## **Electronic Supplementary Information**

## Flexible-templated Imprinting for Fluorine-free, Omniphobic Plastics with Re-entrant Structures

Xiaoxiao Zhao,<sup>a</sup> Daniel S. Park,<sup>a</sup> Junseo Choi,<sup>a</sup> Sungook Park,<sup>a</sup> Steven A. Soper,<sup>b</sup> Michael C. Murphy<sup>\*a</sup>

<sup>a.</sup> Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
<sup>b.</sup> Departments of Chemistry and Mechanical Engineering, University of Kansas, Lawrence, KS 66045, United States

\*E-mail: murphy@lsu.edu



Fig. S1 Silica nanoparticles of 30 nm with epoxy resin on re-entrant micro-pillar PMMA surface. The PMMA substrates were imprinted at 115  $^{\circ}$ C, 35 Bar, and 35 min.



Fig. S2 Silica nanoparticles of 30 nm with epoxy resin on re-entrant micro-pillar PMMA surface.



Fig. S3 Aggregation of 650 nm silica nanoparticles with epoxy resin on flat PMMA surface.



**Fig. S4** Dip coating of 200 nm silica nanoparticles/ epoxy resin mixture (immersion rate of 5 cm/min and withdrawn at a rate of 5 cm/min) on flat PMMA surface.