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Supplementary Note 1: Summary of immunity efficacy estimates
from the literature

We overview available estimates from the literature on efficacy of vaccine-induced and naturally-
acquired immunity as of May 2021.

Efficacy of vaccine-induced immunity against resident variants

We collate in Supplementary Table 1 estimates of vaccine efficacy against the resident variants in the
UK (during the time period when the B.1.1.7 variant was predominant), gathered across clinical trial
data and through real-world observational studies of vaccination impact using surveillance data.

Supplementary Table 1: Vaccine efficacies with citations (A-K) and structured-model values (bold). Cita-
tions are: A. SIREN study data [1]. B. Data from Clalit Health Services, the largest of four integrated health
care organisations in Israel, which insures 4.7 million patients (53% of the population) [2]. C. Nationwide surveil-
lance data from Israel between 24th January-3rd April 2021 [3]. D. Phase 3 trial data for the AZ vaccine [4]. E.
PHE analysis of trial data. F. PHE analysis using a test negative case control to estimate vaccine effectiveness
against symptomatic disease [5]. G. Phase 3 trial data for the Pfizer-BioNTech vaccine [6]. H. Public Health
Scotland analysis [7]. I. PHE analysis of Pillar 2 community test data on efficacy against hospitalisation among
older adults in England [8]. J. Bristol Hospital analysis [9]. K. HOSTED study [10].

Pfizer AztraZeneca

1st Dose 2nd Dose 1st Dose 2nd Dose

Efficacy 70% (55-85%)A 85% (74-96%)A 64% (46-77%)D 60% (36-75%)D

against 46% (40-51%)B 92% (88-95%)B

infection 95% (95-96%)C

60% 85% 60% 65%

Efficacy 57% (50-63%)B 94% (87-98%)B 76% (59-86%)D 81% (60-91%)D

against 91% (74-97%)E 97% (97-97%)C 51% (47-55%)F 66% (54-75%)F

symptoms 49% (43-55%)F 93% (90-96%)F

52% (29-69%)G 95% (90-98%)G

95% (90-98%)H

60% 90% 60% 80%

Efficacy 74% (46-86%)B 87% (55-100%)B 94% (73-99%)H 93% (89-95%)%I(80+)

against 85% (76-91%)H 97% (97-97%)C 81% (76-85%)I(80+)

hospital 73% (60-81%)I(80+) 81% (73-87%)I(70−79)

admissions 84% (74-89%)I(70−79) 80% (36-94%)J

79% (47-92%)J

80% 90% 80% 90%

Efficacy 49% (38-58%)K 38% (21-52%)K

against
onward
transmission 50% 50% 40% 50%

Efficacy of vaccine-induced immunity against Variants of Concern (VOCs)

The evidence base on the vaccine efficacy offered by the Pfizer-BioNTech and AztraZeneca (AZ)
vaccines against Variants of Concern (VOCs) is expanding. We summarise vaccine efficacy estimates
against the B.1.351 and B.1.617.2 variants, with estimates compiled in May 2021.
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Efficacy of vaccine-induced immunity against B.1.351

From clinical trial data for the AZ vaccine, one study found the vaccine to have an efficacy of 10.4%
(95% CI: -76.8% to 54.8%) against mild to moderate disease caused by the B.1.351 variant [11]. Further
data on vaccine efficacy against the B.1.351 variant has been forthcoming from surveillance data in
nations that have made the greatest progress to date with vaccination rollout. For example, in Israel,
there has been increased breakthrough rates of SARS-CoV-2 variants of concern in Pfizer-BioNTech
vaccinated individuals, including B.1.351 [12]). In Qatar, Pfizer-BioNTech vaccine effectiveness esti-
mates against severe, critical, or fatal disease due to infection with any SARS-CoV-2 virus (with the
B.1.1.7 and B.1.351 variants being predominant), were high, at 97.4% (95% CI: 92.2 to 99.5) [13].

We may also draw insights from neutralisation studies. Prior work modelling the relationship be-
tween in vitro neutralisation levels and observed protection from SARS-CoV-2 infection has shown
neutralisation levels to be predictive of immune protection [14]. That being said, sample sizes in
neutralisation studies have been small, meaning there is considerable uncertainty. We also recognise
that, though neutralising antibodies serve as one line of defense against infection, the T cell response
is also important for prevention of further disease progression [15].

For the Pfizer-BioNTech vaccine, neutralization titers were reduced 8- to 9-fold against B.1.351 [16].
Planas et al. [17] found that three weeks after the first dose , 38% and 0% of serum samples neutralized
B.1.1.7 and B.1.351 strains, respectively, compared to 92% (B.1.1.7) and 77% (B.1.351, with a low
titer) three weeks after the second dose (sera from 16 vaccine recipients).

Efficacy of vaccine-induced immunity against B.1.617.2

An observational study using surveillance data in England aimed to estimate the effectiveness of the
AZ and Pfizer vaccines against symptomatic disease with the B.1.617.2 variant. The analysis included
data for all age groups from 5th April 2021 to cover the period since the B.1.617.2 variant emerged
and it included 1,054 people confirmed as having the B.1.617.2 variant through genomic sequencing,
including participants of several ethnicities. The study found that, for the period from 5th April
to 16th May 2021, vaccine effectiveness against symptomatic disease from the B.1.617.2 variant was
similar after two doses compared to the B.1.1.7 variant dominant in the UK. It is also expected to see
even higher levels of effectiveness against hospitalisation and death [5].

