

Supplementary Figure 1: CD45RA-depletion attenuates alloreactivity in CD8+ but not in CD4+ T cells. CD45RA-depleted and whole PBMCs were stimulated at a 1:1 ratio with haploidentical irradiated PBMCs and tested for cytokine secretion at day 7. (A) IFN- γ + and TNF- α + CD4+ and CD8+ T cells among CD3+ (n=4). (B) Positive likelihood detection of IFN- γ + CD4+ alloreactive T cells calculated by (sensitivity) / (1- specificity) (n=4). Sensitivity and specificity of CD276+ T cells in relation to IFN- γ + alloreactive T cells (n=4). Sensitivity for molucle X= X+IFN- γ + (%)/(X+ IFN- γ + (%) + X- IFN- γ +(%)), Specificity= X- IFN- γ - (%)/(X- IFN- γ -(%) + X+ IFN- γ - (%)), Positive Likelihood Ratio=Sensitivity/(1-Specificity). *P < 0.05, ***P < 0.001 by one-way ANOVA followed by Tukey's multiple comparison test.

Supplementary Figure 2: CD45RA-depletion attenuates alloreactivity in CD8⁺ but not CD4⁺ T cells. CD45RA-depleted and whole PBMCs were stimulated at a 1:1 ratio with haploidentical, irradiated PBMCs and tested for activation/ proliferation markers and co-receptor expression at day7 (n=4). *P < 0.05, **P < 0.01, ***P < 0.001 by one-way ANOVA followed by Tukey's multiple comparison test.

Supplementary Figure 3: Correlation of activation/ proliferation markers and co-receptors with IFN- γ . CD45RA-depleted PBMCs were stimulated at a 1:1 ratio with haploidentical irradiated PBMCs and tested for activation/ proliferation markers and co-receptors expression at day 7. The representative scatter plots for CD276 and IFN, and for the other markers evaluated and IFN among CD4⁺ T cells are shown. The values in scatter plots indicate the percentage of the cells in each quadrant region.

Supplementary Figure 4: Memory phenotype of CD276⁺CD4⁺ T cells is almost identical with that of IFN- $\gamma^{+}CD4^{+}$ T cells. CD45RA-depleted PBMCs were stimulated at a 1:1 ratio with haploidentical, irradiated PBMCs and immunological memory phenotype of CD276⁺CD4⁺ T cells and of IFN- $\gamma^{+}CD4^{+}$ T cells was analyzed at day7. Data from one representative donor out of four are shown.

Supplementary Figure 5: Magnetically isolated CD276⁺ T cells from the graft after haplo-MLC, are mostly CD4⁺. CD45RA-depleted PBMCs were stimulated at a 1:1 ratio with haploidentical irradiated PBMCs and CD276⁺ T cells were analyzed for CD4/CD8 positivity at day7 (n=5). Mean values are shown.

Supplementary Figure 6: CD45RA-depletion does not reduce IFN- γ /TNF- α secretion, but rather up-regulates activation markers such as CD69 and CD25, Ki-67, and co-stimulatory/co-inhibitory molecules such as ICOS, CD137, CD26, CD276, and PD-1 in MLC between DR4^{negative} human CD4⁺ T cells and DR4⁺ mouse PBMCs. DR4^{negative} human bulk or memory CD4⁺ T cells were stimulated at a 3:1 ratio with DR4⁺ mouse PBMCs in MLC (n=3). *P < 0.05 by one-way ANOVA followed by Tukey's multiple comparison test.

MM Bulk CD4

Memory CD4

CD276-depl. memory

Supplementary Figure 7:

In both HLA-DR4-mismatched and matched settings, memory or CD276-depleted memory CD4⁺ T cells significantly improves clinical GVHD symptoms. In HLA-DR4-mismatched setting CD45RA/CD276-depletion attenuates GVHD symptoms further compared to sole CD45RA-depletion while no significant difference was observed in the clinical GVHD symptoms of recipients receiving CD45RA-depleted and CD45RA/CD276-depleted grafts in the HLA-DR4-matched setting. Images of different individuals from bulk, memory or CD276-depleted memory cohort respectively in the DR4 mismatched and DR4 matched setting are shown.

