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Supplementary Information for Redding et al. – Geographical drivers 

and climate-linked dynamics of Lassa fever in Nigeria 
 

 

Supplementary Figure 1: Lassa fever case time series from Nigeria Centre for Disease 

Control reporting regimes. Graphs summarise weekly surveillance data aggregated across 

all local government authorities (LGAs), from January 2012 to December 2019, and show the 

differences between two surveillance regimes. Bar plots show monthly total cases from the 

long-term Weekly Epidemiological Reports (W.E.R., top) and more recent Situation Reports 

(SitRep, bottom) regime, with bar heights representing the total LF cases from all 

epidemiological weeks starting during a given month, split into suspected (grey) and 

confirmed (black) cases. Weekly case accumulation curves per-surveillance regime, per-year 

show total reported cases (including both suspected and confirmed; top graphs) and 

confirmed only (bottom graphs). LF trends during the overlap period between the two 

regimes are similar (January 2017 to March 2018) but the SitRep data (based on the most 

current reporting regime and including post-hoc follow-ups to ensure accurate counts) more 

clearly show the very large increase in both suspected and confirmed case reports in 2018. 

The full time series used in analyses (Figure 1) includes W.E.R. data from 2012 to 2016, and 

SitRep data from 2017 to 2019.  
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Supplementary Figure 2: Annual spatiotemporal random effects from models of Lassa 

fever occurrence and incidence across Nigeria. Models of LF occurrence and incidence 

(2016-2019) included year-specific, spatially-structured (conditional autoregressive; u) and 

unstructured (v) random effects at LGA level (jointly specified as a Besag-York-Mollie 

model). These account for both spatial autocorrelation in environmental and reporting 

processes, and ongoing expansion of surveillance throughout the reporting period. Dark blue 

maps show the annual fitted LGA-level random effect (i.e. u + v; see Methods) for the full 

models with socio-environmental covariates, for occurrence (A; colour denotes log odds of 

occurrence) and incidence (B; colour denotes log incidence). Diverging colour maps show 

the difference in the fitted spatio-temporal effect between baseline (random effects only) and 

full models (with covariates), for occurrence (B) and incidence (D). More negative values 

(brown) indicate areas where including socio-environmental covariates has provided 

additional explanatory power (i.e. where random effects have reduced towards zero), and vice 

versa. 
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Supplementary Figure 3: Geographical cross-validation for spatial models of Lassa 

fever occurrence and incidence. The direction and magnitude of linear fixed effects and 

nonlinear climate effects in both occurrence (A-B) and incidence models (C-D) were robust 

to geographically-structured cross-validation (n=3096; i.e. 774 LGAs over 4 years). This 

involved in turn excluding all LGAs from each of 12 Lassa-endemic and non-endemic states, 

with point or line colour denoting the state that was excluded in each model iteration. Points 

and error bars show linear fixed effects (mean and 95% credible interval), and lines show 

fitted nonlinear effects of mean annual precipitation on either occurrence risk (odds ratio) or 

incidence (relative risk) (lines show posterior mean and transparent grey shading denotes 

95% credible interval for each submodel). These results indicate that the findings were not 

overly influenced by data from any one locality. 
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Supplementary Figure 4: Fitted spatial models of Lassa fever occurrence and incidence 

for spatially-aggregated districts. To examine the effects of scale on inferences, we 

repeated all spatial modelling after aggregating LGAs into 130 composite districts, subject to 

the constraints of state boundaries, producing a more even area distribution (median 

6826km2, mean 6998km2, range 1641 – 14677km2) (n=520, i.e. 130 districts over 4 years). 

The figure shows the same results as for Figure 3 (main text) at lower spatial resolution: 

geographical patterns of fitted occurrence (A) and incidence (B), linear fixed effects 

estimates (C; log odds scale for occurrence, and log scale for incidence; points and error bars 

denote posterior mean and 95% credible interval) and nonlinear fitted functions of total 

annual precipitation on occurrence (D) and incidence (E) (lines and shading denote posterior 

mean and 95% credible interval). All linear covariates were centred and scaled prior to model 

fitting, so fixed effects are comparable between covariates (i.e. each measure the effect of an 

increase of 1 standard deviation of the covariate on the response). Parameter estimates are 

provided in Supp. Table 2. 
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Supplementary Figure 5: Spatial projection of environmental suitability for Lassa fever 

occurrence and incidence across Nigeria. Maps show the contributions of climatic and 

socio-ecological fixed effects to the linear predictor for LF occurrence (top row; log odds 

scale) and incidence (bottom row; log scale). Projecting combined socioeconomic and 

environmental effects (left column) or environmental effects alone (climate and agriculture; 

right column) shows that the broad envelope of LF suitability covers much of Nigeria. 

