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Supplementary Results: 

 

Cohort description 
Supplementary Tables 1 and 2 compare similar data across all 589 subjects, divided 

per site and sub-cohorts. Patients at the Manhattan campus who underwent 

bronchoscopy were younger, had lower body mass index (BMI), and a lower prevalence 

of chronic obstructive pulmonary disease (COPD; Supplementary Table 1). Among the 

cohort that provided lower airway samples through bronchoscopy, 37% of the subjects 

were successfully weaned within 28 days of initiation of MV and survived hospitalization, 

39% required prolonged MV but survived hospitalization, and 24% died. 

 

Mortality among those in the no-bronchoscopy cohort was 77%. In the overall NYU 

cohort, higher age and BMI were associated with increased mortality (Supplementary 

Table 2). There was a similar, albeit non-significant, trend for the bronchoscopy cohort. 

Among the clinical characteristics of this cohort, patients within the deceased group more 

commonly had a past medical history of chronic kidney disease and cerebrovascular 

accident. 

 

Study patients were admitted during the first wave of the pandemic in the US, prior to 

current standardized management of COVID-19. Within the bronchoscopy cohort, more 

than 90% of the subjects received hydroxychloroquine and anticoagulation (therapeutic 

dose), 69% received corticosteroids, 41% received tocilizumab (anti-Interleukin (IL)-6 

receptor monoclonal antibody), 21% required dialysis, and 18.9% were started on veno-

venous extracorporeal membrane oxygenation (ECMO) (Table 1). Antimicrobial therapy 

included use of antivirals (lopinavir/ritonavir in 16% and remdesivir in 10%), antifungals 

(fluconazole in 40% and micafungin in 57%), and antibiotics (any, in 90% of the subjects). 

 

During their hospitalization, most patients had respiratory and/or blood specimens 

collected for bacterial cultures (Table 1 and Supplementary Table 1). The proportions 



of positive bacterial respiratory cultures and blood cultures were 73% and 43%, 

respectively. 

 

Microbial community structure of the lower & upper airways  
Among the top 10 taxa across lower and upper airway samples were Staphylococcus 

aureus, Salmonella enterica, Burkholderia dolosa, and Klebsiella variicola.  Candida 

albicans only ranked #77 in the BAL while it was ranked 5th in the metatranscriptome data 

indicating that while present at low relative abundance, it was highly active 

(Supplementary Table 4). K. variicola, while prevalent at a high relative abundance (#4 

in BAL, and #5 in the upper airways) in patients of this cohort, its ranking in the RNAseq 

data was not among the top 50, indicating that it was not as active functionally as other 

bacteria. 

 
Airway microbiota are associated with clinical outcomes 
To determine the potential impact of vertebrate viruses on outcome, we compared virus 

enrichment differences in BAL samples across the three clinical outcome groups (£28-

days MV, >28-days MV, and deceased). As it pertains to the vertebrate RNA virome 

subfraction, there were significant differences (b diversity) between the three clinical 

outcome groups (Supplementary Fig. 4, PERMANOVA p<0.01). 

 

Analysis of differential DNA virus abundance using DEseq did not show statistically 

significant differences. Because the virome includes viruses of bacteria and archaea, we 

also analyzed the phage data (including viruses of archaea). Phages impact the bacterial 

population—including bacterial pathogens—and so could be clinically relevant. 

 

Oral commensals and poor clinical outcome 
We also questioned the possible effects that antimicrobial exposure prior to sample 

collection might have on our sequence data. Supplementary Table 11 shows beta 

diversity analysis evaluating the association between antimicrobial use prior to sample 

collection, and metagenome and metatranscriptome compositional data. PERMANOVA 

analysis of Bray Curtis dissimilarity show that only Amikacin use prior to sample collection 



was found to be significantly associated with beta diversity of the metatranscriptome data 

while only Lopinavir/Ritonavir use prior to sample collection was associated with beta 

diversity differences in the metagenome data. Overall, most of the microbial signatures 

identified as enriched in the deceased or in subjects on prolonged MV are regular 

colonizers of healthy skin and mucosal surfaces rather than frequent respiratory 

pathogens. 

 

Adaptive & innate immune responses to SARS-CoV-2  
We evaluated whether levels of antibodies correlated with viral load in BAL samples. 

While viral load levels of SARS-CoV-2 measured with rRT-PCR did not correlate with BAL 

measurements of SARS-CoV-2 specific antibodies, sgRNA viral load levels negatively 

correlated with BAL levels of Anti-Spike (IgG and IgA), Anti-RBD (IgG and IgA) and the 

Neutralization assay (Supplementary Table 12). These data suggest that the IgG 

subfraction is an important marker of the adaptive immune response in the lung of 

critically ill COVID-19 patients and that both sub-fractions of IgG and IgA anti-SARS-CoV-

2 may contribute to the viral replication control in the lower airways. 