M Bulk CD4

Memory CD4

MM: DR4 mismatched M: DR4 matched

CD276-depl. memory

Supplementary Figure 8: CD45RA/CD276-depletion extended the time until engraftment compared with non-depleted grafts in HLA-DR4mismatched settings. Time periods until first detection of >5% human cells in whole PBMCs (days) are shown. *P < 0.05 by one-way ANOVA followed by Tukey's multiple comparison test.

time after transplantation [d]

Supplementary Figure 9: Chronological change of the frequency of human T cells in the peripheral blood and clinical GVHD score of individual mice. Individual mice were scored daily for the summation of five clinical parameters of GVHD (posture, activity, fur, skin and weight loss). The frequency of human T cells in the mouse peripheral blood was monitored weekly. Mice were sacrificed when reaching a single score of 1.5 or exceeding clinical score of 4 or when reaching endpoint of the study (day100). One mouse in the cohort of memory CD4⁺ T-cell transplantation from a DR4^{negative} donor (designated by *) was excluded from analysis due to sacrification for non-GVHD related complication (uterine prolapse). Left y-axis: % human T cells in mouse PBMCs. Right y-axis: GVHD score.

Supplementary Figure 10: Histological analysis of GVHD target organs in DR4-matched transplant. Tissues from NSG-Ab° DR4 mice were fixed in 10% buffered formalin and embedded in paraffin for hematoxylin and eosin (H&E) staining and immunohistochemical staining with anti-human CD3.

Supplementary Figure 11: GVHD target organ infiltrating T cells were analyzed by flow cytometry. Resected tissue specimens were disaggregated into single cell suspensions, and stained for flow cytometric analysis. Representative flow cytometry plots depict target organ infiltrating T cells (CD4⁺ Fixable viability) in red circles.

Supplementary Figure 12: Activation status of GVHD target organ infiltrating T cells. (A) Liver-infiltrating human CD4⁺ T cells, and (B) Lung-infiltrating human CD4⁺ T cells from DR4 mice, (C) Colon-infiltrating human CD4⁺ T cells, (D) Skin-infiltrating human CD4⁺ T cells were analyzed when mice were sacrificed. In DR4-mismatched setting (MM): bulk CD4⁺ T cells n=5, memory CD4⁺ T cells n=4, CD276-depleted memory CD4⁺ T cells n=4. In DR4-matched setting (M): bulk CD4⁺ T cells n=5, memory CD4⁺ T cells n=4.

Supplementary Figure 13: Transcription factors and CXCR6 expression of organ-infiltrating and peripheral T cells. (A) Transcription factors expressed in target organ infiltrating T cells were analyzed by qPCR when mice were sacrificed. (B) CXCR6 expression on peripheral CD4⁺ T cells was examined when DR4 mice had achieved human CD4⁺ T cells engraftment. (C) CXCR6 expression of organ-infiltrating CD4⁺ T cells was examined when mice were sacrificed. *P < 0.05, **P < 0.01, ***P < 0.001 by one-way ANOVA followed by Tukey's multiple comparison test.

Supplementary Figure 14: Chemokine receptor expression of engrafted human cells. Colon-infiltrating T cells show a higher level of CCR9 than peripheral T cells, CCR9 expression on circulating T cells at engraftment was similar in all cohorts. The expression of the chemokine receptors CCR3, CCR4, CCR5 was not upregulated in organs and expression levels on circulating T cells at engraftment and did not differ between cohorts. *P < 0.05 by one-way ANOVA followed by Tukey's multiple comparison test.

Bulk CD4 Memory CD4 CD276-depleted memory CD4 MM: DR4 mismatched M: DR4 matched

Supplementary Figure 15: Reduction of complexity scores of TCR V α chains in GVHD target organ infiltrating T cells by CD45RA/CD276-depletion in DR4-mismatched transplant. (A) The overall TCR complexity score for 34 V α gene families was calculated for GVHD target tissues from NSG-Ab° DR4 mice. Mean + SD of TCR complexity scores in a single organ per mouse are shown. (B) Representative TCR V α spectratypes of target organ-infiltrating T cells transplanted with differently engineered grafts with all grafts generated from the same donor. CDR3 length versus fluorescence intensity is presented on the x-axis and the y-axis respectively. *P < 0.05 by one-way ANOVA followed by Tukey's multiple comparison test.