However, the heterogeneous observed distribution and high-incidence hotspots in south 

Nigeria (Edo and Ondo states) are mainly explained by random effects (Supplementary 

Information Figures 2a and 2c). 
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Supplementary Figure 6: Seasonal and interannual climate and vegetation dynamics in 

Lassa-endemic regions of south and north Nigeria. Graphs show, for south (left column) 

and north (right column) Lassa-endemic areas, state-level weekly mean environmental 

(temperature, precipitation) and vegetation values across a 60-day window prior to reporting 

week (i.e. at time of transmission occurring). Separate lines show trends for separate states: 

Bauchi, Plateau and Taraba (north) and Edo, Ondo and Ebonyi (south). Temperature 

estimates are daily mean (Tmean; blue), minimum (Tmin) and maximum (Tmax), derived 

from Climate Prediction Centre interpolated air temperature layers from NOAA. Vegetation 

estimates are daily mean Enhanced Vegetation Index (EVI), derived from 16-day interval 

EVI rasters from NASA. EVI values below a ~0.2 threshold (dotted line) indicate a lack of 

dense green vegetation. Precipitation estimates are daily mean rainfall, derived from daily 

rainfall layers from CHIRPS Africa. SPI3 shows Standardised Precipitation Index: values 

below 0 (dotted line) reflect drought conditions, and values above 0 reflect wetter conditions, 

relative to historical observed trends (1981-2020) for the same period of the year. 
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Supplementary Figure 7: Marginal effects of environment, seasonality and year on 

temporal Lassa fever incidence. Figures show the relative risk associated with climate and 

seasonality (A) and reporting and random effects (B) in south and northern states 

(represented in models by region-specific effects of year and season). Separate lines are 

exponentiated linear combinations of climate and random effects for each state, and reflect 

relative LF risk associated with these model components. The left column shows the 

combination of climatic covariates and seasonal effect (random walk of epidemiological 

week; see Methods), showing the expected interannual differences in LF risk associated with 

climate (A). The right column shows the combined effect of state-level, year and travel time 

to laboratory effects (i.e. random and observation-based) on relative risk, showing the rapid 

increase in surveillance effort associated with the 2017-19 period. 
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Supplementary Figure 8: Retrospective out-of-sample predictions for temporal models 

of Lassa fever incidence. Trend graphs show, for each state, the weekly observed confirmed 

LF cases (grey bars), and out-of-sample (OOS) predictions from the final climate-driven 

model. Red line shows the posterior median and shaded areas show the OOS 95% simulated 

posterior predictive interval (see Methods), calculated using 2500 samples drawn from the 

joint posterior. Across the entire surveillance period, the climate-driven model reduced 

predictive error relative to a baseline model (Table 1). Calibration was good overall although 

predictions were generally slightly overdispersed relative to observed cases, for both southern 

(90% of observations falling within 95% predictive interval; 79% falling within the 67% 

predictive interval) and northern states (97% of observations within 95% interval; 91% within 

67% interval).  
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Supplementary Figure 9: Prospective predictions of Lassa fever case incidence for 2020. 

Graphs show, for each state, the comparison of observed weekly case counts in 2020 (grey 

bars) and predicted cases from baseline and climate-driven models. Lines show the posterior 

median predicted value for baseline (pink) and climate-driven (blue) models, and shaded area 

shows the 95% posterior predictive interval from the climate-driven model, both calculated 

using 2500 samples drawn from the joint posterior. Predictions hold all random effects at 

2019 levels (i.e. assume the same effect of year). Both models substantially underpredict total 

cases observed (see Results), potentially because neither captures ongoing improvements in 

surveillance sensitivity.  
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Supplementary Table 1: Clinical definitions used for diagnosis of suspected and 

confirmed Lassa fever cases. Clinical definitions and criteria are listed in weekly Nigeria 

Centre for Disease Control Lassa fever Situation Reports1. 

