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SUMMARY
Many US states published crisis standards of care (CSC) guidelines for allocating scarce critical care re-
sources during the COVID-19 pandemic. However, the performance of these guidelines in maximizing their
population benefit has not been well tested. In 2,272 adults with COVID-19 requiring mechanical ventilation
drawn from the Study of the Treatment and Outcomes in Critically Ill Patients with COVID-19 (STOP-COVID)
multicenter cohort, we test the following three approaches to CSC algorithms: Sequential Organ Failure
Assessment (SOFA) scores grouped into ranges, SOFA score ranges plus comorbidities, and a hypothetical
approach using raw SOFA scores not grouped into ranges. We find that area under receiver operating char-
acteristic (AUROC) curves for all three algorithms demonstrate only modest discrimination for 28-day mor-
tality. Adding comorbidity scoring modestly improves algorithm performance over SOFA scores alone.
The algorithm incorporating comorbidities has modestly worse predictive performance for Black compared
to white patients. CSC algorithms should be empirically examined to refine approaches to the allocation of
scarce resources during pandemics and to avoid potential exacerbation of racial inequities.
INTRODUCTION

During the COVID-19 pandemic, more than 30 US states devel-

oped crisis standards of care (CSC) guidelines.2–4 These guide-

lines are designed to help hospitals allocate resources, such as

ventilators, if they became scarce.5 Unlike the ‘‘all-come, all-

served’’ promise of hospital resources during non-crisis situa-

tions, CSC guidelines aim to maximize the population-wide

benefit.6,7 State guidelines generally describe ethical principles

and outline triage algorithms for resource allocation.2,3
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To maximize the population-wide benefit, these algorithms

aim to identify patients most likely to survive if offered scarce re-

sources. Nearly 90%of states with CSC triage algorithms adapt-

ed Sequential Organ Failure Assessment (SOFA) or Modified

SOFA (MSOFA) scores to predict short-term prognosis (i.e., sur-

vival to hospital discharge) in an effort to maximize the number of

lives saved.2,3,8–11 States vary in their use SOFA/MSOFA

scores—for example, by grouping scores in different ranges to

assign priority points or by modifying scoring calculations.2,3

Approximately 70% of states also incorporate measures of
Medicine 2, 100376, September 21, 2021 ª 2021 The Author(s). 1
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Table 1. CSC algorithms

Algorithm component New York modela Modified Colorado model Raw SOFA score model

SOFA priority points SOFA < 7: 1 point SOFA < 6: 1 point SOFA 1: 1 point

SOFA 8–11: 2 points SOFA 6-9: 2 points SOFA 2: 2 points

SOFA > 11: 3 points SOFA 10–12: 3 points SOFA 3: 3 points

SOFA > 12: 4 points SOFA score = priority points

Comorbidities

priority points

None Modified Charlson Comorbidity Indexb None

Priority score

calculation

SOFA score SOFA prioritization + Charlson Comorbidity

Index Score

SOFA score

Priority grouping

based on priority score

High priority: 1 None None

Intermediate priority: 2

Low priority: 3

Tie breakers 1st tie breaker: children 1st tie breaker: children, health care

workers, and/or first responders

1st tie breaker: age

2nd tie breaker: life cycle (age)c, pregnancy,

and/or sole caretakers for elderly

2nd tie breaker: lottery 3rd tie breaker: lottery 2nd tie breaker: lottery
aThe New York Algorithm exclusion criteria include the following: (1) unwitnessed cardiac arrest, recurrent arrest without hemodynamic stability, arrest

unresponsive to standard interventions and measures; trauma-related arrest; (2) irreversible age-specific hypotension unresponsive to fluid resusci-

tation and vasopressor therapy; (3) traumatic brain injury with no motor response to painful stimulus (i.e., best motor response = 1); (4) severe burns

where predicted survival is %10% even with unlimited aggressive therapy; and (5) any other conditions resulting in immediate or near-immediate

mortality even with aggressive therapy. None of the patients in this cohort fell into this exclusion criteria.
bOriginal and modified Comorbidity Index provided in Table S3.
cLife cycle groupings (age, years) for Colorado also used for Raw SOFAmodel: 0–49 = 1 (highest priority), 50–59 = 2, 60–69 = 3, 70–79 = 4, and 80+ = 5

(lowest priority).
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comorbidities in priority scoring, which may affect both short-

and long-term prognosis.2,3 Additionally, some states use a

multicomponent model that incorporates factors such as esti-

mated survival or duration of benefit or need in addition to

SOFA scores.2

Although ethicists have debated triage approaches, CSC al-

gorithms have had limited empirical testing in the COVID-19

pandemic. In prior studies of non-COVID-19 ICU cohorts,

different CSC algorithms yield different prioritization results.12

In a recent study of 675 critically ill patients with COVID-19,

raw SOFA scores alone calculated at the time of intubation

had limited ability to predict mortality.13 Given the poor discrim-

ination by SOFA scores, we hypothesized that algorithms that

incorporate comorbidities, in addition to SOFA scores, have su-

perior discriminant ability compared to algorithms that use SOFA

scores alone. Because comorbidities are associated with race

and ethnicity,14–19 we also hypothesized that incorporating co-

morbidities could alter the performance of CSC algorithms by

race and ethnicity.

In a multicenter cohort study of critically ill patients with

COVID-19 admitted to ICUs across the United States, we evalu-

ated two representative CSC guidelines—New York’s algo-

rithm,20 which relies exclusively on SOFA scores grouped into

ranges, and a modified version of Colorado’s algorithm,21 which

relies on SOFA score groupings plus comorbidities (Table 1). We

tested the performance of these representative CSC algorithms

in discriminating 28-day in-hospital mortality and in simulated

clinical scenarios in which the algorithm selected one patient

among a group of two to five patients. We focused on these
2 Cell Reports Medicine 2, 100376, September 21, 2021
two state guidelines because they represent two ends of the

spectrum in considering comorbidities, with New York excluding

consideration of comorbidities altogether and Colorado incorpo-

rating a broad range of pre-existing conditions. Most, if not all,

state algorithms take one of these approaches, with many state

algorithms using a narrower range of comorbidities than Colo-

rado.2–4 We also tested a hypothetical algorithm of raw SOFA

scores (not grouped into ranges) to assess the impact of the

SOFA score ranges used by most states.

RESULTS

CSC algorithms poorly discriminate 28-day mortality
We analyzed 2,722 patients who were intubated on the first day

of ICU admission in the Study of the Treatment and Outcomes in

Critically Ill Patients with COVID-19 (STOP-COVID) (Figure S1), a

multicenter cohort study of adult patients at 68 hospitals across

the United States (Table S1).1 The mean age (SD) was 61 (14)

(Table 2); 1,475 patients (65%) were male, 797 (35%) were

female, 601 (26%) were Black, and 867 (38%) were white. A total

of 1,073 (47%) patients died within 28 days of ICU admission.