Supplementary Figure 16: V α -chains Gaussian distribution pattern skewed to single peaks indicate CD45RA/CD276-depletion reduces the repertoire diversity of alloreactive T cell pools in DR4-mismatched transplantation. The repertoire of 24 different TCR V α -chains of GVHD target organ infiltrating T cells was analyzed by TCR spectratyping in all cohorts. Representative data of liver-infiltrating T cells from a DR4^{negative} donor are shown.

Supplementary Figure 17: The anti-CD276 mAb exhibits ADCC activity *in vitro*. $CD4^+T$ cells were isolated from PBMCs and incubated with anti-CD276 depleting mAb in the presence or absence of autologous NK cells/autologous plasma for 24 hours at 37 °C. Cells were harvested and apoptotic $CD4^+T$ cells were analyzed by staining Annexin-V and 7-AAD. The frequency of $CD276^+T$ cells in $CD4^+T$ cells after 24 hour-incubation is shown on the left and the frequency of Annexin-V⁺ apoptotic cells in $CD4^+T$ cells after 24 hour-incubation is shown on the right (n=3). *P < 0.05 by one-way ANOVA followed by Tukey's multiple comparison test.

w/o depletion

with anti-human CD3.

CD276 depletion

higher magnitude

Supplementary Figure 18: Histological analysis of GVHD target organs for infiltrating CD3 T cells in controls or after in vivo CD276-depletion. Tissues from NSG-Ab° DR4 mice were fixed in 10% buffered formalin and embedded in paraffin for hematoxylin and eosin (H&E) staining and immunohistochemical staining

lower magnitude

	Forward	5'-CCACATCGCTCAGACACCAT-3'						
GAPDH	Reverse	5'-GGCAACAATATCCACTTTACCAGACT-3'						
T-bet	Forward	5'-GCCTACCAGAATGCCGAGATTA -3'						
	Reverse	5'-ACTCAAAGTTCTCCCGGAATCC-3'						
DODO	Forward	5'-CAGTGAGAGCCCAGAAGGAC-3'						
RURU	Reverse	5'-TCTTGGCCTTCATTGTACCC -3'						
Eovn2	Forward	5'-GAGAAGCTGAGTGCCATGCA-3'						
Fuxp3	Reverse	5'-GGAGCCCTTGTCGGATGAT-3'						
Catal	Forward	5'-GCGGGCTCTATCACAAAATGA-3'						
Galas	Reverse	5'-GCCTTCGCTTGGGCTTAAT-3'						
Fomos	Forward	5'- GGCAAAGCGGACAATAACAT-3'						
Eomes	Reverse	5'-AGCCTCGGTTGGTATTTGTG-3'						

