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Additional Information on Algorithmic and Computational Acceleration of Standard 
Genetic Models for Imaging Genomics Analyses 

 
 
Introduction to standard and accelerated genetic analyses 

Computational genetic analyses assume that phenotypic variability (s2
p) in quantitative 

traits can be attributed to additive genetic (s2
G) variance that includes variance due to 

polymorphic and other genetic variations and environmental causes (s2
E). They attempt to 

quantify the degrees of contribution from these sources of variation. Genetic analyses in related 
populations (it is wise to assume that even unrelated subjects have a non-zero degree of 
relatedness) use a linear mixed model to account for genetic relatedness (non-independence) 
among the participants. For simplicity, we will assume that effects of fixed covariates such as 
age, sex, batch, imaging modality, etc. were removed at the point of data processing and the 
data were inverse-normalized such that each imaging (in this case, “voxel-wise”) trait follows a 
multivariate normal distribution127. This supplement reviews the standard computational genetic 
model based on maximization of likelihood and identifies the performance bottlenecks that can 
prevent its use in studies performing genetic analyses of rich imaging data. It then presents 
multiple approaches to accelerate such genetic analyses while maintaining the fidelity of the 
standard approach.  

   We start by characterizing the degree of shared genetic variance among the 
participants in any given sample. The information of this pair-wise relatedness among the 
participants is represented as F, an NxN matrix of coefficients of relationships (CR). F is also 
known as the pedigree, relatedness or kinship matrix. Traditionally, elements of the F matrix are 
ascertained from self-reported relationships. For example, a pair of individuals may identify 
themselves as parent and child, siblings, cousins, etc. Self-reported CR values are calculated 
as the length of the shortest ancestral path (kinship) between two individuals. Each kinship type 
is a fixed number: 1 for the self and a monozygotic twin; ½ for parents, full siblings and dizygotic 
twins; ¼ for grandparents or half-siblings; 1/8 for cousins; and 0 for unrelated individuals. The 
self-reported CR codes the expected degree of shared genomic variance for a kinship type. 
However, in practice, identical twins share less than 100% and no two siblings share exactly 
50% of the genome-wide genetic polymorphisms150,151. Moreover, seemingly unrelated 
individuals often can share a significant degree of genetic variance, known as cryptic 
relatedness. A more practical alternative is to measure CRs empirically from the same high-
throughput genome-wide scans used in genome-wide association (GWA) studies152-155. The 
empirical pedigree matrix is denser, has fewer zeros, and leads to more accurate and stable 
estimates of heritability and association  than self-reported F matrix127. Therefore, it is 
recommended to use empirical relatedness whenever participants’ genomic panel data are 
available, as opposed to CRs127,152-155. In the next sections, we will present the standard and 
accelerated computational models that use F for genetic analyses with the focus of making 
genetic analysis of high-dimensional imaging phenotypes feasible and practical.  
 
Standard genetic model 

Standard computational genetics models to measure heritability and association are 
based on the variance component analyses and iterative maximization of the likelihood 
estimation (MLE). This approach originated by Ronald Fisher’s (“the father of computational 
genetics”) foundational work and has served as the standard framework for human and animal 
pedigree analyses156,157. It uses a linear mixed effect modeling and MLE based statistical 
inference to compare models with fixed (e.g., the effects of relatedness within the pedigree and 
genetic variants on the trait) and random variance of the trait. This can be written as equation 1, 
where phenotype Y, such a brain volume or Hounsfield unit of a cardiac CT voxel per subject, is 
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coded by a vector of length of N (N is the number of subjects) and is assumed to be due to 
composed of genetic Yg and environmental Ye parts.  

 
Y= Yg+Ye  (1) 
 

Therefore, variance in the trait vector Y can be written as equation 2. 
 
Variance[Y]= Variance[Yg+Ye]  (2) 
 

The variance parameters can be numerically estimated by comparing the observed covariance 
matrix W of Y with the covariance matrices predicted by matrix F composed of CR values and 
identity matrix I that codes for random regimental variance157 (equation 3).  
 

