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Degree Distribution Fitting 

Fitting the model 

Fitting a power-law distribution means estimating the α parameter for describing the available 

data as: 

𝑝(𝑥) ∝ 𝑥−𝛼 

The first step to accomplish this goal is to choose the lower limit of the node degrees (xmin) on 

which to fit the distribution. We carried out this operation using a Kolmogorov-Smirnov 

minimization approach1, which aims to find the fitting with the lowest absolute difference 

between the cumulative density function of the fitted distribution and the cumulative empirical 

distribution (both for x ≥ xmin). 

The scaling exponent α is instead selected employing the maximum-likelihood estimation 

technique.1 

Both computations are executed through the Python package Powerlaw2. 

Evaluating the quality of the fitting 

The obtained fitting is tested taking into consideration the p-value of the Kolmogorov-Smirnov 

distance (D), of the xmin and of the α parameter. The latter two are assessed with a case 

resampling bootstrap, in which the synthetic samples are built with a random sampling with 

replacement from the node degrees. On the other hand, the first one (D) is estimated with a semi-

parametric bootstrap approach1. In this case, the construction of the synthetic sample is done 

separately (but keeping the same proportion of the empirical data) for the portions of degrees 

lower and higher than xmin. The first part is randomly sampled from the fraction of empirical 

degrees lower than xmin. The other one, instead, is generated by Powerlaw as a random deviate of 

the fitted model. 
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The fitting is considered plausible if the p-value of D is at least 0.1, which means having a 10% 

probability of false negatives in the case the underlying generative process is indeed scale free. 

Comparing the power-law fitting to the ones of other heavy-tailed distributions 

Determining whether the power-law is a plausible distribution is necessary but not sufficient for 

stating that there are no other models better describing the empirical data. Thus, it is mandatory 

to compare the fits of different candidate distributions. Here we employed log-likelihood ratio 

tests1 for analyzing the power-law, the exponentially truncated power-law, the exponential, the 

stretched exponential (Weibull) and the lognormal distributions. However, there will always be a 

distribution that describes the data in a better way (since there are infinite possibilities). 

A power-law distribution is part of the so-called heavy-tailed distributions, which, by definition, 

have the exponential as the absolute minimum alternative2. Hence, in order to consider the 

power-law as a feasible distribution, it has to be at least more likely than the exponential one. 

Method implementation validation 

Our implementation of the power-law fitting, its quality evaluation and its comparison to other 

heavy-tailed distributions were tested on the same datasets on which the Powerlaw package was 

validated2: the frequency of word usage in the novel ‘‘Moby Dick’’ by Herman Melville (for 

optimal fitting), the number of each neuron connections in C. elegans (for moderate fitting) and 

the number of customers in the United States affected by electricity blackouts (for poor fitting). 
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Spectral Clustering 

We first calculated the graph Laplacian3  

𝐿 = 𝐷 − 𝐴 

where D is the diagonal matrix of node degrees and A is the adjacency matrix.  

Then, we computed its normalized form:  

𝐿𝑛𝑜𝑟𝑚 = 𝐷−1 2⁄ 𝐿𝐷−1 2⁄  

The eigenvalues of the normalized Laplacian matrix and the corresponding eigenvectors convey 

the intel about the graph partition.3,4 The connected components are as many as the 0 eigenvalues 

and are defined by the relative eigenvectors. The remaining eigenvectors designate the 

subsequent clustering.  

We chose the number of clusters taking advantage of the eigengap heuristic.4 In order to 

automatize this choice, we devised the following procedure. First, calculate the difference 

between every consecutive eigenvalue and fit this batch to a half-normal distribution (only the 

positive part of a normal distribution). Then, compute the percent point function for 99% (the 

probability of having a difference above this number is 1%) and consider the first occurring 

eigenvalue with an increase from the previous one higher than the determined threshold (if more 

consecutive eigenvalues are eligible, the highest one is used). Lastly, choose its index if it is 

higher than 1 (for the major component) or not equal to the number of components (for the entire 

graph), else the index of the following occurrence is used. The number of clusters suggested by 

this method is generally acceptable, but the user is allowed to manually choose it in the webtool. 