CSC algorithms assign ‘‘priority points’’ to estimate the likeli-

hood of survival. Patients with fewer priority points are estimated

to have a greater chance of survival, so these patients with lower

priority scores are offered scarce resources. Nearly all verifiable

CSC algorithms use the SOFA score,2,3,8–11 a metric that

assesses the level of dysfunction of six organ systems at the

time of calculation.22 For our analysis, we adapted the SOFA

score calculation10 to accommodate the data available in the



Table 2. Population characteristics

Patient characteristics All patients (N = 2,272) White patients (n = 867) Black patients (n = 603) p value

Age, mean (SD), year 61.4 ± 14.1 62.8 ± 13.9 62.1 ± 13.1 0.2847

Male, n (%) 1,475 (64.9) 579 (66.8) 340 (56.4) <0.001

Self-reported ethnicity, no. (%)

Hispanic/Latino 588 (25.8) 260 (30.0) 13 (2.2) <0.001

Non-Hispanic/non-Latino 1,368 (60.2) 555 (64.0) 551 (91.4)

Not known 298 (13.1) 52 (5.9) 13 (2.1)

Self-reported race, no. (%)

White 867 (38.1) Not applicable

Black 601 (26.4)

Asian 144 (6.3)

American Indian/Alaska Native 11 (0.5)

Native Hawaiian/Other Pacific Islander 15 (0.7)

More than one race 28 (1.2)

Unknown/unspecified 605 (26.6)

SOFA scores, mean ± SDa

New York priority group 1.4 ± 0.6 1.4 ± 0.5 1.6 ± 0.6 <0.001

Raw SOFA score 6.9 ± 2.7 6.6 ± 2.4 7.1 ± 2.7 <0.001

Colorado priority group 3.3 ± 1.2 3.3 ± 1.1 3.5 ± 1.2 <0.001

SOFA score componentsa, mean (SD)b

Respiratory 3.0 (0.99) 2.96 (0.99) 3.02 (1.00) 0.2374

Coagulation 0.22 (0.54) 0.24 (0.58) 0.23 (0.54) 0.6619

Liver 0.16 (0.48) 0.14 (0.44) 0.17 (0.54) 0.3050

Cardiovascular 2.26 (1.54) 2.28 (1.53) 2.19 (1.57) 0.3038

Central nervous system 0.30 (0.46) 0.33 (0.47) 0.31 (0.46) 0.2251

Renal 0.95 (1.34) 0.75 (1.21) 1.44 (1.49) <0.001

Comorbidities, n (%)c

Congestive heart failure 204 (8.9) 76 (8.8) 83 (13.8) 0.003

Chronic pulmonary diseased 489 (21.5) 209 (24.1) 158 (26.2) 0.3942

Chronic renal diseasee 407 (17.9) 120 (13.8) 134 (22.2) <0.001

End-stage renal disease 75 (3.3) 26 (3.0) 31 (5.1) 0.051

Active malignancy 101 (4.4) 58 (6.7) 22 (3.7) 0.015

Diabetes with complications 357 (15.7) 109 (12.6) 132 (21.9) <0.001

Chronic liver disease 71 (3.1) 28 (3.2) 16 (2.7) 0.6298

Death, n (%) 1,073 (47.2) 407 (46.9) 286 (47.5) 0.8494
aSOFA score components are rated on a scale of 0–4. Table S2 provides definitions for each component used in this paper.
bA total of 594 patients were excluded from the analysis if any of the components of the SOFA score were missing other than the cardiovascular

component.
cTable S2 provides for definitions of comorbidities and highlights differences in comorbidities between the full Colorado and the modified Colorado

model used in this paper.
dChronic pulmonary disease as defined by chronic obstructive pulmonary disease or asthma.
eChronic renal disease as defined by chronic kidney disease (estimated glomerular filtration rate (eGFR) < 60 on at least 2 consecutive values at least

12 weeks apart) or end-stage renal disease.
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STOP-COVID database, modifying the cardiovascular and cen-

tral nervous system components (Table S2). Most CSC algo-

rithms do not assign priority points based on the raw SOFA score

but rather assign priority points to SOFA scores grouped into

ranges.2,3 For example, New York’s algorithm assigns 1 point

to patients with SOFA scores of <7, 2 points for SOFA scores

of 8–11, and 3 points for scores >11. When two patients receive
the same number of priority points, New York uses a lottery to

break the tie (Table 1).20

In contrast to New York, Colorado’s algorithm assigns points

to both SOFA score ranges and comorbidities.21 Patients receive

1 priority point for SOFA scores of <6, 2 points for scores 6–9, 3

points for scores 10–12, and 4 points for scores of >12. Addi-

tional priority points are based on the Charlson Comorbidities
Cell Reports Medicine 2, 100376, September 21, 2021 3



Figure 1. Association of priority score or

category with 28-day mortality

(A–C) The number of patients who survived or died

at 28 days after ICU admission and intubation are

shown for each priority point value (or category) for

each algorithm. (A) New York (SOFA score groups

only). (B) Colorado (SOFA score groups and

comorbidities). (C) Hypothetical algorithm of raw

(ungrouped) SOFA score.

(D and E) AUROC curves for discrimination of 28-

day mortality by priority scores are shown for the

following algorithms: New York (SOFA score

groups) (D), Colorado (SOFA score groups and

comorbidities) (D), and raw SOFA scores. (E)

Colorado SOFA score component, Colorado

comorbidity scoring component, or full Colorado

algorithm (SOFA and comorbidities).
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Index.23 Becausewe adapted theCharlson Comorbidity Index to

available data (Table S3), we refer to a ‘‘modified’’ Colorado

model. When two patients receive the same number of priority

points, Colorado first prioritizes children, healthcare workers,

and first responders. If still tied, Colorado prioritizes younger

patients, pregnant patients, and caretakers for the elderly. If still

tied, Colorado uses a lottery. As a third approach, we used a

hypothetical algorithm of raw SOFA scores that are not

collapsed into ranges (Table 1).

The primary outcome was 28-day in-hospital mortality, which

we assessed for each patient subcohort defined by their CSC

priority score at the time of ICU admission and intubation (Fig-

ures 1A–1C). All algorithms have an increased fraction of

surviving patients in the ‘‘better’’ priority categories (i.e., lower

priority point total) that would be prioritized for scarce resources.

We next assessed the accuracy of each CSC algorithm in

discriminating 28-day in-hospital mortality by the area under

the receiver operating characteristic (AUROC) curve. AUROC

was 0.61 (95% confidence interval [CI], 0.59–0.63) for New

York (i.e., SOFA score ranges), 0.67 (95% CI, 0.65–0.69) for

Colorado (i.e., SOFA score ranges and comorbidities), and
4 Cell Reports Medicine 2, 100376, September 21, 2021
0.64 (95% CI, 0.62–0.66) for raw SOFA

scores (p < 0.001; Figure 1D). In a sensi-

tivity analysis, we imputed missing

SOFA score components with normal

(i.e., healthy) values to assess our exclu-

sion of patients with these components

missing in their clinical record. We

included an additional 594 patients and

found similar trends in AUROC, with

0.59 (95% CI, 0.57–0.61) for New York,

0.65 (95% CI, 0.64–0.67) for Colorado,

and 0.61 (95% CI, 0.59–0.63) for raw

SOFA scores (Figure S2A).

Comorbidity scores alone modestly
outperformed SOFA score ranges
alone
To investigate what may drive differences

in performance among CSC algorithms,
we conducted sensitivity analyses examining the effect of

comorbidities and the effect of how SOFA scores are grouped

into ranges. First, we assessed how each components of

Colorado’s algorithm—SOFA scores and comorbidity scores—

perform on their own in discrimination of 28-day mortality (Fig-

ure 1E). The SOFA score component of Colorado’s algorithm

yielded an AUROC (95% CI) of 0.61 (0.59–0.63), and the

comorbidity component alone yielded an AUROC of 0.64

(0.62–0.66) with p < 0.001, compared to 0.67 (0.65-0.69) for

Colorado’s complete algorithm with both SOFA and comorbidity

components.

The elements of SOFA and comorbidities are not independent.