 
Term Primary Criterion Secondary Criterion 

Alert case Any person who has an unexplained 

fever (i.e. Malaria and other likely 

causes of fever have been ruled out), 

with or without bleeding 

OR  

Any person who died after an 

unexplained severe illness with fever 

and bleeding  

 

Suspected case An illness of gradual onset with one or 

more of the following: malaise, fever, 

headache, sore throat, cough, nausea, 

vomiting, diarrhoea, myalgia (muscle 

pain), central chest pain or retrosternal 

pain, hearing loss and either: 

a. History of contact with excreta or urine 

of rodents  

OR  

b. History of contact with a probable or 

confirmed Lassa fever case within a 

period of 21 days of onset of symptoms  

OR  

Any person with inexplicable bleeding/ 

haemorrhaging 

Confirmed case Any suspected case with laboratory 

confirmation (PCR is the key diagnostic 

tool used here).  

 

 

Deaths  

 

Cases that die either as suspected or 

confirmed cases. 

 

Alert threshold  A single suspected case of Lassa fever.  

Outbreak threshold A single confirmed case of Lassa fever. 

Clinicians should have a high index of 

suspicion when managing febrile 

illnesses; especially cases with: 

a. A history of non-response to 

antimalarials or antibiotics.  

b. A compatible history of travel to an 

endemic area or an area with an ongoing 

outbreak, contact with a confirmed case 

of Lassa fever, negative thick blood film 

for malaria parasite are suggestive.  

c. Signs of haemorrhage and shock which 

is strongly suggestive, but these signs 

often appear late in the illness. 
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Supplementary Table 2: Metrics of model fit for spatial Lassa fever occurrence and 

incidence models. Tables show the comparison of model information criteria (Deviance 

Information Criterion DIC and Watanabe-Akaike Information Criterion WAIC) between 

baseline random-effects only models, and models with socio-ecological and climate 

covariates (model results shown in Figure 3). Occurrence models were specified with a 

binomial likelihood (modelling annual presence-absence of Lassa fever) and incidence 

models were specified with a zero-inflated Poisson likelihood and an offset for log population 

(modelling annual incidence of Lassa fever). 

 
Response Model DIC WAIC Socio-ecological 

covariates 

Occurrence Baseline 1708.51 1591.49 None 

Occurrence Socio-

ecological 

1547.46 1463.67 Total annual precipitation 

(nonlinear), Mean annual 

temperature, Urban cover, 

Agriculture cover, 

Proportion of the 

population in poverty 

Incidence Baseline 3107.36 3311.04 None 

Incidence Socio-

ecological 

2912.20 3062.76 Total annual precipitation 

(nonlinear), Urban cover, 

Agriculture cover, 

Proportion of the 

population in poverty, 

Travel time to Lassa 

diagnostic lab 
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Supplementary Table 3: Parameter estimates from the spatial models of Lassa fever 

occurrence and incidence. Tables show posterior marginal fixed effects parameter and 

hyperparameter estimates (median and 95% credible interval) from models of annual Lassa 

fever occurrence and incidence at LGA-level (occurrence n=774 LGAs over 4 years) and at 

aggregated district level (n=130 districts over 4 years). Occurrence was modelled using a 

binomial error distribution so estimates are on the log-odds scale, and incidence with zero-

inflated Poisson (log link) so estimates are on the natural logarithmic scale. All fixed effect 

covariates were scaled (mean 0, sd 1) prior to model fitting so parameter estimates reflect the 

effect of a change in 1 scaled unit (standard deviation) of the covariate on the response 

variable (Methods). 

 