 Table S1: The primer sequences for qPCRs used in this study

specificity	isotype clone manufacturer		catalogue number	fluoroscence		
CD28	Mouse IgG ₁ , к	CD28.2	BD Biosciences	612815	BUV737	
PD-1	Mouse IgG ₁ , к	EH12.1	BD Biosciences	612791	BUV737	
HLA-DR	Mouse IgG2a, к	G46-6	BD Biosciences	612981	BUV661	
CD25	Mouse IgG ₁ , к	M-A251	BD Biosciences	740290	BUV395	
ICOS	Mouse IgG2b, к	2D3/B7-H2	BD Biosciences	743011	BUV395	
CD161	Mouse IgG ₁ , к	DX12	BD Biosciences	744096	BV786	
CD276	Mouse IgG ₁ , к	7-517	BD Biosciences	565829	BV421	
CCR6	Mouse IgG ₁ , к	11A9	BD Biosciences	551773	PE	
CCR4	Mouse IgG₁, к	1G1	BD Biosciences	551120	PE	
CD45RA	Mouse IgG₁, к	5H9	BD Biosciences	561216	PE-Cy7	
CCR7	Mouse IgG ₁ , к	2-L1-A	BD Biosciences	566769	PE-CF594	
CD26	Mouse IgG ₁ , к	M-A261	BD Biosciences	565158	PE-CF594	
CD95	Mouse IgG ₁ , к	DX2	BD Biosciences	556640	FITC	
CD3	Mouse IgG ₁ , к	UCHT1	BD Biosciences	555332	FITC	
CD45	Mouse IgG₁, к	HI30	BD Biosciences	561864	APC	
CD8	Mouse IgG ₁ , к	HIT8α	BD Biosciences	566855	APC-H7	
LAG-3	Mouse IgG ₁ , к	11C3C65	BioLegend	369314	BV421	
CD3	Mouse IgG2a, к	HIT3α	BioLegend	300324	Alexa700	
IL-17A	Mouse IgG ₁ , к	BL168	BioLegend	512310	Alexa647	
CD69	Mouse IgG ₁ , к	FN50	BioLegend	310910	APC	
Ki-67	Mouse IgG ₁ , к	Ki-67	BioLegend	350526	PE-Cy7	
CXCR6	Mouse IgG2a, к	K041E5	BioLegend	356012	PE-Cy7	
CD8	Mouse IgG ₁ , к	ΗΙΤ8α	BioLegend	300922	PerCP	
CD4	Mouse IgG ₁ , κ	SK3	BioLegend	344624	PerCP	
TNF-α	Mouse IgG ₁ , к	MAb11	BioLegend	502948	BV785	
IFN-γ	Mouse IgG₁, к	B27	BioLegend	506507	PE	
TIM-3	Mouse IgG ₁ , к	F38-2E2	ThermoFisher Scientific	17-3109-42	APC	
CD137	human IgG1	REA765	Miltenyi Biotech	130-110-765	FITC	
CCR3	human IgG1	REA574	Miltenyi Biotech	130-108-890	APC	
CCR5	human IgG1	REA245	Miltenyi Biotech	130-120-057	APC	
CD4	human IgG1	REA623	Miltenyi Biotech	130-114-534	Vioblue	
CCR9	Mouse IgG2a	112509	R&D	MAB179-100	FITC	

Table S3: TRAV CDR3 sequences of GVHD target infiltrating T cells. TCR epitope-binding region (CDR3) sequences derived from single peaks in TCR Vα-repertoire spectratype analysis of GVHD target organ infiltrating T cells were identified in direct sequencing approaches and amino acid sequences were delineated. TCRα binding regions (CDR3 regions) identified in recipients of one of the three different graft types, all grafts generated from the same donor, are shown for a representative HLA-DR4^{negative} (MM) and a DR4^{positive} (M) donor.