For example, in Colorado’s algorithm, chronic kidney disease

(CKD) might be ‘‘counted twice’’ for some patients as a comor-

bidity in the Charlson Comorbidity Index and as a marker of

organ failure in the SOFA score. In a sensitivity analysis, we

excluded renal disease from the Charlson Comorbidity Index

for the 332 patients with CKD or end-stage renal disease

(ESRD). For 28-day mortality, the AUROC (95% CI) was 0.62

(0.55–0.68) if CKD/ESRD were excluded from comorbidity

scoring, compared to 0.61 (0.54–0.67) with CKD/ESRD included



Table 3. CSC Algorithm performance in small group comparisonsa

Algorithm

(A) Decisions not requiring

lottery tie-breaker

(B) Correct selections among decisions

not requiring lottery

(C) Overall performance for

correct selections

% 95% CI % 95% CI % 95% CI

Groups of two

New Yorkb 52 48–55 72 66–77 61 57–65

Colorado 77 74–82 72 68–76 67 63–71

Raw SOFA 89 87–92 65 62–70 64 60–68

Algorithms + age as tie-breaker

New York + age 90 87–93 70 66–75 68 65–72

Colorado + ageb 93 91–96 69 65–73 68 65–72

Raw SOFA + age 98 97–99 66 62–70 66 62–69

Groups of five

New Yorkb 6 5–7 64 51–75 61 58–63

Colorado 58 56–61 74 70–77 70 67–72

Raw SOFA 78 76–81 66 63–69 64 62–67

Algorithms + age as tie-breaker

New York + age 68 65–71 73 69–76 71 69–74

Colorado + ageb 83 80–85 72 69–75 71 68–74

Raw SOFA + age 95 93–96 67 64–70 66 63–69
aTriage decisions by CSC algorithms in a simulation of 1,000 random groups of two or five patients. Column A, i.e., two or more patients not tied for the

‘‘best’’ (lowest) priority score. Column B, i.e., survival. Column C, i.e., selecting a surviving patient across all decisions (i.e., all decisions regardless

whether selected by priority score or requiring a tie-breaking lottery. Unpaired t tests were conducted to compare all algorithms (with and without

age as a tie-breaker) to each other. Nearly all comparisons were significant at p < 0.01. The only non-significant comparisons were New York versus

Colorado for groups of two in column B, New York + age versus Colorado + age for groups of two and groups of five in Column B, and New York + age

versus Colorado + age for groups of two and groups of five in Column C.
bIndicates the algorithm that is closest state guidelines. New York’s algorithm as written in the state guidelines does not use a tie-breaker, whereas

Colorado’s algorithm does.
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(Figure S2B). If CKD/ESRD were excluded from the scoring of

comorbidities, the AUROC for the entire cohort of 2,272 patients

was 0.67 (0.65–0.69), which was unchanged from the original

analysis.

New York’s and Colorado’s algorithms differ in both their

approach to comorbidities and how they group SOFA score

into ranges. Grouping SOFA scores into ranges is a common

feature of state CSC algorithms, but the effect of grouping

schemes on performance has not been studied empirically. We

performed a sensitivity analysis to assess the effect of SOFA

score grouping schemes on algorithm performance, for

example, for SOFA scores in increments of two, with SOFA

scores of 1 or 2 receiving a priority score of 1; SOFA scores of

3 or 4 receiving a priority score of 2, and so forth. The predictive

accuracy of SOFA scores as insensitive to grouping in ranges of

1, 2, or 3. For SOFA score increments of 1 (i.e., the ungrouped,

raw SOFA algorithm), the AUROC was 0.61 (0.59–0.63); for

increments of 2, 0.63 (0.61–0.65); and for increments of 3, 0.62

(0.60–0.64) (Figure S2C).

Age tie-breakers improve algorithm performance in
small group comparisons
To examine how prioritization algorithms may function in clinical

scenarios, we simulated selecting one patient to receive scarce

resources out of groups of two or five patients by using a boot-
strap method. For each group of patients, a ‘‘winner’’ with the

‘‘best’’ priority score (i.e., lowest priority point total) was

selected, and the winner’s 28-day outcome (survivor or

deceased) was noted. The group was considered tied if two or

more patients tied for the best (lowest) priority point total. We

performed 100 iterations of a computational simulation in which

we randomly selected 1,000 groups of 2 or 5 patients. We

excluded patient groups in which all the patients had the same

outcome (i.e., all survivors or all deceased) because we cannot

assess if the algorithm correctly selects a patient with a better

outcome if all the patients in that group shared the same

outcome. For each simulation of 1,000 patient groups, we calcu-

lated the percentage of groups for which the algorithm chose a

patient who survived, and we computed the percentage of

groups in which the algorithm required a tie-breaking lottery.

These simulations yielded distributions for the percentage of al-

gorithm decisions that selected a survivor or required a lottery.

The results suggested that algorithms struggle with selecting

one patient from a larger group, as all algorithms had worse per-

formance in the groups of five patients than that of groups of two

patients. First, we examined the frequency of patient groupswith

tied priority scores that required a tie-breaker, such as a lottery

(Table 3A). New York selected a patient without a lottery tie-

breaker in 51% (95% CI, 47–55) of patient groups of 2 but

selected a patient without a lottery tie-breaker in only 6% (4–7)
Cell Reports Medicine 2, 100376, September 21, 2021 5
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of patient groups of 5. That is, when selecting among a group of

five patients, New York is almost a pure lottery, as 94% of the

groups have tied priority scores requiring a lottery. For Colorado,

the percentage of decisions made without requiring a tie-

breaking lottery was 77% (95% CI, 74–80) and 58% (56–61) for

patient groups of 2 and 5, respectively. For our raw SOFA algo-

rithm, the percentage of decisions made without lottery was

89% (95% CI, 87–92) and 78% (76–81) for groups of 2 and 5,

respectively (Table 3A).

In this simulation, we further examined those decisions that

did not require a lottery tie-breaker. Among decisions not

requiring a tie-breaker, we assessed whether the algorithm

made the ‘‘correct’’ choice by prioritizing a patient with the better

outcome (i.e., survival) (Table 3B). New York chose a patient who

survived in 72% (95% CI, 66–77) of patient groups of 2 and 64%

(51–75) of groups of 5. Colorado selected a surviving patient in

72% (95% CI, 68–76) and 74% (70–77) of decisions, for patient

groups of 2 and 5, respectively. The raw SOFA algorithm

selected a surviving patient in 65% (62–70) and 66% (63–69) of

decisions, for patient groups of 2 and 5, respectively. Thus, for

groups of five patients, the algorithm incorporating comorbid-

ities (Colorado) had superior accuracy in selecting a patient

with the better outcome than the algorithm (New York) that

only considered SOFA score ranges.We next calculated the per-

centage of correct decisions (i.e., selecting a surviving patient)

across all decisions, whether the patient was selected by priority

score or required a tie-breaking lottery (Table 3C). In patient

groups of 2, Colorado (67% correct decisions) had better overall

performance than New York (61% correct) because although

Colorado and New York shared the same accuracy among

non-lottery decisions, Colorado had fewer decisions go to lot-

tery, which is only 50% by chance (Table 3C). For patient groups

of 5, Colorado (70% correct) continued to outperform New York

(61% correct) with a combination of fewer lotteries and better

accuracy in non-lottery decisions.

Our simulations suggested that tie-breakers would be impor-

tant and frequently used in clinical practice. Although no states

use age as categorical exclusion criteria, many initial guidelines

included age categories as tie-breaker criteria. Many states have

since moved away from specifying age as the main tie-breaker

based on US Department of Health and Human Services

guidance, instead considering age as part of individualized

assessments when addressing tie-breakers.24 We applied the

tie-breaker based on age categories in Colorado’s guidelines

to all three algorithms. Adding age as a tie-breaker improved al-

gorithm performance (Table 3). With age as the tie-breaker, New

York selected a patient without a lottery in 90% (95% CI, 87–93)

of decisions in patient groups of 2 and 68% (65–71) of decisions

in groups of 5, compared to 51% and 6%, respectively, without

an age-based tiebreaker (Table 3A). Of the decisions that did not

require a lottery, New York chose the surviving patient in 70%

(66–75) of pairs and 73% (69–76) of the groups of 5, compared

to 72%and 64%, respectively, without an age-based tie-breaker

(Table 3B). With an age tie-breaker, Colorado selected a patient

without lottery in 93% (95% CI, 91–96) and 83% (80–85) for pa-

tient groups of 2 and 5, respectively (increased from 77% and

58% without age tie-breakers) (Table 3A). In non-lottery deci-

sions, Colorado had similar accuracy in choosing the surviving
6 Cell Reports Medicine 2, 100376, September 21, 2021
patient with or without age tie-breakers (Table 3B). Similar trends

as those for Colorado were seen for the hypothetical raw SOFA

score algorithm. For New York, the addition of age tie-breakers

improved overall performance in selecting the correct patient

from 61% to 71% (for patient groups of 5; Table 3C). For Colo-

rado and raw SOFA, the overall performance was minimally

improved by only 1%–2%. In summary, the key effect of an

age tie-breaker is to increase the percentage of decisions

made without lottery without altering the percentage of correct

choices.