Model Response Type Name Median CI_0.025 CI_0.975 

LGA Occurrence fixed effect Intercept -4.093 -4.684 -3.588 

LGA Occurrence fixed effect Temperature (mean annual) -0.322 -0.530 -0.113 

LGA Occurrence fixed effect Built up land proportion 0.910 0.646 1.190 

LGA Occurrence fixed effect Agricultural land proportion 0.461 0.212 0.724 

LGA Occurrence fixed effect Poverty prevalence 0.481 0.089 0.888 

LGA Occurrence hyperparam Precision for LGA (bym2) 0.365 0.250 0.539 

LGA Occurrence hyperparam Phi for LGA (bym2) 0.987 0.933 0.999 

LGA Occurrence hyperparam 

Precision for mean annual precipitation 

(random walk) 5.411 2.090 14.532 

LGA Incidence fixed effect Intercept -16.177 -16.679 -15.721 

LGA Incidence fixed effect Built up land proportion 0.807 0.533 1.085 

LGA Incidence fixed effect Agricultural land proportion 0.381 0.120 0.649 

LGA Incidence fixed effect Poverty prevalence 0.971 0.523 1.431 

LGA Incidence fixed effect Distance from Lassa lab -1.201 -1.710 -0.721 

LGA Incidence hyperparam 

Zero probability parameter z (zero-inflated 

Poisson) 0.012 0.001 0.067 

LGA Incidence hyperparam Precision for LGA (bym2) 0.179 0.144 0.212 

LGA Incidence hyperparam Phi for LGA (bym2) 0.968 0.894 0.995 

LGA Incidence hyperparam 

Precision for mean annual precipitation 

(random walk) 21.303 3.704 306.753 

District Occurrence fixed effect Intercept -1.303 -1.794 -0.953 

District Occurrence fixed effect Temperature (mean annual) -0.595 -0.926 -0.292 

District Occurrence fixed effect Built up land proportion 0.554 0.266 0.887 

District Occurrence fixed effect Agricultural land proportion 0.441 0.130 0.769 

District Occurrence fixed effect Poverty prevalence -0.289 -0.715 0.122 

District Occurrence hyperparam Precision for District (bym2) 1.645 0.480 7.730 

District Occurrence hyperparam Phi for District (bym2) 0.795 0.184 0.986 

District Occurrence hyperparam 

Precision for mean annual precipitation 

(random walk) 18.235 4.534 96.849 

District Incidence fixed effect Intercept -16.033 -16.517 -15.615 

District Incidence fixed effect Built up land proportion 0.204 -0.141 0.564 

District Incidence fixed effect Agricultural land proportion 0.120 -0.263 0.508 

District Incidence fixed effect Poverty prevalence 0.389 -0.191 0.993 

District Incidence fixed effect Distance from Lassa lab -1.454 -2.065 -0.863 

District Incidence hyperparam 

Zero probability parameter z (zero-inflated 

Poisson) 0.010 0.001 0.068 

District Incidence hyperparam Precision for District (bym2) 0.172 0.126 0.221 

District Incidence hyperparam Phi for District (bym2) 0.906 0.711 0.986 

District Incidence hyperparam 

Precision for mean annual precipitation 

(random walk) 217.339 5.043 58924.366 
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Supplementary Table 4: Lassa-fever endemic states included in the temporal models. 

The table shows the name and state of each spatially aggregated district included in temporal 

incidence models, the local government authorities (LGAs) within each district and the total 

number of confirmed cases detected across all years of surveillance. Cases from 2012-2016 

are from the Weekly Epidemiological Reports regime, and from 2017-2019 are from the 

NCDC Situation Reports surveillance regime. 

 
State Region Cases total 

(2012-2019) 

Cases 2017-

2019 

Edo South 1333 883 

Ondo South 723 601 

Ebonyi South 244 203 

Plateau North 114 71 

Taraba North 144 84 

Bauchi North 143 93 
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Supplementary Table 5: Data sources for all covariates included in analyses. The table 

includes the sources and rationale (hypothesis) for inclusion of covariates in spatial and 

spatiotemporal models of Lassa fever incidence across Nigeria. Modelling is described in full 

in Methods. 

 
Covariate Type Units Time 

period 

Model Rationale Data source, methods Potential sources of 

error/misspecification 

Mean travel 

time from 

laboratory 

with LF 

diagnostic 

capacity  

Con Km Annual Spat., 

Temp. 

Lassa fever detections 

were historically 

geographically biased 

towards areas near to 

diagnostic laboratories 

(e.g. ISTH; Gibb et al 

2017) 

Derived from diagnostic 

laboratory locations (via 

NCDC) and travel time 

estimated using friction 

surface 

(https://malariaatlas.org/

research-

project/accessibility-to-

cities/). 

Distance does not 

necessarily equate to 

access and there are 

different capacities for 

each laboratory. Health-

seeking behaviour will 

drive small-scale 

patterns. 