Ω = 2 ∙ Φ ∙ 𝜎!" + 𝐼 ∙ 𝜎#"    (3) 
 

se
2 is the variance due to individual-specific environmental effects under the assumption that all 

environmental effects are uncorrelated among family members (e.g., coded by identity matrix). 
The model in equation 3 can be rewritten for association analysis by including the testing of the 
variance from a single nucleotide variant (SNV) and its beta coefficient (equation 4), where the 
SNVj is a vector (dimension N) of genetic variability for this SNV for each subject, usually coded 
as 0, 1, or 2 indicating allelic frequency. 
  

Y=SNVj· βj + Yg+Ye  (4) 
 
This can be rewritten in form of the variance as  

 
Var[Y- SNVj· βj] = Var[Yg+Ye]= F · h2 +I·(1- h2)  (5) 

 
Equation 5 is a form of equation 3 that was rewritten by using h2, which is the standard additive 
genetic heritability or h2 = s2g/(s2g + s2e). The significance of the genetic contribution is tested 
by comparing the likelihood of the model in which sg

2 is set to zero with that of a model in 
which sg

2 is estimated. Twice the difference between the loge likelihoods of these models yields 
a test statistic, which is asymptotically distributed as a 1/2:1/2 mixture of a c2 variable with one 
degree-of-freedom and a point mass at zero. The logarithmic function (l) of the likelihood (L) in 
equations 4 and 5 can be written as  
 

l=ln L = -½ [N×ln 2p + ln (F · h2 +I·( 1- h2)) +d’ × (F · h2 +I·( 1- h2)))-1 ×d] (6) 
 
where d=Y- SNVi · βi. The statistical significance of association is tested by comparing the 
likelihoods of the model with βi constrained to 0 to the unconstrained model.  

 
For imaging genetic studies, this model (equation 6) needs to be evaluated for every trait 

and every polymorphism. A typical voxel-wise analysis involves ~100,000 traits. Heritability 
analyses would require 100,000 maximization of likelihood that can take between 10-50 
iterations of a typical MLE algorithms. A GWA study of 1,000,000 SNVs would require 1011 
maximization (number of traits times number of SNVs) of likelihood. This amounts to significant 
computational burden given the iterative nature of the MLE algorithms.  

 
Each iteration of likelihood algorithm requires the inversion of the covariance matrix, F · 

h2 +I·(1- h2) in equation 6. The computational effort associated with matrix inversion goes up 
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non-linearly ~N2 for sparse, self-reported pedigrees and ~N3 for dense empirical pedigrees, 
where N is the number of subjects. These analyses become astronomically complex when using 
empirical CR matrices in studies such as UK Biobank that has over N=500,000 participants. The 
standard computational genetics model has served us well for over six decades but it is not 
practical for massive computational needs required for imaging genetics applications in the big 
data era. In the next two sections we discuss how such analyses can be made practical using 
algorithmic developments and parallel computing capabilities of modern hardware.  
 
Algorithmic acceleration of standard genetic model 
 
Minimizing matrix inversion burden 

The first step is to liberalize the N2-3 dependence of the computational burden associated 
with the inversion of covariance matrix for each likelihood calculation in equation 6. The eigen 
value decomposition (EVD) approach128 performs an orthogonal transformation that 
diagonalizes the covariance (F · h2 +I·(1- h2) matrix to render the matrix inversion trivial. This 
transform maps the vector Y of non-independent observation to a vector Y* of independent 
observations. The EVD of the covariance matrix, Dp can written as Equation 7. 

 
V·Dp·V’ =V· [h2·Dg + (1- h2) ·I] ·V’= V·[I + h2 · (Dg – I)] ·V’  (7) 
 

where V is the orthogonal matrix of eigenvectors and Dp and Dg are diagonal matrices of 
phenotypic and genetic eigen values lp and lg. This transformation decorrelates the data for 
related subjects and reduces the likelihood to the product of univariate normal densities128. If t= 
V’·d is the vector of residual phenotype values following the transformation to the eigen basis of 
the covariance matrix, then the likelihood equation becomes Equation 8, see128 for derivations.  
 

l = -½ [ N×ln 2p +S ln (1+ h2·(lgi -1) ) + Sti
2/(1+ h2·(lgi -1))]      (8) 

 
Comparing Equations 6 and 8, we can see that the likelihood calculations have been 

simplified to be a sum of univariate likelihoods. This comes with two benefits. The calculation of 
the inverse and transformed covariance is now trivial. The second benefit is that the simplified 
polygenic model can be reduced to simple algebraic solutions for fast approximation 
calculations that do not require iterative maximization of the likelihood. We present two such 
approximations to accelerate heritability and association calculations.  
 