Incorporating comorbidities has the potential to worsen
algorithm performance for Black patients, compared to
white patients
To examine the differences in algorithm performance by self-re-

ported race and ethnicity, 1,468 patients were included in the

analysis, with 867 (59%) white and 601 (41%) Black patients.

For ethnicity, 1,956 patients were included, with 588 (30%)

Hispanic/Latino and 1,368 non-Hispanic/Latino (70%). For Colo-

rado, the AUROC curve for predicting 28-day mortality was 0.62

(95% CI, 0.57–0.66) for Black patients and 0.68 (0.65–0.72) for

white patients (p < 0.03). There were no statistically significant

differences in AUROC curves for Colorado by ethnicity or New

York by race or ethnicity (Figure S3). To assess the clinical mean-

ing of Colorado’s modest differences in performance, we turned

to our simulation of selecting a patient out of a small group. Col-

orado’s algorithm consistently performed better for the subco-

hort of white patients than for Black patients. In the simulation

of selecting 1 patient from a group of 5 patients, Colorado

selected the patient with the better outcome in 71% of groups

in the white subcohort but only 63% in the Black subcohort

(p < 0.01) (Table S4C). In contrast, New York selected the patient

with the better outcome at similar rates for white and Black sub-

cohorts (61% and 60%, respectively). Similar results were seen

in groups of two and with an age tie-breaker. The hypothetical

raw SOFA algorithm selected the correct patient more frequently

for the white compared to the Black subcohort (65% and 60%,

respectively). New York’s SOFA ranges reduced the race-

dependent effects seen with raw (ungrouped) SOFA scores.

However, even though Colorado’s SOFA score groupings

resemble those of New York, Colorado had race-dependent dif-

ferences in algorithm performance that exceededwhat was seen

with raw SOFA scores. These results suggest that including co-

morbidities has the potential to worsen the performance of the

algorithm for Black, compared to white, patients. Further study

into differences based on race in algorithm performance is

necessary to better understand the factors that may be contrib-

uting to the difference in performance.

DISCUSSION

In this multicenter, nationally representative cohort study of crit-

ically ill patients with COVID-19, we found that both New York’s

(SOFA score groups) and Colorado’s (SOFA score groups and

comorbidities) algorithms had modest accuracy in discrimi-

nating 28-day mortality. In Colorado’s algorithm, the addition

of comorbidities modestly improved performance over the

SOFA score alone. CSC algorithms greatly varied in the
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frequency of ties, which ranged from 11% to 94% depending on

the scenario and algorithm (Table 3). Frequent ties are not

necessarily a positive or negative feature. Some ethicists deem

lotteries as the ‘‘most fair’’ method. However, when a state is

selecting a CSC algorithm, the frequency of tied priority scores

is an important performance characteristic to assess.

Our results for the SOFA score component alone fall within the

broad range seen in studies of SOFA scores for triage of critically

ill patients without COVID-19. Prior studies had AUROC curves

of 0.55–0.88 for the prediction of outcomes by SOFA

scores.3,25–29 Differences among studies were likely driven

both by cohort characteristics and the design of triage algo-

rithms. However, states have little empirical guidance on how

to design algorithms. For example, a key design decision is

how to group SOFA scores in ranges, if at all. In our sensitivity

analysis, SOFA score grouping had little difference on predictive

accuracy for 28-day mortality, although using raw (ungrouped)

SOFA scores reduced ties. Further study is needed to better

understand grouping strategies in patient cohorts with different

distributions of SOFA scores and outcomes. We also found

that the average SOFA scores for both New York’s and

Colorado’s algorithms fall within the highest priority category

(indicating the highest likelihood of survival), which may

contribute to the modest performance of algorithms in discrimi-

nating outcomes. Our study and prior literature raise the

question of whether the use of SOFA scores in CSC guidelines

should be reconsidered.10,25,27 Possible substitutes for SOFA

scores may include blood laboratory values associated with out-

comes in COVID-19 like C-reactive protein (CRP) or lactate

levels.30–32 A challenge is finding metrics that work for a mixed

population with diagnoses ranging from sepsis to respiratory

failure.

If activated in this study cohort, the CSC algorithmswould have

denied scarce resources to many patients who would have sur-

vived and allocated resources to many who would have died. In

the clinical scenario of selecting from small groups of patients,

CSC algorithms correctly selected the patient with the better

outcome in 65% to 74% of decisions. Whether 70% is an

acceptable success rate depends on a variety of ethical and prac-

tical considerations. A state may decide against incorporating

comorbidities, despite modestly worse overall performance, for

simplicity or to avoid the potential for exacerbating racial dispar-

ities, although the possible relationship of race, ethnicity and

CSC algorithm performance requires further study.33–37 However,

another state may include comorbidities because a modest

improvement in performance may result in a meaningful number

of lives saved when applied to many. It is vital that states empiri-

cally test triage algorithms to quantify whether an algorithm fulfills

the ethical principle of maximizing lives saved and reaches

acceptable thresholds for ‘‘real world’’ performance set by medi-

cal, lay, and other communities. We have offered a framework for

conducting such tests to ensure that CSC algorithms achieve the

ethical principles they are designed to operationalize.

LIMITATIONS OF THE STUDY

Our study has several limitations. First, the study is limited to

patients with COVID-19. CSC algorithms may be more or less
predictive of other diseases, thus systematically advantaging

or disadvantaging those with COVID-19. Second, the study

may not generalize to patients who were intubated several

days after ICU admission or the less common situation of intuba-

tion greater than 24 h before ICU admission. More generally, this

study did not distinguish patients who deteriorated early in their

hospital course (e.g., hospital day 1) and those patients who

deteriorated later in their hospital course after several days of

non-critical illness. Third, due to data limitations, we used a

modified version of the SOFA score, approximating two of the

components (cardiovascular and central nervous system).

Fourth, although CSC were not activated at our study sites, the

study cannot account for how the severity of the COVID-19

pandemic and individual illnesses may have influenced the deci-

sions of individual clinicians regarding intubation and ICU triage,

nor can our study account for changes to clinical practice, such

as more intensive palliative care consultation, during different

phases of the COVID-19 pandemic. Fifth, it is possible that

scoring systems may perform differently now than in the spring

of 2020 after the introduction of new therapies and improvement

in outcomes.38 Sixth, we examined two state guidelines repre-

senting themost common elements in state algorithms, but there

are differences by state that may affect performance. Finally, we

did not assess outcomes beyond 28 days, although our prior

study found that the vast majority of deaths that occur among

critically ill patients with COVID-19 occur in the first 28 days

following ICU admission.1
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Materials availability
No new reagents or materials were generated as part of this study.

Data and code availability
Patient data reviewed in this study are not publicly available due to restrictions on patient privacy and data sharing. Individual, patient

level data are not currently available because there are individual data use agreements with each of the 67 participating STOP-COVID

institutions that do not permit sharing of individual patient data with outside entities. Summary data from STOP-COVID are publicly

available in the prior publications, such as Gupta et al.1

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Approval for this study was obtained from the Mass General Brigham Institutional Review Board. Demographic details of the study

population, including age, gender, race, and ethnicity are provided in Table 2. Race and ethnicity were self reported. Race was re-

ported as white, Black, Asian, American Indian / Alaska Native, Native Hawaiian / Other Pacific Islander, More than One Race, and

Unknown / Unspecified. Ethnicity was reported as Hispanic / Latino, Non-Hispanic / Non-Latino, and Unknown.

METHOD DETAILS

Study Design and Population
This is amulticenter, retrospective cohort study, utilizing the previously published cohort the Study of the Treatment andOutcomes in

Critically Ill Patients with COVID-19 (STOP-COVID), with inclusion, exclusion and data collection previously described in detail.1 This

study enrolled 4,717 consecutive adult patients with laboratory-confirmed COVID-19 admitted to ICUs at 68 hospitals across the

United States from March 4 to June 17, 2020 (Table S1).1 Inclusion criteria for the current manuscript were intubation on ICU day

1 and availability of data required to calculate SOFA scores within the first 48 hours of ICU admission.