For the B.1.617.2 variant, the Pfizer-BioNTech vaccine was 87.9% effective (95% CI: 78.2% to 93.2%)
against symptomatic disease two weeks after the second dose. Two doses of the AstraZeneca vaccine
were 59.8% effective (95% CI: 28.9% to 77.3%) against symptomatic disease. Three weeks after the
first dose, both vaccines were found to be approximately 33% effective against symptomatic disease
from B.1.617.2; the first dose effectiveness estimate for the Pfizer vaccine was 33.2% (95% CI: 8.3% to
51.4%) and for the AZ vaccine was 32.9% (95% CI: 19.3% to 44.3%).

Efficacy of naturally-acquired immunity against VOCs

A neutralisation study by Planas et al. [17] observed a loss of activity against B.1.351 in approximately
40% of convalescent sera after 9 months (83 sera from 58 individuals). We note that though these sera
are not necessarily from those previously infected with B.1.1.7 specifically, the authors did observe
neutralisation against B.1.1.7 in approximately 95% of these sera up to 9 months. There is support for
recovered individuals experiencing a (potentially asymmetric) degree of cross-immunity. Comparison
of sera from infection with B.1.351 or the parental variant B.1.1.117 in South Africa observed that
B.1.351 infection induced substantial cross-neutralisation of the parental variant B.1.1.117 [18]. In
contrast, antibodies elicited by B.1.1.7 infection have been shown to be less cross-reactive with other
dominant SARS-CoV-2 strains than those induced by the parental strain [19].
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Supplementary Note 2: Parsimonious SARS-CoV-2 transmission model
description

The model consists of an SEIR system for two variants, and also includes vaccination status. We
follow the populations given by Ni,j,v, where i and j denote whether the population is susceptible
(S), exposed (E), infectious (I) or recovered (R) to resident variants and VOC, respectively, and
v denotes vaccination status as unvaccinated (u), or vaccinated with the AstraZeneca vaccine (a),
Pfizer-BioNTech or Moderna vaccines (p), or an updated/new vaccine (n).

For convenience, we define the effective number of infectious individuals with the resident variants in
the UK (IUK) or VOC (IVOC) as

IUK =
∑
j,v

tI,j,vNI,j,v, IVOC =
∑
i,v

ti,I,vNi,I,v,

where tI,j,v ∈ [0, 1] and ti,I,v ∈ [0, 1] corresponds to the transmissibility of infection for the resident vari-
ants infectious population compartment and VOC infectious population compartment, respectively; a
value of 1 corresponds to no adjustment in transmission due to vaccination or prior infection, whereas
values less than 1 correspond to a reduction in transmission (a transmission blocking effect) due to
vaccination and/or prior infection. For example, tI,R,u = 0.5 corresponds to a relative transmissibility
of 0.5 (50% reduction in transmissibility) of the resident variants for those previously infected by the
VOC (i.e is in the recovered state for the VOC) and who are unvaccinated. As another example,
tS,I,a = 0.7 corresponds to a relative transmissibility of 0.7 (30% reduction in transmissibility) of
the VOC for those with no prior infection (i.e still susceptible to the resident variants) and who are
vaccinated with the AZ vaccine.

Unless stated otherwise, we set tI,j,v = ti,I,v = 1 for all groups. For our simulations assessing sensitivity
to a possible transmission blocking action of immunity, we set tI,S,{a,p,n} = tS,I,{a,p,n} = tI,R,v =

tR,I,v = t̂, with t̂ ∈ [0, 1] the modified transmissibility (equivalent to a 100(1-t̂)% transmission blocking
effect).

The model equations are given, for the unvaccinated, by:

dNS,S,u

dt
= −(βUKIUK + βVOCIVOC + VA + VP + Vn)NS,S,u,

dNE,S,u

dt
= (βUKIUK)NS,S,u,

dNS,E,u

dt
= (βVOCIVOC)NS,S,u,

dNS,R,u

dt
= −(βUKsuUKIUK + VA + VP + Vn)NS,R,u,

dNE,R,u

dt
= (βUKsuUKIUK)NS,R,u,

dNR,S,u

dt
= −(βVOCsuVOCIVOC + VA + VP + Vn)NR,S,u,

dNR,E,u

dt
= (βVOCsuVOCIVOC)NR,S,u,

dNR,R,u

dt
= −(VA + VP + Vn)NR,R,u,

(1)

where: βUK and βVOC are the transmission rates of the resident variants and VOCs, respectively; suUK

is the susceptibility of unvaccinated VOC recovereds against infection with resident variants; suVOC is
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the susceptibility of unvaccinated resident variant recovereds against infection with the VOC; and Vv
represents vaccination with vaccine v. The model equations for the vaccinated are:

dNS,S,v

dt
= VvNS,S,u − (βUKevUKIUK + βVOCevVOCIVOC)NS,S,v,

dNE,S,v

dt
= (βUKevUKIUK)NS,S,v,

dNS,E,v

dt
= (βVOCevVOCIVOC)NS,S,v,

dNS,R,v

dt
= VvNS,R,u − (βUKsvUKIUK)NS,R,v,

dNE,R,v

dt
= (βUKsvUKIUK)NS,R,v,

dNR,S,v

dt
= VvNR,S,u − (βVOCsvVOCIVOC)NR,S,v,

dNR,E,v

dt
= (βVOCsvVOCIVOC)NR,S,v,

dNR,R,v

dt
= VvNR,R,u

(2)

where: v ∈ {a, p, n}; evUK and evVOC give the efficacy of vaccine status v against resident variants
and VOCs, respectively; and svUK and svVOC gives the susceptibility of VOC (or resident variants,
respectively) recovereds with vaccination status v against the resident variants (or VOC, respectively).
Where individuals are both recovered and vaccinated, we assume they receive the greater of the two
immune protections.