Non-iterative approximations: Two-step Fast and Powerful Heritability Inference (FPHI)  

The solution in Equation 8 provides a precise estimate of model parameters while 
greatly reducing ~N2-3 burden associated with inversion of pedigree matrix. However, this 
solution is still iterative and requires recalculation of likelihood 10-50 times during the 
maximization convergence. We developed the FPHI solution for a two-step estimation of 
heritability. If we don’t consider the variance associated with measured genotypes (βi=0) then 
the functional form in equation 8 can be simplified as equation 9 

 
l (s2

A, s2
E) = -½[ N×ln 2p + S ln ( s2

g · lgi + s2
e) ) + Sti

2/(s2
g · lgi +s2

e))] (9) 
 

where, we again use the definition h2 = s2
g/(s2

g + s2
e),  and the covariance matrix becomes 

s2
g·Dg + s

2

eI  where Dg is a diagonalized matrix of eigenvalues. We define q as a 2-D vector = 
(s2

g, s
2

e). In the standard MLE approach maximization of likelihood is achieved by solving for 
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the root value qML where l’(qML) = 0 using the iterative Newton’s method to achieve convergence 
to qML 

 
qn+1=qn – l’(qn) ·l’’(qn)-1  (10) 
 

where l’(qn) is the first and l’’(qn) is the second derivatives of the log-likelihood function and n 
denotes the iteration number. Equation 10 requires inversion of 2x2 l’’(qn) Hessian matrix at 
every iteration. While trivial for a single trait analysis, this can lead to significant computational 
effort for imaging genetic studies that utilize thousands to hundreds-of-thousands traits.  

FPHI method uses a two-step Ordinary Linear Squares (OLS) followed by Weighted 
Linear Squares (WLS) approximation to solve equation 9 non-iteratively125. If we define a Nx2 

matrix U as [1, lgi], this amounts to solving equation U ·q=e2. The OLS solution qOLS= (s
2

gOLS, 

s
2

eOLS) is given by equation 11,  
 

qOLS= max {0 or (U’·U)-1·U’·fOLS }  (11) 
 

where U is, [1, lgi], an Nx2 matrix, and e2 is the square of the residual Y*=V’·Y. We set the qOLS 
as the OLS ((U’·U)-1·U’·fOLS), unless it is negative, in which case qOLS is set to zero to ensure the 
non-negativity of the solution. This provides a vector and the corresponding h2

OLS but it is not 
recommended as a final estimate125. Instead, the WLS solution given in equation 12 is 
preferred.  
  

   qWLS= max { 0 or (U’·(( s
2

gOLSDg + s
2

eOLSI)2)-1·U’·((s
2

gOLSDg + s
2

eOLSI)2)-1 · e2
OLS) } (12) 

 
This WLS estimator is asymptotically normal and unbiased125. The corresponding heritability 
estimate is given by equation 13, 
 

h2
WLS

 = s
2

AWLS/(s
2

gWLS + s
2

eWLS)  (13) 
 

In evaluation in both simulated and real data, h2
WLS provides an excellent approximation for h2

ML 
as long as the data follows multivariate normal distribution and proposed harmonization 
strategies to improve agreement125,158. 
 
