#### SUPPLEMENTARY INFORMATION

#### **Materials and Methods**

#### **Plasmid construction**

Prime editing system plasmid was purchased from Addgene (Addgene, #132775). pegRNA plasmid was constructed according to the methods described in our previous study<sup>1</sup>. To construct pU6-Csy4RS-gRNA plasmids, the plasmid backbone was amplified from pGL3-U6-sgRNA-EGFP (Addgene, #107721) using Phanta® Max Super Fidelity DNA Polymerase (Vazyme) (Supplementary information, Table S1). The backbone amplicon was then cut by BsaI-HFv2 (NEB) for overhangs. Spacer oligos (the top strand oligo includes 5' ACCG and 3' GTTTC overhangs, while the bottom strand oligo comprises a 5' CTCTGAAAC overhang) were synthesized. pegRNA 3' extension, Csy4 recognition site, and the spacer of nick-sgRNA were synthesized on an oligo (the top strand oligo included 5' GTGC overhang while the bottom strand oligo included 5' AAAC overhang), sgRNA scaffold oligos (featuring compatible overhangs) were synthesized (Supplementary information, Tables S1–S4). The sequence of Csy4 was synthesized by GENEWIZ and cloned to the prime editor using ClonExpress II One Step Cloning Kit (Vazyme, C112-01).

### Cell culture, transfection, and harvest

HEK293T, HeLa, and Neuro-2a (N2a) cells were cultured in Dulbecco's Modified Eagle Medium (Gibco) supplemented with 10% fetal bovine serum (FBS) (v/v) (Gemini) and incubated at 37 °C with 5% CO<sub>2</sub>. For plasmid transfection, cells were seeded on poly-D-lysine-coated 24-well plates and transfected at approximately 70% confluence using EZ Trans (Shanghai Life iLab Biotech Co., Ltd), according to the manufacturer's protocols. A total of 900 ng prime editor, 300 ng pegRNA, and 100 ng corresponding nick sgRNA were transfected into cells per well. 72 h after transfection, GFP+ cells were collected from Fluorescence Activating Cell Sorter (FACS).

#### Genomic DNA extraction and genotyping

The genomic DNA of GFP+ cells was extracted using QuickExtract<sup>™</sup> DNA Extraction Solution (Lucigen) according to manufacturer's protocols. The isolated DNA was PCR-amplified with Phanta® Max Super-Fidelity DNA Polymerase (Vazyme). Primers used are listed in Supplementary information, Table S5.

### **T7EN1 cleavage assay**

Target region was PCR-amplified with Phanta® Max Super-Fidelity DNA Polymerase (Vazyme) from the genomic DNA of GFP+ cells. T7EN1 cleavage assay was performed according to the previous study<sup>2</sup>.

### **Targeted deep-sequencing**

Target sites were amplified with Phanta Max Super-Fidelity DNA Polymerase (Vazyme) and subjected to high-throughput sequencing with the Illumina Hiseq X Ten platform. To evaluate the prime editing efficiency, Fastq-multx (V1.3.1) was employed for spliting reads from pool-sequencing, BWA<sup>3</sup> (V0.7.17) and Samtools<sup>4</sup> (V1.7) were employed to map the paired-end reads, and the CRIPResso2 (V2.0.43)<sup>5</sup> was used to analyze the amplicons. Five prime editing info parameters were provided for CRIPResso2 which included pegRNA\_spacer\_seq, pegRNA\_extension\_seq, pegRNA\_scaffold\_seq, nicking\_guide\_seq and ref\_seq, and the other parameters required were set default. The reads only harboring correct edit were counted to evaluate the editing efficiency, and the reads harboring any undesired insertion or deletion were counted to evaluate the indel frequency.

## **Off-target analysis**

Potential off-target sites were predicted in the human genome (GRCh38/hg38) with Cas-OFFinder<sup>6</sup> (<u>http://www.rgenome.net/cas-offinder)</u>; The region around the off-target sites were amplified with Phanta Max Super-Fidelity DNA Polymerase (Vazyme), and subjected to high-throughput sequencing with the Illumina Hiseq X Ten platform. The amplicons were analyzed with CRIPResso2 (V2.0.43) and the off-target sites are listed in Supplementary information, Table S6. Primers used are listed in Supplementary information, Table S7.