The disease progression equations are given by:

dNE,j,v

dt
= −αNE,j,v,

dNI,j,v

dt
= αNE,j,v,

dNi,E,v

dt
= −αNi,E,v,

dNi,I,v

dt
= αNi,E,v,

dNI,j,v

dt
= −γNI,j,v,

dNR,j,v

dt
= γNI,j,v,

dNi,I,v

dt
= −γNi,I,v,

dNi,R,v

dt
= γNi,I,v,

(3)

where: i, j ∈ {S,E, I,R} and v ∈ {u, a, p, n}; α is the rate of progression from exposed to infectious
states; and γ is the recovery rate.

For a schematic of the model framework, see Supplementary Fig. 1.
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Supplementary Figure 1: Schematic of our parsimonious SARS-CoV-2 transmission model con-
sisting of an SEIR system for two variants and vaccination status. We follow the populations given by
Ni,j,v, where i and j denote whether the population is susceptible (S), exposed (E), infectious (I) or recovered
(R) with respect to the resident variants and Variant of Concern (VOC), respectively, and v denotes vaccina-
tion status as unvaccinated (u), or vaccinated with the AstraZeneca vaccine (a), Pfizer-BioNTech or Moderna
vaccines (p), or an updated/new vaccine (n). The regions enclosed by the dashed lines depict the stratification
of the population into four groups based on vaccination status: unvaccinated, Pfizer-BioNTech or Moderna
vaccinated, AZ vaccinated and vaccinated with an updated/new vaccine. Boxes represent disease states (green:
susceptible to both variants; orange: currently infected by resident variants; red: currently infected by VOC;
pink: recovered from one variant, susceptible to the other variant blue: recovered from both variants). Solid
arrows correspond to transitions between disease states. Dotted arrows correspond to transitions resulting
from vaccination. We assumed unvaccinated susceptibles and recovereds could be vaccinated, corresponding
to movements from the NS,S,u, NR,S,u, NS,R,u and NR,R,u states to the NS,S,v, NR,S,v, NS,R,v and NR,R,v

states, respectively, at rate Vv with v ∈ {a, p, n}. Dependent on the scenario, those previously vaccinated could
subsequently receive the new/updated vaccine, corresponding to movements at rate Vn from the NS,S,v̂, NR,S,v̂,
NS,R,v̂ and NR,R,v̂ states (with v̂ ∈ {a, p) to the NS,S,n, NR,S,n, NS,R,n and NR,R,n states, respectively.



Supplementary Note 3: Age-structured SARS-CoV-2 transmission
model

Here we present the basic model formulation that underpins the age-structured predictions of COVID-
19 dynamics in England. We used a compartmental age-structured model, developed to simulate the
spread of SARS-CoV-2 within the seven regions in England: East of England, London, Midlands,
North East & Yorkshire, North West, South East and South West [20], with parameters inferred to
generate a fit to deaths, hospitalisations, hospital occupancy and serological testing [21]. The model
population is stratified by age, with the force of infection determined by the use of an age-dependent
(who acquires infection from whom) social contact matrix for the UK [22, 23]. Additionally, we allow
susceptibility and the probabilities of becoming symptomatic, being hospitalised and the risk of dying
to be age dependent; these are matched to outbreak data for England. Finally, we account for the
role of household isolation, by separating primary and secondary infections within a household (more
details may be found in [20]). This allows us to capture household isolation by preventing secondary
infections from playing a further role in onward transmission. Model parameters were inferred on
a regional basis using regional time series of recorded daily hospitalisation numbers, hospital bed
occupancy, ICU occupancy and daily deaths [21].

Model description

The underlying system of equations accounts for the transmission dynamics, including symptomatic
and asymptomatic transmission, household saturation of transmission and household quarantining.
We describe the base model equations with respect to a single variant. To simulate the presence of a
VOC alongside the existing resident variants, we duplicated the base model equations.

The population is stratified into multiple compartments: individuals may be susceptible (S), exposed
(E), infectious with symptoms (I), or infectious and either asymptomatic or with very mild symptoms
(A). Asymptomatic infections are assumed to transmit infection at a reduced rate given by τ . To
some extent, the separation into symptomatic (I) and asymptomatic (A) within the model is somewhat
artificial as there are a wide spectrum of symptom severities that can be experienced.

We let superscripts denote the first infection in a household (F ), a subsequent infection from a symp-
tomatic household member (SI) and a subsequent infection from an asymptomatic household member
(SA). A fraction (H) of the first detected cases (necessarily symptomatic) in a household are quaran-
tined (QF ), as are all their subsequent household infections (QS) - we ignore the impact of household
quarantining on the susceptible population as the number in quarantine is assumed small compared
with the rest of the population. The recovered class is not explicitly modelled, although it may be-
come important once we have a better understanding of the duration of immunity. We omitted natural
demography and disease-induced mortality in the formulation of the epidemiological dynamics.