Non-iterative approximations: Two-step Fast and Powerful Genome-wide Association (FPGA) 

The FPHI provided a two-step decomposition of the variance within a trait into additive 
genetic and environmental components. We expand this model for genotype association 
analysis of the full model (equation 14) that included measured genotypes126.  The significance 
of the association model estimated by including a measured genotype term SNPj· βj. into 
equation 11. 

 
l (βj, s2

A, s2
E) = -½[ N×ln 2p + S ln ( s2

A · lgi + s2
e) ) + Sti

2/(s2
A · lgi +s2

e))]   (14) 
 

where tI now equals to V’(Y- SNPj· βj), the eigenvalue transformation of the residual of the 
phenotype vector. The significance is evaluated using a likelihood test that evaluates two 
models. In the null model the βj is set to 0. This is followed by evaluation of the unconstrained 
model and evaluation of significance using the log-likelihood ratio126. However, even two-step 
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approximation method becomes a considerable computation burden given the large number of 
association tests in a voxel-wise GWA studies given a large number of measured genotypes.  
 
Non-iterative approximations: Single-step FPGA-Wald 

Additional computational performance can be achieved by testing the significance of 
association in equation 14 using the Wald test. The Wald test is a classical hypothesis testing 
approach and is an alternative to MLE. Wald test is based on an asymptotic χ2-distribution to 
evaluate a distance between the unrestricted estimate and its hypothesized value under the null 
hypothesis. It provides a significant reduction in computation burden because the variance is 
calculated once per trait as opposed to once for each test of significance (e.g., each SNV) thus 
reducing it to a single step evaluation. Under the Wald test, the square of parameter estimate is 
divided by the variance of the effect of the SNV (β) under the unrestricted model. If we define Σ 
as a covariance matrix obtained by multiplying Nx2 vector of eigen values of the kinship matrix 

[1, lg] by 2x1 vector additive genetic and environmental variances obtained by FPHI [s
2

A, s
2

E]. 
Then we can obtain the Wald score (Twald) using Equation 15.  

 
Twald= βa(X’Σ-1X)-1 β’a  (15) 
 

where βa is the SNV effect, X is the vector of SNV values obtained under the alternative 
hypothesis. We consider FPGI-Wald test as an “screening” technique because the Wald test 
uses an asymptomatic approximation, yet, empirical evaluations show excellent agreements for 
the results obtained using MLE and Wald tests.  

In summary, the algorithmic approximation of the standard genetic model (i.e., FPHI, 
FPGI and FPGI-Wald) provides significant improvement in computational efficiency versus 
classical approaches. These approaches reduce computational complexity (from N2-3 to N1), 
which make them especially valuable for big data studies. However, algorithmic approximations 
by themselves still do not make imaging genetic analyses practical.  
 
Hardware acceleration of imaging genetics computations 

The highly parallel and non-iterative nature of the FPHI and FPGI algorithms calls for 
efficient implementation using modern hardware optimized for massively parallel computations. 
Contemporary computational clusters are built of nodes equipped with central processing and 
graphics processing units (CPU/GPU) that offer multiple computational cores (typically 2-64 for 
CPUs and 1000-8000 for GPU). Each core can act as an independent computational unit that 
can access memory and perform calculations in parallel with other cores. GPUs make the 
parallel computing especially cost effective by offering thousands of computational cores on a 
single board that is equipped with dedicated high-speed memory. This provides higher 
computation power per unit cost ratio (a few cents vs. $100-500 per GPU vs CPU core, 
respectively). The CPU and GPU version of FPHI and FPGI can be implemented using linear 
algebra software libraries that optimize the code for parallel scientific computing in CPU and 
GPU environment. However, there are important caveats that makes CPU and GPU 
implementations different due to hardware differences between two computational devices.   

 
Implementation using parallel CPU computing  

CPU parallelization is based on the simultaneous multi-threading (SMT) processing 
where each CPU core acts as an independent processing unit with a rich instruction set capable 
of executing a sequence of instructions. It can be visualized by imaging running two instances of 
software independent of each other. The FPHI and FPGI algorithms were implemented for 
parallel analysis by using one trait and one SNP per one computational thread. That each 
thread performed a single FPHI analysis of additive genetic variance or a single FPGI/FPGI-
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Wald analysis of association between a trait and SNP. The OpenMP (https://www.openmp.org) 
software library was used to implement thread-level parallelization. This library automatically 
handles the number of threads and spreads the load across available CPUs/core. Within a 
thread, linear algebra operation used by FPHI and FPGI algorithms, including vector-vector, 
matrix-vector and matrix-matrix  operations  were coded using Basic Linear Algebra 
Subprograms implemented in the Intel Math Kernel Library (https://software.intel.com/en-
us/mkl). All algorithmic, software and hardware approaches discussed here are implemented in 
the solar-eclipse software (solar-eclipse-genetics.org) and are freely available for download, use 
and distribution.  
 
