S17 Appendix. 4500a single reflection FTIR spectrometer results

Table S17 A. 4500a single reflection FTIR spectrometer detailed performance breakdown.1Table S17 B. 4500a single reflection FTIR spectrometer laboratory evaluation summary.2

Table 517 A. 4500a single reflection FTTK spectrometer detailed performance breakd	500a single reflection FTIR spectrometer detailed performance breakdown.
--	--

	Good-quality samples available for specificity calculation: $n=22$					
	<u>0% and wrong</u> (n=		50% and 80% <u>API samples</u> (n=42)	<u>All poor</u> <u>quality</u> <u>samples</u> <u>(n=95)</u>		
<u>Samples</u>	Sensitivity	Specificity	Sensitivity	Sensitivity		
	(95% CI)	(95% CI)	(95% CI)	(95% CI)		
Total, not through packaging (n=119)	100 (93.3-100)	100 (85.8-100)	28.6 (15.7-44.6)	68.4 (58.1-77.6)		
Antimalarials (n=51)	100 (87.7-100)	100 (47.8-100)	33.3 (13.3-59)	73.9 (58.9-85.7)		
AL (n=24)	100 (79.4-100)	100 (15.8-100)	33.3 (4.3-77.7)	81.8 (59.7-94.8)		
ART (n=14)	100 (54.1-100)	100 (15.8-100)	33.3 (4.3-77.7)	66.7 (34.9-90.1)		
DHAP (n=13)	100 (54.1-100)	100 (2.5-100)	33.3 (4.3-77.7)	66.7 (34.9-90.1)		
Antibiotics (n=68)	100 (86.3-100)	100 (82.4-100)	25 (9.8-46.7)	63.3 (48.3-76.6)		
ACA (n=15)	100 (54.1-100)	100 (29.2-100)	33.3 (4.3-77.7)	66.7 (34.9-90.1)		
AZITH (n=16)	100 (54.1-100)	100 (39.8-100)	0 (0-45.9)	50 (21.1-78.9)		
OFLO (n=19)	100 (54.1-100)	100 (59.0-100)	33.3 (4.3-77.7)	66.7 (34.9-90.1)		
SMTM (n=18)	100 (59.0-100)	100 (47.8-100)	33.3 (4.3-77.7)	69.2 (38.6-90.9)		

	<u>Samples</u>	<u>Sensitivity</u> (95% CI)	<u>Specificity</u> (95% CI)	<u>Comments</u>			
Sensitivity	0% and wrong API	100% (93.3-100)	Developing API-specific				
and Specificity	50% and 80% API [†]	28.6% (15.7-44.6)		algorithms could improve device			
Results	All poor quality samples	68.4% (58.1-77.6)	100% (85.8-100)	performance to identify poor quality medicines with low API.			
	Strengths: -High accuracy to identify samples with no or wrong API. Limitations: -None of 80% API medicines samples correctly identified as "fail". [†] -Almost half of 50% API samples not correctly identified. [†] -All AZITH 50% samples and all substandard containing cellulose were incorrectly identified. [†]						
Strengths and Limitations							
	Plus:						
User	User atisfactionStep by step protocols available; results easy to interpret and extract; results trusted by medicine inspectors; table of matches with correlation values appreciated; no need to select reference library; useful for identifying the contents of medicines of unknown identity.User atisfactionMinus: Reference library creation needed; computer required for sample testing; occasional freezing of the software; cleaning sampling window time consuming; device felt to be too big and heavy; large number of steps required to perform analysis; destroys sample; errors in naming of samples could affect traceability.						
Satisfaction							
	No significant differen						
Comparative							
Evaluation							

Table S17 B. 4500a single reflection FTIR spectrometer laboratory evaluation summary.

[†] Algorithms should be developed on an API basis to enhance detection of lower API samples (this was not performed in the present study, therefore these results should be interpreted with caution).