We modelled two vaccination classes for individuals where it has been 14 days since they received their
first and second dose of the vaccine; the 14-day delay allows partial immunity to develop (Supplemen-
tary Fig. 2). We included these within the S and E class by adding an additional vaccination subscript
for the number of doses received; hence Sa,0 corresponds to susceptible unvaccinated individuals while
Sa,2 corresponds to those that received their second dose of vaccine at least 14 days ago.
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Supplementary Figure 2: Dynamics of vaccine efficacy (VE) within an individual. 14 days after
the first dose partial efficacy is developed, and 14 days after the second dose efficacy is raised to its maximum
value. We highlight two forms of efficacy: efficacy against severe symptomatic disease (red) which is captured
by the parameter z within the model; and protection against infection (green) which prevents all infection and
acts on parameter σ.
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The full equations are given by

dSa,0
dt

= −
(
λFa,0 + λSIa,0 + λSAa,0 + λQa,0

) Sa,0
Na
− Va,1(t)Sa,0,

dSa,1
dt

= Va,1(t)Sa,0 −
(
λFa,1 + λSIa,1 + λSAa,1 + λQa,1

) Sa,1
Na
− Va,2(t)Sa,1,

dSa,2
dt

= Va,2(t)Sa,1 −
(
λFa,2 + λSIa,2 + λSAa,2 + λQa,2

) Sa,2
Na

dEF1,a,v
dt

= λFa,v
Sa,v
Na
−MεEF1,a,v, v ∈ {0, 1, 2}

dESI1,a,v

dt
= λSIa,v

Sa,v
Na
−MεESI1,a,v,

dESA1,a,v

dt
= λSAa,v

Sa,v
Na
−MεESA1,a,v,

dEQ1,a,v
dt

= λQa,v
Sa,v
Na
−MεEQ1,a,v,

dEXm,a,v
dt

= MεEXm−1,a,v −MεEm,a,v, X ∈ {F, SI, SA,Q}

dIFa,v
dt

= da(1−H)MεEFM,a,v − γIFa,v,

dISDa,v
dt

= daMεESIM,a,v − γISIa,v,

dISUa,v
dt

= da(1−H)MεESAM,a,v − γISAa,v ,

dIQFa,v
dt

= daHMεEFM,a,v − γIQFa,v ,

dIQSa,v
dt

= daHMεESAM,a,v + daεE
Q
a,v − γIQSa,v ,

dAFa,v
dt

= (1− da)MεEFM,a,v − γAFa,v,

dASa,v
dt

= (1− da)Mε(ESIM,a,v + ESAM,a,v)− γASa,v,

dAQa,v
dt

= (1− da)MεEQM,a,v − γA
Q
a,v,

(4)

Here we have included M latent classes. Throughout we have taken M = 3.

The forces of infection which govern the non-linear transmission of infection obey:

λFa,v = βnV (t)σa,v
∑
b,v

(
IFb,v + ISIb,v + ISAb,v + τ(AFb,v +ASb,v)

)
βNba,

λSIa,v = βnV (t)σa,v
∑
b,v

IFb,vβ
H
ba,

λSAa,v = βnV (t)σa,vτ
∑
b,v

AFb,vβ
H
ba,

λQa,v = βnV (t)σa,v
∑
b,v

DQF
b,v β

H
ba,

(5)
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where βH represents household transmission and βN = βS+βW +βO represents all other transmission
locations, comprising school-based transmission (βS), work-place transmission (βW ) and transmission
in all other locations (βO). These matrices are taken from Prem et al. [23] to allow easy translation to
other geographic settings, although other sources such as POLYMOD [22] could be used. βnV (t) is a
time-varying term that captures the increase in the B.1.1.7 variant in the UK and its generally higher
rate of transmission (approximately 50% higher than the original). The temporal component of this
term is derived from a higher-dimensional framework that models both the original and new variant
as separate epidemic processes.

Two key parameters, together with the transmission matrix, govern the age-structured dynamics: σa
corresponds to the age-dependent susceptibility of individuals to infection (as we assume the proba-
bility associated with transmission from an infected individual to a susceptible contact to be constant
with respect to age, we also absorb this quantity into the σa parameters); da the age-dependent prob-
ability of displaying symptoms (and hence potentially progressing to more severe disease). Both of
these are also modified by the vaccine status, such that those that have received one or two doses of
vaccine have a lower risk of infection and a lower risk of developing symptoms. The action of vaccine
on the parameter σ captures the protection against infection aspect of the vaccine, while the action
on d captures the efficacy against disease (Supplementary Fig. 2). We also define τ as the reduced
transmission from asymptomatic infections compared to symptomatic infections; given the probability
of displaying symptoms is less in the younger age groups, this parameter shapes the role of younger
ages in onward transmission.

We require our model to capture both individual level quarantining of infected individuals and isolation
of households containing identified cases. In a standard ODE framework this level of household
structure is only achievable at large computational expense [24, 25]. Thus, we instead made a relatively
parsimonious approximation to achieve a comparable effect.

We assume that all within household transmission originates from the first infected individual within
the household (denoted with a superscript F , or QF if they become quarantined). This allows us to
assume that secondary infections within a household in isolation (denoted with a superscript QS or Q)
play no further role in any of the transmission dynamics. As a consequence, high levels of household
isolation can drive the epidemic extinct, even if within household transmission is high – an effect not
achievable with the standard SEIR-type modelling approach. This improved methodology also helps
to capture to some degree household depletion of susceptibles (or saturation of infection), as secondary
infections in the household are incapable of generating additional household infections.