The SOFA score is a tool to assess the level of dysfunction of six organ systems, including respiratory function (ratio of the partial

pressure of arterial oxygen to the fraction of inspired oxygen [PaO2 / FiO2]), coagulation (platelet count), liver function (total bilirubin),

neurological function (Glasgow Coma Scale), cardiovascular function (number and dose of vasopressors), and renal function (serum

creatinine and urine output). Colorado’s algorithm altered the SOFA respiratory score to either pulse oximetry measurement of

percent oxygen saturation (SpO2) or the standard arterial blood gas measurement of percent arterial oxygen saturation (PaO2). Of

the STOP-COVID cohort, a total of 2,445 patients were excluded for lack of intubation, intubation later than ICU day 1, or lack of

data to calculate SOFA scores (Figure S1). Of 2,866 (20% of original cohort) patients intubated on ICU day 1, 594 patients were

excluded due to insufficient clinical data to calculate SOFA score (Table S2). The analysis by race and ethnicity was restricted to

patients who self-identified as Black or white, as other self-identified categories had low numbers of patients (i.e., Asian, American

Indian / Alaska Native, Native Hawaiian / Other Pacific Islander, More than One Race).
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For each patient, CSC priority points were calculated according to two state algorithms (New York and Colorado) and a

hypothetical algorithm of raw SOFA scores not grouped into ranges (Table 1). New York’s algorithm grouped raw SOFA scores

into three groups of ranges. Colorado’s algorithm incorporated two components: raw SOFA scores grouped into four groups of

ranges and comorbidities according to the Charlson Comorbidity Index. For this study, we adapted the Charlson Comorbidity Index

to comorbidity data available in the STOP-COVID database (Tables S3 and S4), which we refer to as the ‘‘modified’’ Colorado model.

The algorithms are described further in the Results section and in Table 1. The primary outcome was 28-day in-hospital mortality.

Patients discharged alive from the hospital prior to 28 days were considered to be alive at 28 days. The validity of this assumption

was verified in a subset of patients, as described elsewhere.1

Data Collection
Data for the STOP-COVID cohort were collected by manual review of electronic health records as described previously.1

Demographic data collected included age, gender, self-reported race and ethnicity, and comorbidities. Clinical data were collected

at the time of ICU admission and included measurements of hemodynamics and oxygenation, respiratory and vasopressor support,

and laboratory values.

SOFA scores were calculated using data from ICU Day 1. Each ICU day is defined as a 24-hour period, frommidnight to midnight.

ICU Day 1 refers to the 24-hour period from the midnight prior to ICU admission to the midnight after ICU admission. If more than one

lab value was available, the first value (i.e., first value recorded after midnight) was taken as the value for the 24-hour time period. If

unavailable, data from ICU Day 2 were used. If no value was available on either ICU days 1 or 2, the following approach to

missing data was followed: Patients were excluded from the analysis if they had missing data for the following components:

PaO2 (161 patients), FiO2 (86 patients), platelets (37 patients), bilirubin (176 patients), altered mental status (310). Some patients

had multiple missing values. No patients were excluded for a missing creatinine value. A total of 594 out of 2866 patients (20%) in-

tubated on Day 1 of ICU admission were excluded based on lack of data availability. The SOFA score10 was adapted to accommo-

date the STOP-COVID database (Table S2). The scoring of the SOFA cardiovascular component was adapted to the STOP-COVID

registry which did not collect data on vasopressor dosage, only the number of vasopressors/inotropes administered each day. U.S.

intensivists typically choose norepinephrine as the first vasopressor, so initiation of a vasopressor was scored as 3, corresponding to

the scoring of norepinephrine initiation in standard SOFA scoring. The addition of a second vasopressor was scored as 4, since a

second vasopressor is typically added only when norepinephrine dosage > 0.1. These adaptations eliminated the cardiovascular

score of 1 (mean arterial pressure < 70), and we cannot exclude exceptions to the most common clinical practice in study sites.

For the central nervous system (CNS) component, the Glasgow Coma Scale was approximated based on whether ‘‘altered mental

status’’ (AMS) was indicated on the most recent physical exam prior to intubation. A score of ‘‘1’’ indicates that the patient had AMS,

while a score of ‘‘0’’ indicates that the patient did not have AMS. A total of 310 patients whoweremarked as ‘‘data not available’’ were

excluded. This adaptation lacks the range of CNS scoring in standard SOFA scoring.

QUANTIFICATION AND STATISTICAL ANALYSIS

Normality was assessed using the Shapiro-Wilk test. Descriptive statistics were reported as mean (standard deviation) for normal

distributions or median (interquartile range) for non-normal distributions. Standard error was calculated using the method described

by DeLong et al.,19 and confidence intervals were calculated with the exact binomial test. For continuous variables, unpaired

Student’s t tests (normal distribution) or Mann-Whitney U tests (non-normal distribution) were used for two-group comparisons.

Area under the receiver operating characteristic (AUROC) curves were calculated to assess the accuracy of each CSC algorithm

in discriminating 28-day in-hospital mortality. AUROCs were compared according to the method of DeLong et al.39

To simulate a clinical scenario, we analyzed algorithm performance in small groups of two or five patients drawn at random from

either the entire cohort (Table 3) or subcohorts defined by race (Table S5). We performed 100 iterations of a computational simulation

in which we randomly selected 1,000 groups of two or five patients. Patient groups were excluded in which all the patients had the

same outcome (i.e., all survivors or all deceased), since we cannot assess if the algorithm correctly selects a patient with a better

outcome if all the patients in that group shared the same outcome. Table 3 column A: For each simulation of 1,000 patient groups,

we calculated the percent of groups for which the algorithm had a single patient with the ‘‘best’’ (lowest) priority score, and so a tie-

breaker, such as a lottery, was not required. Table 3 column B: Among the patient groups that did not require a tie-breaker, we

assessed whether the algorithm made a ‘‘correct decision,’’ as defined by the selection of a surviving patient. Table 3 column C:

We calculated algorithm performance in making ‘‘correct decisions’’ (i.e., selecting a surviving patient) across all groups, that is

the groups in column B (no tie-breaker needed) and the groups that required a tie-breaker. We further examined the effect of adding

age as the 1st tie-breaker before lottery. Each simulation of 1,000 patient groups was iterated 100 times to generate a distribution. An

unpaired t test was used to calculate significant differences between the distributions. Statistical analysis was conducted in SPSS

Statistics Version 25 (IBM) and R Version 3.6.1 (The R Project).
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Table S1. STOP-COVID Investigators and Participating Sites 
 