### Data analysis

All data were calculated based on three independent experiments, and Student's *t*-test (two-tailed) was used to calculate the statistical difference. Data are presented as means $\pm$ SD.

### Data availability

Targeted amplicon sequencing data has been deposited in the NCBI under BioProject number PRJNA687397.

## References

Liu, Y. *et al.* Efficient generation of mouse models with the prime editing system. *Cell Discov* 6, 27 (2020).

- Shen, B. *et al.* Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. *Cell Res* 23, 720-723 (2013).
- Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.
  *Bioinformatics* 25, 1754-1760 (2009).
- 4 Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078-2079 (2009).
- Clement, K. *et al.* CRISPResso2 provides accurate and rapid genome editing sequence analysis.
  *Nat Biotechnol* 37, 224-226 (2019).
- Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. *Bioinformatics* 30, 1473-1475 (2014).
- Anzalone, A. V. *et al.* Search-and-replace genome editing without double-strand breaks or donor
  DNA. *Nature* 576, 149-157 (2019).



### Supplementary information, Fig. S1 Diagrams of PE3 system and pegRNAs.

- a. Principle of Prime Editor 3<sup>7</sup>. The first component of the system is pegRNA, which is the same as the conventional Cas9 gRNA except that it additionally carries a reverse transcriptase (RT) template and a primer binding site (PBS) at the 3' end. The pegRNA recruits the second component of the system, a fusion protein consisting of a Cas9 H840A nickase fused to a Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase (not shown). The nickase cleaves the top strand, enabling the sequence upstream of the nick to serve as primer (arrow) for reverse transcription of the RT template. The cDNA then is incorporated into the top strand, and the bottom strand is subsequently nicked to repair the mismatch, copying the edit into the bottom strand in the process.
- b. The PBS which is generally 10-16 nt at the 3' end of pegRNA is complementary to the spacer at its
  5' end. PBS can potentially bind and sequester the spacer, thus hampering editing.
- c. A potential strategy for countering PBS-spacer interaction. The extended pegRNA was generated by fusing a hairpin Csy4 recognition site to the 3' end of canonical pegRNA. Csy4 recognition site may prevent PBS from binding the spacer.



Supplementary information, Fig. S2 Potential circularization of pegRNA weakens the pegRNA activity.

- a. The schematic image of differently engineered pegRNAs used for examining DNA cleavage by Cas9 with pegRNA. Truncated pegRNA (without PBS nor RT, same as a typically sgRNA), canonical pegRNA, RaPBS pegRNA (original PBS was replaced by random PBS of same size) and extended pegRNA are shown. Spacer of pegRNA was highlighted in dark blue, scaffold in grey, RT in cyan, PBS in purple, replaced PBS in red, and extended sequence, harpin Csy4 recognition site in orange.
- **b.** Indels induced by different pegRNAs at 4 distinct sites in HEK293T cells. Indels was induced by Cas9 with different engineered pegRNA showed in (**a**) at *FBN1*, *ALDOB*, *SITE1* and *FTL* sites in

HEK293T cells. PCR amplicons from the target regions were analyzed by targeted deep sequencing. Mean values  $\pm$  SD, n=3 independent experiments (\*P < 0.05, \*\*P < 0.005, \*\*\*P < 0.0005).

c. T7EN1 cleavage assay were used to evaluate the targeted indels of *FBN1*, *ALDOB*, *SITE1* and *FTL*.