 

Upstream pathway prediction analyses of the host airway transcriptome support 

previously reported mitochondria dysfunction1 (inhibition in mitochondrial related 

regulators NSUN3, MRPL14, MRPL12, LONP1, DAP3), and metabolic/gluconeogenesis 

dysregulation2,3 (SIRT3) in critically ill COVID-19 subjects with poor outcome 

(Supplementary Table 13). We also observed decreased activation in the inflammatory 

response in critically ill COVID-19 subjects with poor outcome (phagocytes, neutrophils, 

and granulocytes, and leukocytes; Supplementary Table 10). A comparison of clinical 

outcome between the >28-days MV vs. ≤28-days MV groups showed upstream predicted 

inhibition in insulin, estrogen, beta-estradiol, EGF, EGFR, IL-5, and IL-10RA in the >28-

days MV group (Supplementary neTable 14). These differences suggest that, at the 

stage that we sampled the lower airways of patients with critically COVID-19, an overt 

inflammatory tone was not predictive of worst outcome. 

 

Cross-kingdom network analyses & SARS-CoV-2  



Investigating module response on an individual gene level, Interleukin 4 induced 1 (IL4I1) 

appears as one of the most up-regulated genes in this module when comparing the 

deceased group with the ≤28-day MV group. The transporter 1, ATP binding cassette 

subfamily B member (TAP1) is also upregulated and a key regulator (hub gene). Together 

with TAP2, TAP1 plays a central role in MHC I antigen presentation4. Transcriptional 

regulators SP110 and SP140, both ISGs and also identified as hub genes, were down-

regulated. Module 718 was also positively correlated with the SARS2-NWN (ρ = 0.31, P-

value = 1.3e-3; enrichment FET P-value = 0.029, 3.7 FE of M178 by differentially 

expressed genes in deceased vs ≤28-days MV). The majority of genes in this module are 

down-regulated in the deceased group compared with the ≤28-day group. Some of the 

genes encode subunits of the mitochondrial ATP synthase, such as ATP6 and ATP8, the 

cytochrome C oxidase, with COX2 and COX3 as well as the NADH dehydrogenase 

complex, such as ND1-ND6. ND4L, ATP6, COX2, ND1, ND3, ND4L and ND6 are key 

regulators, potentially modulating the expression of the other genes in the module. These 

findings further support mitochondria dysfunction1, potentially disrupting processes 

indicated by the module. Other down-regulated genes are humanin1 (MTRNR2L1) and 

R-spondin 1 (RSPO1). Humanin is known to protect against oxidative stress and 

mitochondrial dysfunction5. RSPO1 protects against cell stress by activating the Wnt/β-

catenin signaling pathway6. Non-coding RNAs, such as MALAT1 and RHOQ-AS1 were 

found to be up-regulated. MALAT1 is known to suppress IRF3-initiated antiviral innate 

immunity7 while the function of RHOQ-AS1 is unknown. 

 

 

 

  



Supplementary Figure Legends: 

 

Supplementary Figure 1. SARS-CoV-2 viral load in upper airway samples.  Copies 

of the SARS-CoV-2 N gene per ml, normalized by the Human RNase P gene, in 142 

upper airways comparing clinical outcome groups (Two-sided Mann–Whitney U p-value). 

 

 

Supplementary Figure 2. Topographical analyses of the bacterial load. Bacterial load 

measured by ddPCR targeting 16S rRNA gene in 23 background bronchoscope controls 

(BKG), 142 lower airway (BAL) and 142 upper airway (UA) samples. 

 

Supplementary Figure 3. Average sequencing depth and genome coverage for 

SARS-CoV-2 and bacterial taxa identified as associated with poor outcome. (a) 

Average metatranscriptome sequencing read depth across sliding windows of 100 nt for 

SARS-CoV-2 and 10 kb for bacteria genomes. Column on the left shows data for samples 

with high read counts and column on the right shows data for samples with low read 

counts for the taxa of interest. (b) Average metagenome sequencing read depth across 

sliding windows of 10 kb for bacteria genomes. Column on the left shows data for samples 

with high read counts and column on the right shows data for samples with low read 

counts for the taxa of interest.  

Supplementary Figure 4. Evaluation of associations between the lower airway RNA 

virome and clinical outcome. Comparisons between the three clinical outcome groups 

was performed for a diversity (Shannon Index, each dot denotes the Shannon diversity 



of a sample while the box center depicts median, box  inter-quartile range with median at 

the center and whiskers represent maximum and minimum value,  left panel), b diversity 

(based on Bray Curtis Dissimilarity Index, right panel); Kruskal-Wallis p-value and 

PERMANOVA p-value respectively, across 5 background negative controls 

(bronchoscope), 118 bronchoalveolar lavage (BAL) and 64 upper airway (UA) samples.  
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