For a schematic representation of the base model states and transitions (for a single variant), see
Supplementary Fig. 3.

Capturing social distancing

We obtained age-structured contact matrices for the United Kingdom from Prem et al. [23]. We used
these contact matrices to provide information on normal levels of household transmission (βHab, with
the subscript ab corresponding to transmission from age group a against age group b), school-based
transmission (βSab), work-place transmission (βWab ) and transmission in all other locations (βOab).

We assumed that any instigated non-pharmaceutical interventions (patterns of social-distancing or
lockdown measures) leads to a reduction in the work, school and other matrices while increasing the
strength of household contacts. Any given level of non-pharmaceutical interventions (NPIs), captured
by the parameter φ between zero and one, therefore scales the four transmission matrices between
their normal values (when φ = 0) and their value under the most severe lockdown (φ = 1).
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Supplementary Figure 3: Representation of the basic model states and transitions for a single
SARS-CoV-2 variant in the age-structured SARS-CoV-2 transmission model. Black arrows show
key epidemiological transitions while blue arrows show movements to observable states. Parameters in green
show the action of vaccine on infection and probability of disease. In this graphic representation we have
not separated the symptomatic and asymptomatic infections, to better illustrate that these compartments are
somewhat ambiguous and depend on precise definitions being used at the time. We do not show stratification
by first/secondary infection or quarantine states.

Parameter Inference

As with any model of this complexity, there are multiple parameters that determine the dynamics.
Some of these are global parameters, applying to all geographical regions, with others used to capture
the regional dynamics. Some of these parameters are matched to the early outbreak data (including
the resultant age-distribution of infection), however the majority are inferred by an MCMC process
(Supplementary Table 2).

We would highlight that the parameters of α and τ are key in determining age-structured behaviour
and are therefore essential in quantifying the role of school children in transmission [26]. We argue
that a low τ and a low α are the only combination that are consistent with the growing body of
data suggesting that levels of seroprevalence show only moderate variation across age-ranges [27], yet
children are unlikely to display major symptoms, suggesting their role in transmission may be lower
than for other respiratory infections [28, 29].

Throughout the pandemic, there has been noticeable heterogeneity between both the different regions
of England and the devolved nations. In particular, London is observed to have a large proportion
of early cases and a relatively steeper decline in the subsequent lockdown than the other regions and
the devolved nations. We capture this heterogeneity in our model through the use of three regional
parameters (DR

S , HR
S and IRS ), which act on the heterogeneous population pyramid of each region to

generate key public health measurable observables (including hospital admissions and occupancy, ICU
occupancy and deaths within 28-days of a positive COVID-19 test).

We inferred the regional strength of preventative behaviours, φR, as a slowly varying parameter in the
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MCMC scheme on a weekly basis.

Supplementary Table 2: Key model parameters and their source.

Parameter Description Source
Va,1(t), Va,2(t) Time varying rate at which individuals in age group

a receive there first or second dose of vaccine
Assumptions based on UK vacci-
nation supply

β Age-dependent transmission, split into household,
school, work and other

Matrices from Prem et al. [23]

γ Recovery rate, changes with τ , the relative level of
transmission from undetected asymptomatics com-
pared to detected symptomatics

Fitted from early age-stratified UK
case data to match growth rate
and R0

da,v Age-dependent and vaccine status dependent prob-
ability of displaying symptoms (and hence being de-
tected), changes with α and τ

Fitted from early age-stratified UK
case data to capture the age profile
of infection.

σa,v Age-dependent and vaccine status dependent sus-
ceptibility, changes with α and τ

Fitted from early age-stratified UK
case data to capture the age profile
of infection.

HR Household quarantine proportion = 0.8φR Can be varied according to sce-
nario

NR
a Population size of a given age within each region ONS

ε Rate of progression to infectious disease (1/ε is the
duration in the exposed class). ε ∼ 0.2

MCMC

α Scales the degree to which age-structured hetero-
geneity is due to age-dependent probability of symp-
toms (α = 0) or age-dependent susceptibility (α =
1)

MCMC

τ Relative level of transmission from asymptomatic
compared to symptomatic infection

MCMC

φR Regional relative strength of the lockdown restric-
tions; scales the transmission matrices. Can also be
varied according to scenario.

MCMC

σR Regional modifier of susceptibility to account for dif-
ferences in level of social mixing

MCMC

ER
0 Initial regional level of infection, rescaled from early

age-distribution of cases
MCMC

DR
S Regional scaling for the mortality probability

Pa(Death|Hospitalised))
MCMC

HR
S Regional scaling for the hospitalisation probability

Pa(Hospitalised|Symptomatic))
MCMC

IRS Regional scaling for the ICU probability
Pa(ICU|Symptomatics))

MCMC
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Supplementary Note 4: Stochastic invasion of a VOC and onward
transmission

In the main text we described the use of a Gillespie simulation to model the initial phase of stochastic in-
vasion, available at https://github.com/LouiseDyson/COVID19-variants-of-concern-modelling-paper.
To cross-check the correctness of the simulation, we compared it with analytic results for a continuous-
time multi-type branching process model with immigration, applying the general theory from [30] to
our particular context.