After that, a k-means clustering algorithm on the selected eigenvectors with 100 independent 

runs (for improving consistency) was used to select the groups. 
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Python Modules 

Python modules employed throughout the whole work 

• Python 3 (core) 

o pandas (v 1.1.5) 

o numpy (v 1.19.4) 

o os 

o pickle 

o json 

o itertools 

o requests (v 2.25.1) 

o time 

o datetime 

o webbrowser 

o threading 

o matplotlib pyplot (v 3.3.3) 

• networkx (v 2.5) 

• plotly (v 4.9.0) 

• dash (v 1.13.4) 

o dash core components (v 1.10.1) 

o dash html components (v 1.0.3) 

o dash bootstrap components (v 0.10.3) 

o dash cytoscape (v 0.2.0) 

o dash daq (v 0.5.0) 

https://www.python.org/
https://pandas.pydata.org/
https://numpy.org/
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/itertools.html
https://requests.readthedocs.io/en/master/
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/webbrowser.html
https://docs.python.org/3/library/threading.html
https://matplotlib.org/
https://networkx.org/
https://plotly.com/
https://plotly.com/dash/
https://dash.plotly.com/dash-core-components
https://dash.plotly.com/dash-html-components
https://dash-bootstrap-components.opensource.faculty.ai/
https://dash.plotly.com/cytoscape
https://dash.plotly.com/dash-daq
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• powerlaw (v 1.4.6) 

• PubChemPy (v 1.0.4) 

• chembl webresource client (v 0.10.2) 

• beautiful soup (v 4.9.3) 

• rdkit (v 2009.Q1-1) 

• scikit-learn (v 0.14.0) 

• tqdm (v 4.54.1) 

• visdcc (v 0.0.40) 

• python-dotenv (v 0.19.0) 

 

  

https://github.com/jeffalstott/powerlaw
https://pubchempy.readthedocs.io/
https://github.com/chembl/chembl_webresource_client
https://www.crummy.com/software/BeautifulSoup/
https://www.rdkit.org/
https://scikit-learn.org/
https://github.com/tqdm/tqdm
https://github.com/jimmybow/visdcc
https://github.com/theskumar/python-dotenv
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Figure S1. Degree Distribution 

The degree distributions of both the drug (a) and target (b) projections (red), compared to those 

of equivalent random graphs (blue). The last ones were generated with the Erdős-Rényi model5, 

keeping the same number of nodes and probability of edge creation (ratio between the actual 

number of edges and the maximum possible edges) of the network they are compared with. 
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Figure S2. Degree Distribution Fittings 

The degree distributions of the entire drug projection (a) and entire target projection (c) 

networks, and of the corresponding graphs in which all nodes except Artenimol, Fostamatinib 

and their exclusive direct neighbors were present (b and d, respectively). On each distribution the 

following functions are fitted: power-law (orange), truncated power-law (green), exponential 

(red), stretched exponential (violet) and lognormal (brown). In every chart the probability density 

function (PDF, blue) is shown too. 
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Figure S3. Clustering Coefficient and Degree Relationship 

The relationship between the clustering coefficient and the degree of nodes in the entire drug 

projection (a), the entire target projection (c) networks, and the corresponding graphs in which 

all nodes except Artenimol, Fostamatinib and their exclusive direct neighbors were present (b 

and d, respectively).  
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Figure S4. Network Robustness 

The comparison of the network diameter variation in response to targeted attacks (in blue) and 

random failures (in orange). The investigation was carried out on the entire drug projection (a), 

the entire target projection (c) networks, and the corresponding graphs in which all nodes except 

Artenimol, Fostamatinib and their exclusive direct neighbors were present (b and d, 

respectively). 
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Drug Projection 

(Entire) 
Drug Projection 

Target Projection 

(Entire) 
Target Projection 

 D p-value D p-value D p-value D p-value 

Power-Law 0.07 
2.4 x 

10-1 
0.05 

3.3 x 

10-1 
0.22 0.0 0.06 

9.5 x 

10-2 

 
Likelihood-

ratio 
p-value 

Likelihood-

ratio 
p-value 

Likelihood-

ratio 
p-value 

Likelihood-

ratio 
p-value 

Truncated 

Power-Law 
-0.58 

2.8 x 

10-1 
-8.01 

6.3 x 

10-5 
-329.39 0.0 -9.43 

1.4 x 

10-5 

Exponential 0.91 
6.9 x 

10-1 
15.71 

6.6 x 

10-2 -349.29 
1.0 x 

10-21 
-3.57 

5.6 x 

10-1 
Stretched 

Exponential 
-0.42 

5.8 x 

10-1 
-6.80 

4.8 x 

10-3 
-397.78 

1.66 x 

10-54 -9.27 
6.6 x 

10-4 

Lognormal -0.33 
5.9 x 

10-1 
-5.92 

7.1 x 

10-3 
-317.17 

1.1 x 

10-51 -8.86 
1.1 x 

10-3 

 

Table S1. Fittings Evaluation 

The table provides the log-likelihood and respective p-value for each function fitted on every 

analyzed network. For the power-law function, the Kolmogorov-Smirnov distance (D) is 

provided, and the fitting is considered plausible if the respective p-value is at least 0.1. 
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