|       |                   | CCTAACTCTACTTTAGATTC···268bp···GCTTCCTGCTGCTGTTCTCTGGGTAAAGCC···90bp···CTTTCTAGATCAGAAGACAA | Ref               |
|-------|-------------------|---------------------------------------------------------------------------------------------|-------------------|
|       | Canonical pegRNA  | CCTAACTCTACTTTAGATTC···268bp···GCTTCCTGCTGCTGTTCTCTGGGTAAAGCC···90bp···CTTTCTAGATCAGAAGACAA | WT (14/15)        |
|       |                   | CCTAACTCTACTTTAGATTC···268bp···GCTTCCTGCTGCTGTTCCCTGGGTAAAGCC···90bp···CTTTCTAGATCAGAAGACAA | Transition (1/15) |
|       |                   |                                                                                             |                   |
| FDNT  |                   | CCTAACTCTACTTTAGATTC···268bp···GCTTCCTGCTGCTGTTCTCTGGGTAAAGCC···90bp···CTTTCTAGATCAGAAGACAA | Ref               |
|       |                   | CCTAACTCTACTTTAGATTC···268bp···GCTTCCTGCTGCTGTTCTCTGGGTAAAGCC···90bp···CTTTCTAGATCAGAAGACAA | WT (9/13)         |
|       | Extended pegRNA   | CCTAACTCTACTTTAGATTC···268bp···GCTTCCTGCTGCTGTTCTCTGGGTAAAGCC···90bp···CTTTCTAGATCAGAAGACAA | +1bp (1/13)       |
|       |                   | ССТААСТСТАСТТТАБАТТССТТТСТАБАТСАБААБАСАА                                                    | -388bp (1/13)     |
|       |                   | CCTAACTCTACTTTAGATTC···210bp···TCGAGGAGCTTTCTGGGTAAAGCC···90bp···CTTTCTAGATCAGAAGACAA       | -67+3bp (1/13)    |
|       |                   | CCTAACTCTACTTTAGATTC···268bp···GCTTCCTGCTGCTGTTCTGGGTAAAGCC···90bp···CTTTCTAGATCAGAAGACAA   | -2bp (1/13)       |
|       |                   |                                                                                             | Def               |
|       |                   | TCTACGTCTTAGCTTGCTCA97bpCATGGAGCATCCACCCTGTGCTGAGTGTATTGGAGGGAGAAAAATTAGAGAAAAG             | Ref               |
|       |                   |                                                                                             | VVI (3/13)        |
|       |                   |                                                                                             | -20p (1/13)       |
|       |                   |                                                                                             | -20bp (1/13)      |
|       |                   |                                                                                             | -210p (1/13)      |
|       | Canonical pegrina |                                                                                             | -40p (1/13)       |
|       |                   |                                                                                             | +10bp (2/13)      |
|       |                   |                                                                                             | +1000 (1/13)      |
|       |                   | TCTACGTCTTAGCTTGCTCA···97bp···CATGGAGCATCCACCCTGTGCTGAGTTATTGGAGGGAGAAGATTAGAGAAAG          | -1bp (1/13)       |
|       |                   | TCTACGTCTTAGCTTGCTCA···97bp···CATGGAGCATCCACCCTGTGTATTGGAGGGAGAGAAGATTAGAGAAAG              | -7bp (1/13)       |
| ALDOB |                   | TCTACGTCTTAGCTTGCTCA···97bp···CATGGAGCATCCACCCTGTGCTGAGTATTGGAGGGAGAGAAGATTAGAGAAAG         | -2bp (1/13)       |
|       |                   |                                                                                             |                   |
|       |                   | TCTACGTCTTAGCTTGCTCA···97bp···CATGGAGCATCCACCCTGTGCTGAGTGTATTGGAGGGAGAGAAGATTAGAGAAAG       | Ref               |
|       |                   | TCTACGTCTTAGCTTGCTCA···97bp···CATGGAGCATCCACCCTGTGCTGAGTGTATTGGAGGGAGAGAAGATTAGAGAAAG       | WT (1/10)         |
|       |                   | TCTACGTCTTAGCTTGCTCA···97bp···CATGGAGCATCCACCCTGTGCTGAGTGAGAGAAGATTAGAGAAAG                 | -10bp (1/10)      |
|       |                   | TCTACGTCTTAGCTTGCTCAG                                                                       | -126+1bp (1/10)   |
|       | Extended pegRNA   | TCTACGTCTTAGCTTGCTCA···9/bp···CATGGAGCATCCACCCTGTGCTGAGTGGAGGGAGAAAGTTAGAGAAAG              | -56p (1/10)       |
|       |                   | TCTACGTCTTACCTTGCTCA····9/bp···CATGGAGCATCCACCCTGTGCTGAGTGGAGAGAAGAATTAGAGAAAG              | -90p (2/10)       |
|       |                   |                                                                                             | - 14bp (1/10)     |
|       |                   |                                                                                             | -20p (1/10)       |
|       |                   |                                                                                             | -4bp (1/10)       |
|       |                   |                                                                                             |                   |
|       |                   |                                                                                             | - <i>i</i>        |
|       | Canonical pegRNA  |                                                                                             | Ref               |
|       |                   |                                                                                             | ••••(1777)        |
| SITE1 |                   | CTCCTCTCTCATATTTGTCTTCTAGGCTAACTGCCAGGCGGCCAAAGGACAGTATGTTCACACGGGTTCTTCTGGGGCTGCT          | Ref               |
|       |                   |                                                                                             | WT (8/13)         |
|       | Extended pegRNA   |                                                                                             | -3bp (1/13)       |
|       |                   | CTCCTCTCCTCATATTTGTCTTCTAGGCTAACTGCCAGGCGGCCCAAAGGACAGTATGTTCACACGGGTTCTTCTGGGGCTGCT        | +1bp (1/13)       |
|       |                   |                                                                                             | +1bp (1/13)       |
|       |                   |                                                                                             | -1bp (1/13)       |
|       |                   |                                                                                             |                   |
|       |                   |                                                                                             |                   |
|       | Canonical pegRNA  | CTTCCCGTAGGGCTTCTATTTCGACCGCGATGATGTGGCTCTGGAAGGCGTGAGCCACTTCTTCCGCGAATTGGCCGAGGA           | Ref               |
|       |                   |                                                                                             | WT (9/10)         |
| FTL   |                   |                                                                                             | + iop (1/10)      |
|       |                   | CTTCCCGTAGGGCTTCTATTTCGACCGCGATGATGTGGCTCTGGAAGGCGTGAGCCACTTCTTCCGCGAATTGGCCGAGGA           | Ref               |
|       | Extended pegRNA   | CTTCCCGTAGGGCTTCTATTTCGACCGCGATGATGTGGCTCTGGAAGGCGTGAGCCACTTCTTCCGCGAATTGGCCGAGGA           | WT (10/13)        |
|       |                   | CTTCCCGTAGGGCTTCTATTTCGACCGCGATGATGTGGCCTCTGGAAGGCGTGAGCCACTTCTTCCGCGAATTGGCCGAGGA          | +1bp (3/13)       |
|       |                   |                                                                                             |                   |