Model description

We considered the disease dynamics of an invading VOC into a population that has had previous
exposure to a resident variant and has undergone an incomplete vaccination program with 3 different
vaccines (Pfizer (Pf), AstraZeneca (AZ) and a new, VOC-targeted vaccine (N)). We assumed the novel
variant to partially evade both infection-acquired and vaccine-acquired immunity.

We considered an epidemic in which the population was divided into 16 types, namely, 8 exposed
types Ed,v and 8 infectious types Id,v where d ∈ {sus, rec} (for previous disease history) denotes
whether an individual was susceptible to the current resident strain of COVID or had been infected
previously and had recovered, and where v ∈ {U,AZ,Pf,N} (for vaccination status) denotes whether
an individual was unvaccinated or had been vaccinated with the AstraZeneca, Pfizer or VOC-targeted
vaccine, respectively. We order the types in our model so that types 1-8 correspond to exposed cases
and types 9-16 correspond to infectious cases; in both groups, the first four types are susceptible to the
resident variant and the last four types recovered, and each of these four types have vaccination status
ordered as listed above. Although there are 16 types in total, there are only 8 types-at-birth [31, Ch.
6], i.e. only 8 different types of individuals that have just been infected, corresponding to all possible
combination of previous disease history with the resident variant and vaccination status. We denote
by fj (1 ≤ j ≤ 8) the fraction of the susceptible population of type-at-birth j, with

∑8
j=1 fj = 1.

Irrespective of their type-at-birth, exposed cases became infectious at a constant rate σ and infectious
cases had a constant recovery rate γ.

Susceptible individuals of type-at-birth j had a relative susceptibility to the VOC, ψj , determined by
their previous exposure to other variants and by their vaccination status. However, upon infection
with the VOC, we assumed the transmissibility β to be identical for each type-at-birth. Therefore,
any individual infected with the VOC exerts a force of infection on all susceptible individuals of type-
at-birth j (1 ≤ j ≤ 8) given by βj = cjβ, where the constant cj scales β by the relative proportions of
type-at-birth j in the population multiplied by the relative susceptibility of each type-at-birth to the
VOC, i.e. cj = fjψj .

Although the invasion phase of the epidemic is arguably more naturally modelled with a continuous-
time birth-death process, this can be equivalently described with a continuous-time branching process,
as explained in [30], where at each infection event, the infectious individual dies and is replaced by an
identical copy of himself or herself and an exposed case of type-at-birth j. Following [30], we denote
the lifetime (in this branching-process sense of time between any events) of a case of type i by ωi = σ
for 1 ≤ i ≤ 8 and by ωi =

∑8
j=0 βj + γ for 9 ≤ i ≤ 16. The probability-generating function (pgf)

for the offspring distribution of this process, i.e. the distribution of the number of cases of each type
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produced by a case of type i at a single event, is given by:

Pi(s) =


si+8 for 1 ≤ i ≤ 8

∑8
j=0 βjsjsi
ωi

+ γ
ωi

for 9 ≤ i ≤ 16

(6)

where s = (si)
16
i=1 is a (row) vector of length 16 whose components correspond to each different type

of infected individual.

In our model, we initially considered a process that starts with a single case of type i at time t = 0
and no other cases, and considered the vector Yi(t) = (Yij(t)) (1 ≤ i, j ≤ 16), where the component
Yij(t) corresponds to the number of cases of type j at time t. For each i, the random variable Yi(t)
has pgf

Qi(t, s) =

∞∑
n1,n2,...,n16=0

Pr(Yi(t) = n)sn, (7)

where both s and n are vectors, sn denotes the product sn1
1 · · · · · s

n16
16 and nj is the number of cases

of type j.

We obtain expressions for the Qi(t) by solving:

∂Qi(t, s)

∂t
= −ωi[Qi(t, s)− Pi(Q)], subject to Q(0, s) = s, (8)

where Q(t, s) = [Qi(t, s)]16
i=1 is a vector. Setting s = 0 gives the vector q = Q(t, 0), the probability

that, by time t, there are no cases of any type for a process starting with a single particle of type
i.

We then considered a process that began with no cases of any type, but that allowed immigration
of exposed cases of type i at a constant rate ηi and write η =

∑
i ηi. We denoted the total number

of cases of all types at time t for this process by Z(t) = (Zj(t)) (1 ≤ j ≤ 16), with the associated
generating function

R(t, s) =

∞∑
n1,n2,...,n16=0

Pr(Z(t) = n)sn, (9)

where n = (n1, n2, . . . , n16) as before. We obtain R(t, s) by solving:

∂R(t, s)

∂t
= −ηR(t, s) +

16∑
i=0

ηiR(t, s)Qi(t, s), subject to R(0, s) = 1. (10)

Setting s = 0 as before, we find the probability of zero cases of any type at time t, r(t) = R(t, 0).
This should no longer be interpreted as a probability that the outbreak of the VOC has gone extinct,
as immigration allows new cases to enter the population even when the total number of cases is
zero. However, we can loosely interpret limt→∞ 1− r(t) as the probability that a VOC is successfully
established in the population and that the resulting epidemic grows exponentially.

