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Supplementary Figure S1 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1. Commensals belonging to the Enterobacter cloacae complex encode T6SS gene 
cluster(s). The genome sequences of the human commensal Enterobacter isolates #10 and #11 
were inspected for the presence of T6SS gene cluster(s) using the program TXSScan. The core 
components of the T6SS detected with the program are indicated in blue. Manually annotated 
genes (tssA) are indicated by dashed arrows. #, indicates a region that was reassessed by Sanger 
sequencing, which revealed a sequencing artifact in the WGS data (details provided in 
Supplementary Data 5); the corrected non-interrupted tssF gene is depicted. Based on their 
gene organization, the clusters were classified as T6SS-1 or T6SS-2. Underlying source data 
are provided in the Source Data file and Supplementary Data files 4 and 5.  
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Supplementary Figure S2 
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Fig. S2. Enterobacter complex isolates kill E. coli and compete with V. cholerae in a T6SS- 
1-dependent manner. 
Survival of E. coli (a) or V. cholerae (c) was scored after coincubation with Enterobacter 
commensal strains #10 and #11 (carrying an empty plasmid [p], as control), their T6SS-1 
and/or T6SS-2-negative mutants (∆tssB for #10; ∆tssB1 and/or ∆tssB2 for #11; with empty 
plasmid [p]), or their T6SS-1-complemented derivates (containing plasmids ptssB or ptssB1). 
Prey survival values are indicated on the Y-axis. (b) Detection of secreted Hcp. Details as for 
Fig. 2. Expression of the plasmid-encoded genes was induced with 0.2% arabinose. 
Representative image (out of three independent experiments). (d) Enterobacter survival after 
co-incubation with T6SS-positive (plain bar) and T6SS-negative (dashed bar) V. cholerae. (a, 
c, and d) Values are derived from three independent experiments and the bars represent the 
mean (± SD, as shown by the error bars). dl, detection limit, as indicated by the dashed line. 
Significant differences were determined using a one-way ANOVA followed by Holm-Sidak’s 
multiple comparison test. Statistical significance indicated above each bar reflects comparison 
to the corresponding WT sample of each group (WT/p), except where comparison groups are 
explicitly shown by the brackets (a, c). For panel d, significant differences between samples 
containing T6SS+ and T6SS- predators were determined using a two-sided Student’s t-test 
corrected for multiple comparisons. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not significant. 
Source data underlying all panels are provided in the Source Data file.  
 
 

  



Supplementary Figure S3 

 

 

 

 

 

 

 

 

 

 

Fig. S3. Commensal Kluyvera cryocrescens strains harbor a T6SS-3 gene cluster. A third 
T6SS gene cluster (T6SS-3) with a different gene order compared to the T6SS-1- and T6SS-2 
clusters was identified in the Kluyvera cryocrescens commensals #8 and #9. Underlying source 
data are provided in the Source Data file and Supplementary Data files 2 and 5. 
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Supplementary Figure S4 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. S4. TssB/TssC phylogenetic tree supports the presence of three distinctives T6SS 
clusters. A phylogenetic tree was constructed based on the concatenated alignments of TssB 
and TssC protein sequences from the T6SS clusters. Bootstrap values are indicated for the main 
branches. The ID names (in light gray) correspond to the individual TssB proteins (see 
Supplementary Data 5 and 7 for details). Underlying source data are provided in the Source 
Data file and Supplementary Data files 2, 4, and 5. 
 
  



Supplementary Figure S5 
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Fig. S5. A subset of E. cloacae complex strains kills E. coli and V. cholerae in a T6SS-1-
dependent manner. Survival of E. coli (a) or V. cholerae (b, c) was scored after coincubation 
with a collection of E. cloacae complex strains (entire set compared to the selection shown in 
Fig. 2), including initially misclassified isolates (#8, #9, #12, #13, #22), and selected T6SS-1-
negative derivatives (panel c). Values are derived from three independent experiments and the 
bars represent the mean (± SD, as shown by the error bars). dl, detection limit, as indicated by 
the black dashed line. Significant differences were determined using a one-way ANOVA 
followed by Holm-Sidak’s multiple comparison test comparing each strain to the T6SS-
deficient control commensal strain (#10∆tssB; value indicated by the dotted gray line) (a, b) or 
using a two-sided Student’s t-test corrected for multiple comparison (c). *, p < 0.05, **, p < 
0.01; ***, p < 0.001; ns, not significant. The colors reflect the origin of the isolates, as shown 
by the legend on the right of the figure. Source data underlying all panels are provided in the 
Source Data file.  
 