					ИМ								Μ			
	Organ	TRAV	TRAJ	Variable	Ν	Joining	public motif	Reactivity	Organ	TRAV	TRAJ	Variable	N	Joining	public motif	Reactivity
	Liver	14	56	CA	MRAP	GANSKLTF GKG			Liver	26	31	CI	GRCDNA	ARLMFGDG	public	Influenza A
	Liver	26	39	CAL	VGAISRILTLAWTSKKT	FGKG			Liver	2	30	CAV	DRDDNPSFLWKRDT	FGYG		
	Lung	22	49	CA	GPGYSG	YFGYG			Liver	39	13	CAV	TN	GGYQKVTFGIG	public	CMV
	Lung	26	39	CIV	RVG	NNAGNMLTFGGG	public	Influenza A	Liver	26	47	CI	L RDN	FGFG		
	Lung	23	9	CAAS	TRLRRDQIVALHQG	FGAG			Liver	25	36	CA	germline	QTGANNLFFGTG	public	CMV
	Colon	22	49	CAV	AA	NTGNQ FYFGTG	public	CMV	Lung	22	40	CAL	S	TSGTYKYIFGTG		
	Skin	26	52	CA	RKSHR	FGKG			Lung	26	31	CI	GIDRFT	FGVG		
	Skin	22	49	CAV	AGYSGYGIS	FGTG			Lung	25	36	CA	GTGAHT	LFFGTG		
bulk CD4	Skin	14	56	CA	SESAP	GANSKLTFGKG			Lung	26	56	CIV	germline	TF GIG		
	Skin	3	32	CAV	RGVNGE	KLIFGGG			Lung	3	5	CAV	RDSYTDS	RALTFGSG		
									Lung	39	14	CIS	RTPRQGQ	FGSG		
									Colon	26	3	CAS	germline	KIIFGSG		
									Skin	25	9	PAS	FSLQKKRGG	FGAG		
									Skin	38	52	CA	LSG	FGAG		
									Skin	2	36	CA	EGGKTT	FGKG		
									Skin	26	2	CIA	EL	GIG		
									Skin	3	15	CAV	RLT	N QAGTALIFGKG	public	CMV
	Liver	2	37	CAV	EAG	NTGKLIFGQG			Liver	19	2	CAL	SGDNQGG	KLTFGLG		
	Liver	10	6	CAV	IELGI	SGGSYIPTFGRG			Liver	2	18	CAV	GSGSAQ	GSG		
	Lung	23	44	CA	PGTNSAGGG	LTFGTG			Liver	25	53		CRVGVIVGG	FGEG		
	Lung	26	53	CI	LRDPDR	GGSNYKLTFGKG			Lung	9-2	12	CI	RGLSVCVMGSKGL	IFGSG		
120 C C C C	Lung	2	37	CAV	EAG	NTGKLIFGQG			Skin	3	8	CAV	RDMG	TGFQKLVFGTG		
CD4	Lung	29	52	CA	AGSG	AGGTSYGKLTFGQ G	public	Insulin	Skin	25	40	CA	AI	TSGTYKYIFGTG	public	Influenza A
CD4	Colon	8-3	18	CA	GTR	FGQG			Skin	2	20	CAL	FIAAHP	FGAG		
	Colon	29	52	CA	ST	AGGTSYGKLTFGQ G			Skin	24	20	CAF	LCPLLWDDYK	FGAG		
	Colon	13-1	20	CA	ASVG	SNDYKLSFGAG	public	CMV	Skin	5	29	CA	EGH	SGNTPLVFGKG		
	Skin	29	18	CAV	QFKI	FGQG										
	Skin	2	37	CAV	EAG	NTGKLIFGQG										
	Liver	12	25	CAV	RGEYETPCDCTR	FGRG			Liver	8-4	20	CA	SPLRCRTRVDHE	FGAG		
	Liver	20	37	CAV	WRGTTQA	KLIFGQG			Liver	5	7	CAV	CDKLII	FGEG		
	Liver	1	32	CAV	SGRR	GATNKLIFGTG	public	CMV	Lung	30	14	CA	FSLEY	FGGG		
	Lung	25	54	CAS	L	IQGAQKLVFGQG			Lung	9-2	12	CI	RGLSVCVMGSKGL	IFGSG		
CD276-	Lung	26-1	23	CI	VRS	NQGGKLIFGQG			Colon	23	11	CA	TKRFSSAPQL	FGKG		
depleted	Lung	9-2	6	CI	DLNDT	GGSYIPTFGRG			Skin	24	3	CA	Р	YSSASKIIFGKG	public	EBV
memory	Colon	3	5	CAV	RDGNTGRRAL	TFGSG			Skin	26	42	CIV	CHTR	GSQGNLIFGKG		
CD4	Colon	26-1	42	CI	VCPLEEATVISP	FGKG			Skin	26	53	CAV	VHSSISQGSTVQDQ	GTG		
	Skin	3	5	CAV	RDGNTGRRAL	TFGSG			Skin	8-3	6	CAV	GAR	GSYIPTFGRG	public	CMV
	Skin	38	43	CAV	LIGAL	MRFGAG			Skin	8-4	15	CAV	RAF	NQAGTALIFGKG		
	Skin	9-2	6	CA	LSET	GGSYIPTFGRG	public	CMV								
	Skin	8-4	33	CAV	SDRII	YQLIWGAG	public	CMV								

•