Calculation of means

The vector of the mean number of cases of each type at time t, m(t) = E[Z(t)] = (E[Zj(t)])
16
j=1 is given

by:

m(t) = m(0)etΩ +

∫ t

0
ηe(t−τ)Ωdτ (11)

given by Ωi,j = ∂Pi
∂sj

(1)− ωi.
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Calculation of variances

In order to obtain the variance matrix for the random vector Z(t) = (Zj(t)), representing the number
of cases of each type j at time t, we follow the general theory in [30] applied to our particular case
and consider the variance matrix Wi(t) for (1 ≤ i ≤ 16) for an outbreak that began with no cases
and accounts only for immigration of cases of type i at a constant rate ηi, which can be calculated
via:

Wi(t) =

∫ t

0
ηiE[YT (t)∗YT (t)|T = τ ] dτ, (12)

for 1 ≤ i ≤ 16, where YT (t) represents the vector of the number of cases of each type generated by a
single initial case of type i that appeared in the population via immigration at a random time T . If
the matrix Ω is diagonalisable, so that Ω = ADA−1, we have that:

Wi(t) = ηiH∆H−1Vec(C) (13)

where the matrix H = A⊗ (A∗)−1 ⊗ (A∗)−1, Vec is the operator that vectorises a matrix by stacking
its columns and C is the 162 × 16 matrix consisting of block 16× 16 matrices Ci given by:

Ci = ωi

(∂2Pi
∂s2

j

(1) + diag(
∂Pi
∂sj

(1)) + e∗i ei − e∗i
∂Pi
∂sj

(1)− ∂Pi
∂sj

(1)∗ei

)
(14)

for 1 ≤ i ≤ 16. Here, ei refers to the standard ith basis (row) vector. In (13), ∆ is the diagonal matrix
whose (i, j, k)th entry is given by:

1

δi − (δj + δk)

[
eδit − 1

δi
− e(δj+δk)t − 1

δj + δk

]
, (15)

where δi is the ith diagonal entry of the matrix D.

Finally, the variance-covariance matrix of the random vector Z(t) = (Zj(t)) is given by

Var[Z(t)] =

16∑
i=1

Wi(t), (16)

and therefore the variance of the random number of total infected cases at time t is obtained as

Var

 16∑
j=1

Zj(t)

 =
16∑
r=1

16∑
s=1

Var[Z(t)](r,s), (17)

i.e. the sum all of the entries of the variance-covariance matrix of Z(t).

Consideration of deterministic approximation

We finally considered the number of cases required for the ratio of the mean number of cases to
the standard deviation to be constant over time. We interpret this quantity as the width of the
confidence region around the mean number of cases over time, which after a certain time should grow
proportionally to the mean curve. For different scenarios, we plot the mean number of cases over time
along with the standard deviation divided by the mean (see Supplementary Fig. 4), and note that
the latter quantity reaches a steady state in all scenarios by the time 100 cases have been infected,
on average. In our main analysis, we seed our deterministic models with 2,000 infected cases on the
17th May 2021, which clearly satisfies the necessary conditions for a deterministic approximation to
be valid.
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Supplementary Figure 4: Plot of the log of the expected number of cases over time (blue curve) for different
values of R for the invading Variant of Concern (VOC), as well as the standard deviation of the number of cases
divided by the mean (orange curve). By the time the expected total number of cases has reached 100 (dashed
red line), the standard deviation divided by the mean is approximately constant over time. We conclude that,
once this has happened, the number of cases is approximately normally distributed over time, centred around
the mean, and hence a deterministic approximation of the epidemic is appropriate.
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Additional figures

Parsimonious SARS-CoV-2 transmission model
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Supplementary Figure 5: Sensitivity of epidemiological measures to Variants of Concern (VOCs)
Ev and Ei. In all simulations we seeded 2,000 VOC infecteds on 17th May 2021. Both VOC Ev and VOC Ei
had the same transmissibility as the resident variants. VOC Ev (purple solid line with inverted triangle markers)
had immune escape to vaccination, whereas VOC Ei (green solid line with asterisk markers) had immune escape
to natural infection. For reference, we display the timeseries for VOC E (same transmissibility, with immune
escape to both vaccination and natural infection, depicted by the orange line with plus sign markers) and for
the resident variants in the absence of any VOC being introduced (black solid line). We represent the vaccine
uptake in the population through time via background shading, the transition time into Step 4 of the relaxation
roadmap by the vertical solid line and we state the assumed R excluding immunity values for the resident
variants (Rexcl) throughout Steps 3 and 4, respectively. a Infectious prevalence timeseries for the VOC. b R
with immunity (y-axis) with respect to the date of a VOC being introduced (x-axis). For the ‘Resident variants
with no VOCs’ scenario the displayed profile corresponds to the instantaneous R with immunity of the resident
variants.
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Supplementary Figure 6: Resident variants infectious prevalence over time under each putative
Variant of Concern (VOC) scenario. We present infectious prevalence timeseries for the resident variants
when the 2,000 infecteds of the specified VOC were introduced on 17th May 2021: a VOC MT (square markers),
VOC E (plus sign markers), VOC LT+E (circle markers); b VOC Ev (inverted triangle markers) had immune
escape to vaccination, VOC Ei (asterisk markers) had immune escape to natural infection. We also display in
panel b the timeseries for VOC E (same transmissibility, with immune escape to both vaccination and natural
infection, depicted by the line with plus sign markers). In both panels we show the infectious prevalence for
the resident variants in the absence of any VOC being introduced (line with no markers), represent the vaccine
uptake in the population through time via background shading, depict the transition time into Step 4 of the
relaxation roadmap by the vertical solid line and state the assumed R excluding immunity values for the resident
variants (Rexcl) throughout Steps 3 and 4, respectively.
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Supplementary Figure 7: Percentage of cases attributed to the Variant of Concern (VOC) versus
resident variants over time under each putative VOC scenario. We present timeseries for the percentage
of cases attributable to the VOC when 2,000 infecteds of the specified VOC were introduced on 17th May 2021:
VOC MT (square markers); VOC E (plus sign markers); VOC LT+E (circle markers); VOC Ev (inverted
triangle markers); or VOC Ei (asterisk markers). We represent the vaccine uptake in the population through
time via background shading, depict the transition time into Step 4 of the relaxation roadmap by the vertical
solid line and state the assumed R excluding immunity values for the resident variants (Rexcl) throughout
Steps 3 and 4, respectively. We highlight that the apparent reversal in the VOC E scenario to resident variants
becoming predominant again results from the declines in the waves of infection for the VOC and resident variants
coinciding with different relative rates of decrease. We also note that infectious prevalence in scenario VOC E
is very low for both the VOC and resident variants moving into 2022.
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Supplementary Figure 8: Relationship between outbreak size, peak in infectious cases and timing
of the peak in infectious cases. For each Variant of Concern (VOC) scenario, we generated a series of 92
data points, one for each tested day of introducing the given VOC into the population. Our VOC introduction
dates spanned 17th May 2021 to 1st November 2021 inclusive (depicted in the data points by a transition from
dark marker shading to light marker shading). We display outputs for VOCs (panels a-c), and resident variants
(panels d-f).
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Supplementary Figure 9: Sensitivity of the relative effective R (R with immunity) to the date of
introduction of seed Variant of Concern (VOC) infecteds and epidemiological characteristics of
the VOC. We present simulations performed using the following introduction dates for 2,000 VOC infecteds:
(a) 17th May 2021; (b) 1st August 2021; (c) 1st November 2021. We identify the combinations of relative
transmissibility of the VOC (Tr) and proportional efficacy against the VOC for which RV OC