Baylor College of Medicine: Carl P. Walther*, Samaya J. Anumudu 
Baylor University Medical Center: Justin Arunthamakun*, Kathleen F. Kopecky, Gregory P. Milligan, Peter A. 
McCullough, Thuy-Duyen Nguyen 
Beth Israel Deaconess Medical Center: Shahzad Shaefi*, Megan L. Krajewski, Sidharth Shankar, Ameeka Pannu, 
Juan D. Valencia 
Boston Medical Center: Sushrut S. Waikar*, Zoe A. Kibbelaar 
Cook County Health: Ambarish M. Athavale*, Peter Hart, Shristi Upadhyay, Ishaan Vohra, Ajiboye Oyintayo 
Cooper University Health Care: Adam Green*, Jean-Sebastien Rachoin, Christa A. Schorr, Lisa Shea 
Duke University Medical Center: Daniel L. Edmonston*, Christopher L. Mosher 
Hackensack Meridian Health Mountainside Medical Center: Alexandre M. Shehata*, Zaza Cohen, Valerie 
Allusson, Gabriela Bambrick-Santoyo, Noor ul aain Bhatti, Bijal Mehta, Aquino Williams 
Hackensack Meridian Health Hackensack University Medical Center: Samantha K. Brenner*, Patricia Walters, 
Ronaldo C. Go, Keith M. Rose 
Harvard T.H. Chan School of Public Health: Miguel A. Hernán 
Harvard University: Amy M. Zhou, Ethan C. Kim, Rebecca Lisk 
Icahn School of Medicine at Mount Sinai: Lili Chan*, Kusum S. Mathews*, Steven G. Coca, Deena R. Altman, 
Aparna Saha, Howard Soh, Huei Hsun Wen, Sonali Bose, Emily A. Leven, Jing G. Wang, Gohar Mosoyan, Girish 
N. Nadkarni, Pattharawin Pattharanitima, Emily J. Gallagher 
Indiana University School of Medicine/Indiana University Health: Allon N. Friedman*, John Guirguis, Rajat 
Kapoor, Christopher Meshberger, Katherine J. Kelly 
Johns Hopkins Hospital: Chirag R. Parikh*, Brian T. Garibaldi, Celia P. Corona-Villalobos, Yumeng Wen, Steven 
Menez, Rubab F. Malik, Elena Cervantes, Samir Gautam 
Kings County Hospital Center: Mary C. Mallappallil*, Jie Ouyang, Sabu John, Ernie Yap, Yohannes Melaku, 
Ibrahim Mohamed, Siddartha Bajracharya, Isha Puri, Mariah Thaxton, Jyotsna Bhattacharya, John Wagner, Leon 
Boudourakis 
Loma Linda University: H. Bryant Nguyen*, Afshin Ahoubim 
Mayo Clinic, Arizona: Leslie F. Thomas*, Dheeraj Reddy Sirganagari 
Mayo Clinic, Florida: Pramod K. Guru* 
Mayo Clinic, Rochester: Kianoush Kashani* and Shahrzad Tehranian 
Medical College of Wisconsin: Yan Zhou,* Paul A. Bergl, Jesus Rodriguez, Jatan A. Shah, Mrigank S. Gupta 
MedStar Georgetown University Hospital: Princy N. Kumar*, Deepa G. Lazarous, Seble G. Kassaye 
Montefiore Medical Center/Albert Einstein College of Medicine: Michal L. Melamed*, Tanya S. Johns, Ryan 
Mocerino, Kalyan Prudhvi, Denzel Zhu, Rebecca V. Levy, Yorg Azzi, Molly Fisher, Milagros Yunes, Kaltrina 
Sedaliu, Ladan Golestaneh, Maureen Brogan, Neelja Kumar, Michael Chang, Jyotsana Thakkar 
New York-Presbyterian Queens Hospital: Ritesh Raichoudhury*, Akshay Athreya, Mohamed Farag 
New York-Presbyterian/Weill Cornell Medical Center: Edward J. Schenck*, Soo Jung Cho, Maria Plataki, 
Sergio L. Alvarez-Mulett, Luis G. Gomez-Escobar, Di Pan, Stefi Lee, Jamuna Krishnan, William Whalen 
New York University Langone Hospital: David Charytan*, Ashley Macina, Sobaata Chaudhry, Benjamin Wu, 
Frank Modersitzki 
Northwestern Memorial Hospital: Northwestern University Feinberg School of Medicine - Anand Srivastava*, 
Alexander S. Leidner, Carlos Martinez, Jacqueline M. Kruser, Richard G. Wunderink, Alexander J. Hodakowski 
Ochsner Medical Center: Juan Carlos Q. Velez*, Eboni G. Price-Haywood, Luis A. Matute-Trochez, Anna E. 
Hasty, Muner MB. Mohamed 
Oregon Health and Science University Hospital: Rupali S. Avasare*, David Zonies* 
Mass General Brigham: Brigham and Women’s Hospital, Brigham and Women’s Faulkner Hospital, 
Massachusetts General Hospital, and Newton Wellesley Hospital - David E. Leaf*, Shruti Gupta*, Meghan E. Sise, 
Erik T. Newman, Samah Abu Omar, Kapil K. Pokharel, Shreyak Sharma, Harkarandeep Singh, Simon Correa, 
Tanveer Shaukat, Omer Kamal, Wei Wang, Heather Yang, Jeffery O. Boateng, Meghan Lee, Ian A. Strohbehn, 
Jiahua Li, Ariel L. Mueller 
ProMedica Health System: Roberta Redfern,* Nicholas S. Cairl, Gabriel Naimy, Abeer Abu-Saif, Danyell Hall, 
Laura Bickley 
Renown Health: Chris Rowan*, Farah Madhani-Lovely*, Vivian S. Cruz, Kristen M. Hess, Alanna L. Jacobs 
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Rush University Medical Center: Vasil Peev*, Jochen Reiser, John J. Byun, Andrew Vissing, Esha M. Kapania, 
Zoe Post, Nilam P. Patel, Joy-Marie Hermes 
Rutgers/New Jersey Medical School: Anne K. Sutherland*, Amee Patrawalla, Diana G. Finkel, Barbara A. Danek, 
Sowminya Arikapudi, Jeffrey M. Paer, Peter Cangialosi, Mark Liotta 
Rutgers/Robert Wood Johnson Medical School: Jared Radbel*, Sonika Puri, Jag Sunderram, Matthew T. Scharf, 
Ayesha Ahmed, Ilya Berim, Jayanth S. Vatson 
Stanford Healthcare: Stanford University School of Medicine – Shuchi Anand*, Joseph E. Levitt, Pablo Garcia  
Temple University Hospital: Suzanne M. Boyle*, Rui Song 
Thomas Jefferson University Hospital: Jingjing Zhang*, Sang Hoon Woo, Xiaoying Deng, Goni Katz-Greenberg, 
Katharine Senter 
Tulane Medical Center: Moh’d A. Sharshir*, Vadym V. Rusnak 
United Health Services Hospitals: Muhammad Imran Ali 
University of Colorado Anschutz Medical Campus: Anip Bansal*, Amber S. Podoll, Michel Chonchol, Sunita 
Sharma, Ellen L. Burnham 
University Hospitals Cleveland Medical Center: Arash Rashidi*, Rana Hejal 
University of Alabama-Birmingham Hospital: Eric Judd*, Laura Latta, Ashita Tolwani 
University of California-Davis Medical Center: Timothy E. Albertson*, Jason Y. Adams 
University of California-Los Angeles Medical Center: Ronald Reagan-UCLA Medical Center - Steven Y. 
Chang*, Rebecca M. Beutler; UCLA Medical Center, Santa Monica – Carl E. Schulze 
University of California-San Diego Medical Center: Etienne Macedo*, Harin Rhee 
University of California-San Francisco Medical Center: Kathleen D. Liu*, Vasantha K. Jotwani 
University of Chicago Medical Center: Jay L. Koyner* 
University of Florida Health-Gainesville: Chintan V. Shah* 
University of Florida-Health-Jacksonville: Vishal Jaikaransingh* 
University of Illinois Hospital and Health Sciences System: Stephanie M. Toth-Manikowski*, Min J. Joo*, James 
P. Lash 
University of Kentucky Medical Center: Javier A. Neyra*, Nourhan Chaaban, Madona Elias, Yahya Ahmad 
University Medical Center of Southern Nevada: Alfredo Iardino, Elizabeth H. Au, Jill H. Sharma 
University of Miami Health System: Marie Anne Sosa*, Sabrina Taldone, Gabriel Contreras, David De La Zerda, 
Hayley B. Gershengorn, Bhavarth Shukla, Alessia Fornoni, Tanira Ferreira 
University of Michigan: Salim S. Hayek*, Pennelope Blakely, Hanna Berlin, Tariq U. Azam, Husam Shadid, 
Michael Pan, Patrick O’ Hayer, Chelsea Meloche, Rafey Feroze, Rayan Kaakati, Danny Perry, Abbas Bitar, 
Elizabeth Anderson, Kishan J. Padalia, John P. Donnelly, Andrew J. Admon 
University of North Carolina School of Medicine: Jennifer E. Flythe*, Matthew J. Tugman, Emily H. Chang 
University of Oklahoma Health Sciences Center: Brent R. Brown* 
University of Pennsylvania Health System: Amanda K. Leonberg-Yoo*, Ryan C. Spiardi, Todd A. Miano, 
Meaghan S. Roche, Charles R. Vasquez 
University of Pittsburgh Medical Center: Amar D. Bansal*, Natalie C. Ernecoff, Sanjana Kapoor, Siddharth 
Verma, Huiwen Chen 
University of Tennessee Health Science Center and Memphis VA Medical Center/Methodist  
University Hospital – Csaba P. Kovesdy*, Miklos Z. Molnar*, Ambreen Azhar 
University of Texas Southwestern Medical Center and Parkland Health and Hospital System: S. Susan 
Hedayati*, Mridula V. Nadamuni, Shani Shastri, Duwayne L. Willett 
University of Vermont Larner College of Medicine: Samuel A.P. Short 
University of Virginia Health System: Amanda D. Renaghan*, Kyle B. Enfield 
University of Washington Medical Center: Pavan K. Bhatraju*, A. Bilal Malik 
Vanderbilt University Medical Center: Matthew W. Semler 
Washington University in St. Louis/Barnes Jewish Hospital: Anitha Vijayan*, Christina Mariyam Joy, Tingting 
Li, Seth Goldberg, Patricia F. Kao 
Wellforce Health System: Lowell General Hospital - Greg L. Schumaker*, Tufts Medical Center - Nitender 
Goyal*, Anthony J. Faugno, Greg L. Schumaker, Caroline M. Hsu, Asma Tariq, Leah Meyer, Ravi K. Kshirsagar, 
Daniel E. Weiner, Aju Jose 
Westchester Medical Center: Marta Christov*, Jennifer Griffiths, Sanjeev Gupta, Aromma Kapoor 
Yale School of Medicine: Perry Wilson,* Tanima Arora, Ugochukwu Ugwuowo 
 