# Supplementary information, Fig. S3 T-A clones confirmed the discrepancy of indels induced by Cas9 with extended pegRNA and canonical pegRNA.

T-A clones were used to evaluate indels induced by Cas9 with canonical pegRNAs and extended pegRNAs at *FBN1*, *ALDOB*, *SITE1* and *FTL* sites. N/N indicates the number of colonies with indels out of the number of total samples.

|                    | FBN1_+2CtoA                | SITE1_+5GtoA                           |
|--------------------|----------------------------|----------------------------------------|
| Untreated          | GCTTCCTGCTGCTGTTCTCTGGGTAA |                                        |
| Canonical PE       | GCTTCCTGCTGCTGTTCTCTGGGTAA |                                        |
| Extended pegRNA PE |                            |                                        |
| Co-expressing PE   |                            |                                        |
| ePE                |                            |                                        |
|                    | RIT1_+4GtoA                | RNF2_+6GtoA                            |
| Untreated          |                            |                                        |
| Canonical PE       |                            | MAAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
| Extended pegRNA PE |                            |                                        |
| Co-expressing PE   |                            |                                        |
| ePE                |                            |                                        |
|                    | ALDOB_+2AtoC               | MSH2_+2GtoC                            |
| Untreated          | CCACCCTGTGCTGAGTGTATTGGAGG |                                        |
| Canonical PE       |                            |                                        |
| Extended pegRNA PE |                            |                                        |
| Co-expressing PE   |                            |                                        |
| ePE                |                            |                                        |

# Supplementary information, Fig. S4 Base transition and transversion induced by canonical PE, extended pegRNA PE, co-expressing PE and ePE in HEK293T cells.

Sanger sequencing chromatograms of the six sites in **Fig. 1c**. Asterisks indicate the desired editing. The PAM sequence and spacer sequence of pegRNA are underlined in red and black, respectively.