eff ≥ 1 and the

relative effective R for the VOC versus the resident variants (RV OC
eff /Rres

eff ) ≥ 1. Shaded regions correspond to
the parameter sets satisfying the stated criteria. Glyph labels denote the parameter combinations used for our
three main illustrative VOCs: VOC MT, VOC E and VOC LT+E.
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Supplementary Figure 10: Temporal infectious timeseries for scenarios including a reduction in
onward transmission (transmission blocking) action of immunity. In all simulations we seeded 2,000
Variant of Concern (VOC) infecteds on 17th May 2021. We simulated scenarios with immunity (provided
from either prior infection or vaccination) resulting in a reduction in transmissibility of 25% (left column)
and 50% (right column). We display temporal profiles for resident variants infectious (top row) and VOC
infectious (bottom row). We display the infectious prevalence over time for our illustrative VOC scenarios:
more transmissible (VOC MT, lines with square markers); equal transmissibility with vaccine immune escape
(VOC E, lines with plus sign markers); less transmissible with vaccine immune escape (VOC LT+E, lines with
circle markers). We also display the infectious prevalence for the resident variants in the absence of any VOC
being introduced (black solid line with no markers) and the background shading corresponds to the vaccine
uptake in the population through time.
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Supplementary Figure 11: Sensitivity of effective R (R with immunity) to different assumptions
for the reduction in onward transmission (transmission blocking) action of immunity. In each panel
we present results when introducing into the infectious disease dynamics either Variant of Concern (VOC) MT
(blue solid line, square markers), VOC E (orange dashed line, plus sign markers) or VOC LT+E (yellow dotted
line, circle markers). We seed 2,000 initial VOC infecteds on 17th May 2021. The top row gives the effective R
for the resident variants, Rw

eff. The bottom row gives the effective R for the VOC, RVOC
eff . We simulated scenarios

with immunity (provided from either prior infection or vaccination) resulting in a reduction in transmissibility
of 0% (left column), 25% (middle column) and 50% (right column).
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Supplementary Figure 12: Variation in peak hospital occupancy due to a Variant of Concern
(VOC) for a range of different VOC characteristics. Each panel shows mean values for peak hospital
occupancy across 50 simulations in which the roadmap is run to completion. Specific VOC characteristics consid-
ered elsewhere are indicated for reference by labelled letters. a Proportional transmissibilty to resident variants
versus proportional efficacies (proportional to the efficacy towards the resident variants) against infection and
hospitalisation (severe disease) for both naturally acquired protection and vaccination. We fixed efficacy against
symptoms at 90%. b Proportional efficacies against developing symptoms versus efficacy against hospitalisa-
tion (severe disease) for both naturally acquired protection and vaccination. We fixed infection efficacy at 75%
and set the transmissibility of the VOC equal to resident variants. c Proportional efficacies against infection
and hospitalisation (severe disease) for naturally acquired protection versus vaccination. We fixed the efficacy
against symptoms at 90% and set the transmissibility of the VOC equal to resident variants.
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Supplementary Figure 13: Sensitivity of epidemic trajectories to the introduction time of a
Variant of Concern (VOC) targeted vaccine for VOC E, using a prioritisation scheme with unvac-
cinated individuals given precedence followed by those who had received one of the pre-existing
vaccines. We performed simulations using the parsimonious SARS-CoV-2 transmission model for differing
effective VOC importation counts and introduction date of a VOC targeted vaccine and evaluated the follow-
ing epidemiological summary statistics for the resultant VOC outbreak: (a) final size; (b) peak in infectious
prevalence; (c) time of peak in infectious prevalence.
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