*Site Principal Investigator 
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Northeast 
Beth Israel Deaconess Medical Center 
Brigham and Women’s Faulkner Hospital 
Brigham and Women's Hospital 
Cooper University Health Care 
Hackensack Meridian Health Hackensack 
University Medical Center 
Hackensack Mountainside Hospital 
Johns Hopkins Hospital 
Kings County Hospital Center 
Lowell General Hospital 
Massachusetts General Hospital 
MedStar Georgetown University Hospital 
Montefiore Medical Center 
Mount Sinai  
Newton Wellesley Hospital 
New York-Presbyterian Queens Hospital 
New York-Presbyterian/Weill Cornell Medical 
Center 
New York University Langone Hospital 
Rutgers/New Jersey Medical School 
Rutgers/Robert Wood Johnson Medical School 
Temple University Hospital 
Jefferson Health 
Tufts Medical Center 
United Health Services Hospitals 
University of Pennsylvania Health System 
University of Pittsburgh Medical Center 
Westchester Medical Center 
Yale University Medical Center 

South 
Baylor College of Medicine, Houston 
Baylor University Medical Center/Baylor Scott 
White and Health  
Duke University Medical Center 
Mayo Clinic, Florida 
Memphis VA Medical Center 
Methodist University Hospital 
Ochsner Medical Center 
Tulane Medical Center 

University of Alabama-Birmingham Hospital 
University of Florida Health-Gainesville 
University of Florida Health-Jacksonville 
University of Miami Health System 
University of North Carolina Hospitals 
University of Texas Southwestern Medical 
Center 
University of Virginia Health System 

Midwest 
Barnes-Jewish Hospital 
Cook County Health 
Froedtert Hospital 
Indiana University Health Methodist Hospital 
Mayo Clinic, Rochester 
Northwestern Memorial Hospital 
Promedica Health System 
Rush University Medical Center 
University Hospitals Cleveland Medical Center 
University of Chicago Medical Center 
University of Illinois Hospital and Health 
Sciences System  
University of Kentucky Hospital 
University of Michigan Hospital 
University of Oklahoma Health Sciences 
Center 

West  
Loma Linda University Medical Center 
Mayo Clinic, Arizona 
Oregon Health and Science University Hospital 
Renown Health 
Stanford Healthcare 
University of California-Davis Medical Center 
University of California-Los Angeles Medical 
Center 
University of California-San Diego Medical 
Center 
University of California-San Francisco Medical 
Center 
UCHealth University of Colorado 
University Medical Center of Southern Nevada 
University of Washington Medical Center 
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Table S2. SOFA (“sSOFA”) score calculation.  
This study adapted standard SOFA scoring to the data in the clinical registry, as highlighted in 
Table S2A (grey). Since study sites typically utilized norepinephrine as the first vasopressor, 
thus the use of one vasopressor was assigned a score of 3, to correspond to the scoring for 
initiation of norepinephrine in standard SOFA scoring. The dataset allowed scoring of the 
presence or absence of altered mental status (AMS) but not the Glasgow Coma Score (GCS). 
 

2A. Adapted SOFA scoring  
 

Adapted SOFA Scoring 

0 1 2 3 4 
SOFA Respiratory  
(PaO2:FiO2) 

≥400  300-399 200-299 100-199 <100 

SOFA Coagulation  
(Platelets, K/mm3) 

≥150 100-149 50-99 20-49 <20 

SOFA Liver  
(Bilirubin, mg/dl) 

<1.2 1.2-1.9 2.0-5.9 6.0-11.9 ≥12 

SOFA Cardiovascular 
(#vasopressors/inotropes) 

0   1 ≥2 

SOFA CNS No AMS AMS    

SOFA Renal 
(Creatinine mg/dl)  Cr<1.2  Cr 1.2-1.9  Cr 2-3.4  Cr 3.5-4.9 

Cr ≥5 or 
Acute RRT 
or ESRD 

Abbreviations: SOFA, Sequential Organ Failure Assessment; AMS, Altered Mental Status; CNS: Central Nervous 
System; RRT, Renal Replacement Therapy; ESRD, End-Stage Renal Disease 
 
2B. Standard SOFA scoring     

 
Standard SOFA Scoring 

0 1 2 3 4 
SOFA Respiratory  
(PaO2:FiO2) 

≥400  300-399 200-299 100-199 <100 

SOFA Coagulation  
(Platelets, K/mm3) 

≥150 100-149 50-99 20-49 <20 

SOFA Liver  
(Bilirubin, mg/dl) 

<1.2 1.2-1.9 2.0-5.9 6.0-11.9 ≥12 

SOFA Cardiovascular MAP>70 MAP<70 dopa<=5 or 
dobuta 

dopa>5, 
epi<=0.1, or 
norepi <=0.1 

dopa>15, 
epi>0.1, 

norepi>0.1 
SOFA CNS 
(Glasgow Coma Score) 

15 13-14 10-12 6-9 <6 

SOFA Renal 
(Creatinine mg/dl)  Cr<1.2  Cr 1.2-1.9  Cr 2-3.4  Cr 3.5-4.9 

Cr ≥5 or 
Acute RRT 
or ESRD 

Abbreviations: MAP, Mean Arterial Pressure; Dopa, dopamine; Dobuta, dobutamine; Epi, epinephrine, norepi, 
norepinephrine 
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Table S3. Approach to Comorbidity Scoring in Colorado’s algorithm 
Colorado’s algorithm uses the Charlson Comorbidity Index to assign priority points (left). To 
adapt to the comorbidity data in the STOP-COVID registry, Colorado’s comorbidities’ scoring 
was modified (right). Comorbidities are defined in Table S3B.  