Implementation using parallel GPU computing 

The parallelization of scientific calculations for GPU differs from these used in CPU. A 
GPU card is optimized for single-instruction, multiple thread (SIMT) processing. SIMT was 
specifically developed for parallelization of vector operation. This includes such tasks as ray 
tracing and texture mapping where each GPU core performs a relatively simple task using a 
limited instruction set. To give an example of the difference between CPU and GPU approaches 
to parallel computing, let us consider a task of performing an addition operation of two vectors 
(arrays of data). The SMT approach is to execute a thread that contains the code for a loop-
based addition the elements of two vectors, one element at a time. The code within that thread 
will be executed on a single core and parallel threads would be launched when additions of 
multiple vectors are required. The SIMT places the emphasis on the operational level 
parallelization. The GPU cores do not have a rich instruction set used in OpenMP operation and 
furthermore the memory exchange between CPU and GPU memory banks becomes a 
processing bottleneck. Instead, the GPU code for addition of two vectors would subdivide the 
operations to the level of singular operations, e.g., a summation of two elements of an array and 
issue this task in a form of a kernel of a GPU board. The addition of multiple vectors will 
therefore be performed sequentially, unless the kernel size allows for the full array command to 
be executed within the kernel. This level of planning and coordination is difficult to achieve for 
scientific programing. Typically, scientific algorithms must be redesigned from the ground up to 
adhere to SIMT architecture of GPU computing, thus making efficient porting of scientific 
algorithms challenging159. Fortunately, cuBLAS library provides a convenient alternative for 
porting code written for OpenMP environment for execution using the GPUs. It also handles 
parallelization across multiple GPU cards and manages the allocation of global (accessible 
across GPU), shared (accessible to all threads within a thread block) and register (accessible 
only to one thread) memory for the developer (https://developer.nvidia.com/cublas). The 
disadvantage of this approach is the vendor specific nature of cuBLAS that is only available for 
the devices that support Compute Unified Device Architecture.   
 
Example of the performance evaluation in high-dimensional imaging data 
The performance improvement provided by the aforementioned approaches was recently 
demonstrated through a collaboration with the Human Connectome Project (HCP) and UK Bio 
Bank (UKBB) projects. These voxel-wise analyses were performed in neuroimaging data, 
however, the underlying methods are applicable to any high-density phenotyping approaches 
including x-ray, computed tomography or 2-D expression arrays. The linearized computational 
burden was reduced from ~N3 to N1, leading to a ~106 improvement against standard MLE 
approaches and 104-6 improvement against accelerated software like Scalable and Accurate 
Implementation of GEneralized (SAIGE). For example, the calculation of voxel-wise heritability 
map in approximately 117,000 voxels in N=1024 participants in HCP was reduced from ~100 
hours for MLE approach to ~8 seconds using the FPHI-GPU algorithm executed on a single 
Tesla P100 GPU card (~180,000 times faster). In N=19,257 UKBB subjects, the standard MLE 
computation approach would take ~107 hours, while FPHI method can perform it in under 10 
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hours due to N3 ®N1 reduction in calculation burden (longer than predicted due to disk i/o of 
large datasets). A voxel-wise GWAS of ~60·103 voxels and 6·106 SNVs that showed significant 
heritability in HCP voxelwise diffusion tensor imaging data, took 32,000 CPU hours using 
SAIGE software vs. only 80 CPU hours vs 3 hours using Tesla P100 GPU and Fast Permutation 
Genetic Inference (FPGI) approach with Wald significance testing (~103 improvement). In 
N=19K UKBB subjects, the performance gap vs SAIGE has increased to ~106. Together, these 
improvements made voxel-wise GWA studies practical in samples with complex empirical 
pedigrees including HCP and UKBB (N=10,000-50,000). 
 
  