Mean travel 

time to 

nearest 

hospital  

Con Km 2015 Spat. Proxy for public access to 

larger/regional healthcare 

facilities with links to 

state-level surveillance 

infrastructure 

Estimated as distances 

from geolocated 

hospitals in Maina et 

al., 201947 and travel 

time estimated using 

friction surface 

(https://malariaatlas.org/

research-

project/accessibility-to-

cities/). 

Distance does not 

necessarily linearly 

equate to access. 

Health-seeking 

behaviour will drive 

small-scale patterns. 

State ID Cat n/a n/a Spat. State-level differences in 

LF surveillance and 

awareness may influence 

sensitivity of reporting 

n/a Surveillance and 

awareness will likely 

not conform to exact 

boundaries and spatial 

scale may be 

moderately mismatched 

Air 

temperature 

(annual mean 

and 

seasonality) 

Con oC 2011-

19,  

annual 

Spat. Temperature may affect 

the environmental 

suitability for M. 

natalensis and/or viral 

transmission (e.g. through 

affecting persistence in 

the environment). 

Derived from daily 

temperature averages 

from NOAA CPC 

(https://www.esrl.noaa.

gov/psd/data/gridded/da

ta.cpc.globaltemp.html) 

Interpolated estimates 

across state and time 

will differ slightly from 

exact values. It is a 

broad proxy, as food 

growth, env. stress and 

viral persistence will all 

vary with microclimate 

and host behavioural 

variation 

Precipitation 

(mean wettest 

month, mean 

driest month) 

Con mm 2011-

19,  

annual 

Spat. Evidence of links between 

M. natalensis population 

ecology and rainfall 

seasonality, and past 

evidence that human LF is 

linked to areas of high 

rainfall4 

Derived from daily 

Africa precipitation 

rasters from CHIRPS 

(Climate Hazards 

Infrared Precipitation 

with Stations)42 

(https://www.chc.ucsb.e

du/data/chirps) 

Interpolated estimates 

across state and time 

will differ slightly from 

exact values. It is a 

broad proxy, as food 

growth, env. stress and 

viral persistence will all 

vary with microclimate 

and host behavioural 

variation 

Precipitation 

annual 

seasonality 

(coefficient of 

variation) 

Con mm 2011-

19, 

monthly 

Spat. Evidence of links between 

M. natalensis population 

ecology and rainfall 

seasonality, and past 

evidence that human LF is 

linked to areas of high 

rainfall4 

Derived from daily 

Africa precipitation 

rasters from CHIRPS 

(Climate Hazards 

Infrared Precipitation 

with Stations)42 

(https://www.chc.ucsb.e

du/data/chirps) 

Interpolated estimates 

across state and time 

will differ slightly from 

exact values. It is a 

broad proxy, as food 

growth, env. stress and 

viral persistence will all 

vary with microclimate 
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and host behavioural 

variation 

Mean 

precipitation 

in 60-day 

window 

(starting 0, 

30, 60, 90, 

120 day lag 

prior to 

reporting 

week) 

Con mm 2011-

20,  

weekly 

Temp. Evidence that M. 

natalensis population 

densities and patterns of 

human exposure may be 

linked to rainfall patterns4 

Derived from daily 

Africa precipitation 

rasters from CHIRPS42 

(https://www.chc.ucsb.e

du/data/chirps) 

Interpolated estimates 

across state and time 

will differ slightly from 

exact values. It is a 

broad proxy, as food 

growth, env. stress and 

viral persistence will all 

vary with microclimate 

and host behavioural 

variation 

Standardised 

Precipitation 

Index in 60-

day window 

(starting 0, 

30, 60, 90, 

120 day lag 

prior to 

reporting 

week) 

Con Scaled

units 

2011-

20, 

weekly 

Temp. Evidence that M. 

natalensis population 

densities and patterns of 

human exposure may be 

linked to rainfall 

patterns4. SPEI is a 

measure of drought or 

wetness relative to the 

historical trends for the 

same month of the year. 