S3A. Modification of comorbidity scoring in Colorado’s algorithm.  
Colorado’s scoring of comorbidities 

(Charlson Comorbidity Index) Modification of comorbidities’ scoring for this study 

Comorbidity Points Comorbidity Points 

Age   Age  

  <50 0   <50 0 

  50-59 1   50-59 1 

  60-69 2   60-69 2 

  70-79 3   70-79 3 

  >=80 4   >=80 4 

Chronic Heart Failure 2 Chronic Heart Failure 2 

Dementia 2   

Chronic Pulmonary Disease 1 Chronic Pulmonary Disease 1 

Connective Tissue Disease 1   

Liver Disease   Liver Disease 2 

  Mild 2     

 Moderate or  
Severe 4   

Diabetes Mellitus with 
Chronic Complications 1 Diabetes Mellitus 1 

Hemiplegia 2   

Renal Disease 1 Renal Disease 1 

Metastatic Solid Tumor 6   

Any active malignancy 
including 
leukemia/lymphoma 

2 
Any active malignancy 
including 
leukemia/lymphoma 

2 

AIDS 4   
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Table S3B. Definitions of the comorbidities in the modified Colorado Algorithm.  

Modified Charlson 
Comorbidities Measures 

Coexisting Condition per STOP-
COVID Study 

Definition of Coexisting Condition 

Chronic Heart Failure Congestive heart failure 
Per chart review; heart failure with 
preserved versus reduced ejection 
fraction 

Chronic Pulmonary Disease 
Chronic obstructive pulmonary 
disease Per chart review 

Asthma Per chart review 

Chronic Liver Disease Chronic liver disease 

Cirrhosis, alcohol-related liver 
disease, nonalcoholic fatty liver 
disease, autoimmune hepatitis, 
hepatitis B or hepatitis C, primary 
biliary cirrhosis, or other 

Diabetes Mellitus Diabetes mellitus Per chart review; insulin versus non-
insulin dependent 

Renal Disease 
Chronic kidney disease  

Baseline eGFR <60 ml/min/1.73m2 
on at least two consecutive values at 
least 12 weeks apart prior to hospital 
admission. If not available, defined 
as per chart review 

End stage renal disease Per chart review; on hemodialysis or 
peritoneal dialysis 

Any active malignancy 
including leukemia/lymphoma Cancer 

Per chart review; active malignancy 
(other than non-melanoma skin 
cancer) treated in the past year.  
Defined as cancer of the lung, breast, 
colorectal, prostate, gastric, 
pancreatic, melanoma, ovarian, brain, 
or other 
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Table S4. CSC algorithm performance in groups of two or five patients by race 
In sub-cohorts of White or Black patients, the New York (NY) (SOFA score grouping only), modified Colorado (CO) (SOFA score groupings with 
comorbidities scoring) and a hypothetical algorithm of raw SOFA scores without grouping were examined in simulation of 1,000 random groups of 
two or five patients. Algorithms’ “decisions” in selecting a “winning” patient or requiring a lottery tie-breaker were assessed. Column A. Percent of 
decisions that did not require tie-breakers (i.e., two or more patients not tied for the “best” (lowest) priority score). Column B. Among the decisions 
not requiring tie-breakers, percent of decisions in which the algorithm selected a patient with a better outcome (i.e., survival). Column C. Percent of 
correct selections (i.e., selecting a surviving patient) across all decisions (i.e., all decisions regardless whether selected by priority score or tie-
breaking lottery).  

S4A. CSC algorithm performance in groups of two by racea.  

 

A.  
Percent 
decision 

not 
needing 

lottery tie- 
breaker  

95% CI B. 
 Percent 
correct 
among 

decision 
not 

requiring 
lottery  

95% CI C. 
Overall 
perfor- 
mance: 
percent 
correct 

decision  

95% 
CI 

 A. 
Percent 
decision 

not 
needing 
lottery 

tie- 
breaker  

95% 
CI 

B. 
Percent 
correct 
among 

decision 
not 

requiring 
lottery 

95% 
CI 

C. 
Overall  
perfor- 
mance: 
percent 
 correct  
decision  

95% CI 

White: 
Groups of Two 

      
Black: 
Groups of 
Two 

      

New York* 49 44-54 73 68-78 61 57-65 New York 56 51-60 68 63-73 60 56-64 
Colorado 76 73-81 74 70-78 68 52-61 Colorado 76 73-80 65 61-70 61 57-65 
Raw Sofa 88 85-91 66 62-70 64 60-68 Raw Sofa 89 86-92 62 57-66 61 57-65 
 
Algorithm  
+ Age Tie-
Breaker 

    
  

Algorithm 
+ Age Tie-
Breaker 

    
  

New York 
+ Age 89 87-92 71 67-75 69 65-73 New York 

+ Age 90 87-92 66 62-69 64 61-69 

Colorado 
+ Age* 93 90-95 71 67-75 70 66-73 Colorado 

+ Age 94 92-96 63 58-68 62 58-66 

Raw Sofa 
+ 
Age 

98* 96-99 66 63-71 65 61-70 Raw Sofa 
+ Age 98 96-99 62 57-66 62 59-66 
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S4B. CSC algorithm performance in groups of five by racea.  

 

A.  
Percent 
decision 

not 
needing 
lottery 

tie- 
breaker  

95% CI B. 
 Percent 
correct 
among 

decision 
not 

requiring 
lottery 

95% CI C. 
Overall 
perfor- 
mance: 
percent 
correct 

decision  

95% 
CI 

 A. 
Percent 
decision 

not 
needing 
lottery 

tie- 
breaker  

95% 
CI 

B. 
Percent 
correct 
among 

decision 
not 

requiring 
lottery 

95% 
CI 

C. 
Overall  
perfor- 
mance: 
percent  
correct  

decision  

95% CI 

White 
Groups of 
Five 

      
Black 
Groups of 
Five 

      

New York* 6 5-7 64* 51-75 61 58-64 New York 12 10-14 63* 51-71 60 57-63 
Colorado 58 56-61 74 70-77 71 69-74 Colorado 58 55-61 66 63-70 63 60-65 
Raw Sofa 78 76-81 66 63-69 65 62-69 Raw Sofa 81 78-83 60 57-63 60 57-63 
              

Algorithm + 
Age as Tie-
Breaker 

    
  

Algorithm + 
Age as  
Tie-Breaker 

    
  

New York 
+ Age 68 64-70 72 69-75 71 69-73 New York 

+ Age 73 71-76 69 64-72 67 64-70 

Colorado 
+ Age* 83 81-86 73 70-76 73 69-75 Colorado 

+ Age 85 83-87 64 61-67 63 60-65 

Raw Sofa 
+ Age 94 93-96 67 64-70 67 64-70 Raw Sofa 

+ Age 95 94-96 62 58-64 61 58-64 
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Figure S1. Study Cohort 
 

 

Abbreviations: ICU, Intensive Care Unit; SOFA, Sequential Organ Failure Assessment 
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Figure S2. Sensitivity analysis for the association  of priority scores  or categories with 28-
day mortality.

 
Figure S2. A-C: AUROC curves for discrimination of 28-day mortality by priority scores are 
shown for the following sensitivity analyses: A. The cohort was expanded to a total of 2,866 
patients, which includes the 594 patients that were excluded due insufficient data to calculate 
SOFA scores in the original analysis (Figure S1) and the 2,272 patient included in the original 
analysis. The three algorithms (New York, Colorado, Raw SOFA Scores) were applied to the 
expanded cohort. B. In the modified Colorado algorithm, CKD/ESRD could be “counted 
double,” by contributing to both the SOFA scoring and the comorbidities scoring. The modified 
Colorado algorithm was compared to a version excluding CKD/ESRD from comorbidity scoring. 
C. Hypothetical algorithms of grouping SOFA scores in ranges of two or groupings in ranges of 
three were applied to the study cohort to generate priority points. The hypothetical algorithm of 
raw (ungrouped SOFA scores) was compared to the groupings of SOFA scores in ranges of 2 
and ranges of 3.  
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Figure S3. Performance of CSC algorithms according to race or ethnicity 

Figure S3. The state CSC or hypothetical raw SOFA score algorithms were applied to sub-
cohorts defined by race or ethnicity to generate priority scores. The accuracy of priority scores in 
predicting 28-day mortality after ICU admission and intubation were assessed by AUROC curve. 
There were no statistically significant differences in AUROC for each algorithm across race or 
ethnicity (p>0.05).  
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