 

  



Supplementary Figure S6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. S6. Acinetobacter baumannii and commensal Enterobacter isolates compete in a 
T6SS-dependent manner. Wild-type (T6SS+) and T6SS-deficient (T6SS-) A. baumannii 
were co-incubated with WT Enterobacter isolates #10 and #11 or their T6SS-1-deficient 
mutants (#10∆tssB and #11∆tssB1). The survival of A. baumannii (a) and Enterobacter (b) 
was scored as indicated on the Y-axis. Values are derived from three independent experiments 
and the bars represent the mean (± SD, as defined by the error bars). Significant differences 
were determined using a two-sided Student’s t-test corrected for multiple comparisons. Only 
statistically significant differences are shown. **, p < 0.01; ***, p < 0.001. Source data 
underlying all panels are provided in the Source Data file.  
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Supplementary Figure S7 
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Fig. S7. Group I capsule protect Klebsiella species against V. cholerae’s T6SS attacks. (a) 
Deletion of the capsule biosynthesis gene wza eliminates capsule formation in well-studied 
Klebsiella strains with different K serotypes. Group I capsules were scored by uronic acid 
quantification in the CPS+ (wza-positive) and CPS- (wza-negative) bacteria. The table 
indicates the K antigen prediction by the Kaptive program. (§), low confidence prediction. (b) 
CPS+ and CPS- strains (Δwza) were imaged after India ink staining. Representative images 
are shown. Scale bar, 5µm. (c) Non-encapsulated strains are susceptible to V. cholerae’s T6SS 
assaults. The CPS+ and their polysaccharide export impaired CPS- Klebsiella strains were 
tested for survival against T6SS+ (WT; plain bars) or T6SS- (ΔvipA; stripped bars) V. 
cholerae, as indicated on the Y-axis. (d) V. cholerae is not killed by Klebsiella strains. T6SS+ 
(WT; plain bars) or T6SS- (ΔvipA; stripped bars) V. cholerae were tested for survival against 
CPS+ and their polysaccharide export impaired CPS- Klebsiella strains as indicated on the X-
axis.  Panels a, c and d: Values are derived from three independent experiments and the bars 
represent the mean (± SD, as defined by the error bars). Significant differences were 
determined using a two-sided Student’s t-test corrected for multiple comparisons. Only 
significant differences within each Klebsiella strain group (as shown below the X-axis) are 
indicated. *, p < 0.05; **, p < 0.01; ***, p < 0.001. dl, detection limit, as indicated by the 
dashed line. Source data underlying all panels are provided in the Source Data file.  
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Fig. S8. Deletion of wza in the capsular biosynthesis gene cluster blocks capsule 
production in commensal Klebsiella strains. (a) The production of group I capsules by the 
Klebsiella gut commensal isolates was assessed by quantification of the strains’ uronic acid 
content. The color code as well as the X-axis labels are as in Fig. 1. (b) Predicted K antigens of 
commensal Klebsiella isolates. The table indicates the in silico predicted K antigen (-, 
unpredictable) and which wza gene is located in the capsular operon. (c) Capsule visualization 
of Klebsiella WT (CPS+) and wza-minus strains after India Ink staining. Representative images 
are shown. Scale bar, 5µm.  For panel a, values are derived from three independent experiments 
and the bars represent the mean (± SD, as defined by the error bars). #, at least one sample was 
below the detection limit. Significant differences were determined using a two-sided Student’s 
t-test corrected for multiple comparisons. Only significant differences compared to the 
corresponding WT strain are indicated. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Source data 
underlying all panels are provided in the Source Data file.  
 
  



Supplementary Figure S9 
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Fig. S9. Group I capsule protects against T6SS attacks from V. cholerae. (a) Extended set 
of representative WT and polysaccharide export protein-negative mutants (Δwza1 and/or 
Δwza2) of Klebsiella commensal strains (#14, #18, #20, #21) showing their survival after 
coincubation with T6SS+ (plain bars) or T6SS- (ΔvipA; stripped bars) V. cholerae (as for #16 
and #19 in Fig. 4c). (b and c) Complementation of capsule-deficient mutant strains. The 
capsule-deficient mutants of the commensal Klebsiella strains #14, #16, #19 were 
complemented with their respective wza1 gene copy on a plasmid in trans (pwza1). The 
complemented strains as well as the vector controls of the WT and mutant strains (containing 
the empty plasmid [p]) were tested for their survival in the presence of T6SS+ (WT; plain bars) 
or T6SS- (ΔvipA; stripped bars) V. cholerae (panel b) or imaged after Indian Ink staining to 
check their capsulation status (panel c). Scale bar, 5µm. dl, detection limit, as indicated by the 
dashed line. Panels a-b: Values are derived from three independent experiments and the bars 
represent the mean (± SD, as defined by the error bars). Significant differences were 
determined using a two-sided Student’s t-test corrected for multiple comparisons. Only 
significant differences are indicated. ***, p < 0.001. Source data underlying all panels are 
provided in the Source Data file.  
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Fig. S10. Group I capsule protects Klebsiella species against T6SS attacks from 
pathogenic bacteria.  
Additional examples of commensal Klebsiella WT (K. michiganensis #14 and K. variicola 
#21) and wza-negative mutants (a) or the well-studied CPS-positive (CPS+) K. pneumoniae 
strains NTUH-K2044 and BJ1-GA and their CPS-negative (CPS-) mutants (b) were tested for 
their survival in the presence of diverse T6SS+ (WT; plain bars) or T6SS- (stripped bars) 
pathogenic bacteria (V. cholerae [V.c.], E. cloacae [E.cl.; commensal #10], or A. baumannii 
[A.b.; strain A118]). Values are derived from three independent experiments and the bars 
represent the mean (± SD, as defined by the error bars). dl, detection limit, as indicated by the 
dashed line. Only significant differences are indicated. Significance was determined using a 
Student’s t-test corrected for multiple comparisons. ***, p < 0.001. Source data underlying all 
panels are provided in the Source Data file.  
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