Calculated from long-

term Africa 

precipitation time-series 

(1981-2020) from 

CHIRPS42 using R 

package ‘spei’ 

(https://www.chc.ucsb.e

du/data/chirps) 

Interpolated estimates 

across state and time 

will differ slightly from 

exact values. It is a 

broad proxy, as food 

growth, env. stress and 

viral persistence will all 

vary with microclimate 

and host behavioural 

variation 

Mean, min 

and max air 

temperature 

in 60-day 

window 

(starting 0, 

30, 60, 90, 

120 day lag 

prior to 

reporting 

week) 

Con oC  2011-

20,  

weekly 

Temp. M. natalensis population 

densities, viral persistence 

and patterns of human 

exposure may be linked to 

climatic patterns4 

Derived from daily 

Tmin and Tmax 

temperature layers from 

NOAA CPC 

(https://www.esrl.noaa.

gov/psd/data/gridded/da

ta.cpc.globaltemp.html) 

Interpolated estimates 

across state and time 

will differ slightly from 

exact values. It is a 

broad proxy, as food 

growth, env. stress and 

viral persistence will all 

vary with microclimate 

and host behavioural 

variation 

Mean EVI in 

60-day 

window 

(starting 0, 

30, 60, 90, 

120 day lag 

prior to 

reporting 

week) 

Con EVI 2011-

20,  

weekly 

Temp. Evidence that M. 

natalensis population 

densities and patterns of 

human exposure may be 

linked to climatically-

driven vegetation 

dynamics (i.e. due to 

seasonal resource 

availability)4 

Derived from processed 

16-day EVI MOD13A2 

layers from NASA 

(https://lpdaac.usgs.gov/

products/mod13a2v006) 

Interpolated estimates 

across state and time 

will differ slightly from 

exact values. It is a 

broad proxy, as food 

growth, env. stress and 

viral persistence will all 

vary with microclimate 

and host behavioural 

variation 

Urban land 

cover 

Con Prop. 

area 

2015 Spat. May impact both M. 

natalensis densities 

(which are often lower in 

highly urbanised 

environments) and human 

access to healthcare 

facilities (i.e. detection 

probability)  

 

ESA-CCI Land Cover 

2015 300m raster (data 

for a single year as 

relatively low change in 

proportion cover during 

surveillance period) 

(https://www.esa-

landcover-cci.org)  

Gross land cover 

categorisation will not 

fully capture the high 

variation and difference 

between difference 

habitat types. The 

quality of the habitats, 

their fragmentation and 

the geographical 

differences in such 

habitats will also likely 

be important. 
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Agricultural 

land cover 

Con Prop. 

area 

2015 Spat. M. natalensis densities 

often observed to be 

highest in agricultural 

settings9,30 and cropping 

and crop preparation 

practices are a 

hypothesised driver of 

human-rodent contact4 

ESA-CCI Land Cover 

2015 (data for a single 

year as relatively low 

change in proportion 

cover during 

surveillance period) 

(https://www.esa-

landcover-cci.org/) 

Gross land cover 

categorisation will not 

fully capture the high 

variation and difference 

between difference 

habitat types. The 

quality of the habitats, 

their fragmentation and 

the geographical 

differences in such 

habitats will also likely 

be important. 

Total human 

population 

(log 

transformed) 

Con No.  

people 

2012-

20,  

annual 

Spat., 

Temp. 

Controlling for effects of 

increased human 

population on potential 

for LASV exposure. 

WorldPop 

(https://www.worldpop.

org/geodata/summary?i

d=1437) 

Does not account for 

exact proportion of 

people that at-risk and 

how this varies over 

space and time. More 

accurate might be 

density of agricultural 

workers for instance. 

Proportion of 

LGA 

population 

living in 

poverty 

(<$1.25 per 

day) 

Con Prop. 

area 

2010 Spat. Evidence that human 

LASV exposure may 

often be linked to ability 

to store food in rodent-

proof containers and 

ability to rodent-proof 

housing10,54 

WorldPop 

(https://www.worldpop.

org/geodata/summary?i

d=1267) 

Poverty is a broad 

proxy for ability for 

people to prevent or 

react to disease risk. 

Differences e.g. in 

awareness, personal 

choice and beliefs, and 

personal circumstances 

will influence actions. 

Proportion of 

population in 

locales with 

improved 

housing 

Con Prop. 

area 

2015 Spat. Evidence that human 

LASV exposure may be 

linked to ability to rodent-

proof housing54 

Derived from Malaria 

Atlas Project modelled 

data on prevalence of 

improved housing45 

(5km2 resolution) and 

human population 

layers (WorldPop) 

This index intends to 

capture the ability of 

rodents to exploit food 

in houses but the actual 

design and use of house 

will have strong impact 

on how many host 

individuals are able to 

invade. 

 

 

 

 

 


