | 63 | 93 | 0.84 [0.66, 1.00] | | RV-infected, both | 0-36 | 88 [32] | 100 | 78 | 100 | 88 | 0.96 [0.85, 1.00] | | combined-
infected, data-
driven | 0-36 | 78 [41] | 81 | 83 | 68 | 82 | 0.66 [0.50, 0.82] | | combined-
infected, clinical | 0-36 | 76 [43] | 76 | 68 | 83 | 72 | 0.75 [0.60, 0.90] | **eTable 3**. Mean Accuracy, Precision, Sensitivity, F1-Score, AUC of Every Infection Status Model Tested Across Viral Challenges, Number of Hours Post-Inoculation, and Infection Severity Comparisons | Model | Time
PI | Accuracy
[SD] (%) | Precision
(%) | Sensitivity
(%) | Specificity (%) | F1-
Score | AUC [95% CI] | |---|------------|----------------------|------------------|--------------------|-----------------|--------------|-------------------| | flu-asymptomatic-mild | 0-12 | 70 [46] | 75 | 69 | 70 | 72 | 0.72 [0.51, 0.94] | | flu-asymptomatic-moderate | 0-12 | 83 [37] | 78 | 88 | 80 | 82 | 0.88 [0.71, 1.00] | | flu-mild-moderate | 0-12 | 81 [39] | 75 | 75 | 85 | 75 | 0.86 [0.69, 1.00] | | flu-mild-moderate
(Infected Clinical Only) | 0-12 | 100 [0] | 100 | 100 | 100 | 100 | 1.00 [1.00, 1.00] | | flu-asymptomatic-mild-
moderate | 0-12 | 52 [50] | 53 | 52 | 75 | 52 | | | RV-asymptomatic-mild | 0-12 | 71 [45] | 80 | 71 | 100 | 65 | 0.33 [0.02, 0.65] | | RV-asymptomatic-moderate | 0-12 | 92 [27] | 80 | 100 | 89 | 89 | 1.00 [1.00, 1.00] | | RV-mild-moderate | 0-12 | 89 [31] | 100 | 75 | 100 | 86 | 0.95 [0.79, 1.00] | | RV-asymptomatic-mild-
moderate | 0-12 | 67 [47] | 66 | 67 | 77 | 66 | | | flu-asymptomatic-mild | 0-24 | 82 [39] | 79 | 92 | 70 | 85 | 0.75 [0.53, 0.96] | | flu-asymptomatic-moderate | 0-24 | 83 [37] | 78 | 88 | 80 | 82 | 0.88 [0.71, 1.00] | | flu-mild-moderate | 0-24 | 90 [30] | 88 | 88 | 92 | 88 | 0.88 [0.72, 1.00] | | flu-asymptomatic-mild-
moderate | 0-24 | 77 [42] | 76 | 77 | 88 | 76 | | | RV-asymptomatic-mild | 0-24 | 86 [35] | 80 | 80 | 89 | 80 | 0.71 [0.43, 0.99] | | RV-asymptomatic-moderate | 0-24 | 92 [27] | 80 | 100 | 89 | 89 | 1.00 [1.00, 1.00] | | RV-mild-moderate | 0-24 | 89 [31] | 1 | 75 | 100 | 86 | 0.95 [0.79, 1.00] | | RV-asymptomatic-mild-
moderate | 0-24 | 67 [47] | 66 | 67 | 77 | 66 | | | RV-asymptomatic-mild-
moderate | 0-36 | 82 [38] | 85 | 82 | 88 | 82 | | eTable 4. Mean Accuracy, Precision, Sensitivity, Specificity, F1-Score, AUC of Every Infection Severity Model Tested Across Individual Viral Challenges, Number of Hours Post-Inoculation, and Infection SeverityComparisons | Model | Time
PI | Accuracy
[SD] (%) | Precision
(%) | Sensitivity
(%) | Specificity (%) | F1-
Score | AUC [95% CI] | |--|------------|----------------------|------------------|--------------------|-----------------|--------------|----------------------| | combined-asymptomatic-
mild | 0-12 | 62 [49] | 61 | 61 | 63 | 61 | 0.64 [0.46,
0.82] | | combined -asymptomatic-
moderate | 0-12 | 84 [37] | 77 | 83 | 84 | 80 | 0.78 [0.61,
0.94] | | combined-mild-moderate | 0-12 | 70 [46] | 67 | 50 | 83 | 57 | 0.65 [0.45,
0.85] | | combined-mild-moderate
(Infected Clinical Only) | 0-12 | 79 [41] | 72 | 89 | 70 | 80 | 0.76 [0.53,
0.98] | | combined-asymptomatic-
mild-moderate | 0-12 | 59 [49] | 59 | 59 | 79 | 59 | ł | | combined-asymptomatic-
mild | 0-24 | 75 [43] | 71 | 73 | 79 | 70 | 0.70 [0.52,
0.87] | | combined -asymptomatic-
moderate | 0-24 | 84 [37] | 77 | 83 | 84 | 80 | 0.78 [0.61,
0.94] | | combined-mild-moderate | 0-24 | 86 [34] | 90 | 75 | 94 | 82 | 0.91 [0.80,
1.00] | | combined-mild-moderate
(Infected Clinical Only) | 0-24 | 89 [31] | 89 | 89 | 89 | 89 | 0.93 [0.79,
1.00] | | combined-asymptomatic-
mild-moderate | 0-24 | 59 [49] | 59 | 59 | 79 | 59 | 1 | | combined-asymptomatic-
mild | 0-36 | 75 [43] | 71 | 73 | 79 | 70 | 0.70 [0.52,
0.87] | | combined -asymptomatic-
moderate | 0-36 | 84 [37] | 77 | 83 | 84 | 80 | 0.78 [0.61,
0.94] | | combined-mild-moderate | 0-36 | 86 [34] | 90 | 75 | 94 | 82 | 0.91 [0.80,
1.00] | | combined-mild-moderate
(Infected Clinical Only) | 0-36 | 94 [23] | 100 | 89 | 100 | 94 | 0.94 [0.82,
1.00] | | combined-asymptomatic-
mild-moderate | 0-24 | 59 [49] | 59 | 59 | 79 | 59 | | **eTable 5**. Mean Accuracy, Precision, Sensitivity, Specificity, F1-Score, AUC of Every Infection Severity Model Tested Across Combined Viral Challenges, Number of Hours Post-Inoculation, and Infection Severity Comparisons