## Supplementary information, Fig. S5 RNA sequences of co-expressed pegRNA and nick-sgRNA.

Co-expressed extended pegRNA and nick-sgRNA. Red triangle indicates the cleave site of Csy4 nuclease. Csy4 nuclease cleaves and releases Csy4-processed pegRNA and nick-sgRNA.

## pCMV-Csy4-NMRT coding sequence

(Csy4 colored in red, T2A peptide colored in grey, NLS colored in green, linker colored in purple, Cas9 H840A colored in blue, RTase colored yellow)

ATGGACCACTACCTCGACATTCGCTTGCGACCGGACCCGGAATTTCCCCCCGGCGCAACTCATGAGCGTGCTCTTC GGCAAGCTCCACCAGGCCCTGGTGGCACAGGGCGGGGGACAGGATCGGCGTGAGCTTCCCCGACCTCGACGAA AGCCGCTCCCGGCTGGGCGAGCGCCTGCGCATTCATGCCTCGGCGGACGACCTTCGTGCCCTGCTCGCCCGGC CCTGGCTGGAAGGGTTGCGGGACCATCTGCAATTCGGAGAACCGGCAGTCGTGCCTCACCCCACACCGTACCGT CAGGTCAGTCGGGTTCAGGCGAAAAGCAATCCGGAACGCCTGCGGCGGCGGCTCATGCGCCGGCACGATCTGA GTGAGGAGGAGGCTCGGAAACGCATTCCCGATACGGTCGCGAGAGCCTTGGACCTGCCCTTCGTCACGCTACGC GATTCACCTGTTACGGGTTGAGCAAAGGAGGTTTCGTTCCCTGGTTCGAGGGCAGAGGAAGTCTGTTAACATGCG GTGACGTCGAGGAGAATCCTGGCCCACCAAAGAAGAAGCGGAAAGTCGACAAGAAGTACAGCATCGGCCTGGAC ATCGGCACCAACTCTGTGGGCCGGGCCGTGATCACCGACGAGGTGCCCAGCAAGAAATTCAAGGTGCC GGGCAACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCC GAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGA AGGATAAGAAGCACGAGCGGCACCCCATCTTCGGCAACATCGTGGACGAGGTGGCCTACCACGAGAAGTACCCC GGCCCACATGATCAAGTTCCGGGGCCACTTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGACGTGGACA AGCTGTTCATCCAGCTGGTGCAGACCTACAACCAGCTGTTCGAGGAAAACCCCATCAACGCCAGCGGCGTGGAC GCCAAGGCCATCCTGTCTGCCAGACTGAGCAAGAGCAGACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGCG AGAAGAAGAATGGCCTGTTCGGAAACCTGATTGCCCTGAGCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTC GACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACCTACGACGACCTGGACAACCTGCTGGCCC AGATCGGCGACCAGTACGCCGACCTGTTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATC CTGAGAGTGAACACCGAGATCACCAAGGCCCCCCTGAGCGCCTCTATGATCAAGAGATACGACGAGCACCACCA GGACCTGACCCTGCTGAAAGCTCTCGTGCGGCAGCAGCTGCCTGAGAAGTACAAAGAGATTTTCTTCGACCAGA CTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTGAAGCTGAACAGAGAGGACCTGCTGCGGAAGCAGCGGA CCTTCGACAACGGCAGCATCCCCCACCAGATCCACCTGGGAGAGCTGCACGCCATTCTGCGGCGGCAGGAAGAT TTTTACCCATTCCTGAAGGACAACCGGGAAAAGATCGAGAAGATCCTGACCTTCCGCATCCCCTACTACGTGGGC CCTCTGGCCAGGGGAAACAGCAGATTCGCCTGGATGACCAGAAAGAGCGAGGAAACCATCACCCCCTGGAACTT CGAGGAAGTGGTGGACAAGGGCGCTTCCGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGC CCAACGAGAAGGTGCTGCCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACGAGCTGACCAAAGTGA AATACGTGACCGAGGGAATGAGAAAGCCCGCCTTCCTGAGCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTG TTCAAGACCAACCGGAAAGTGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACTCC GTGGAAATCTCCGGCGTGGAAGATCGGTTCAACGCCTCCCTGGGCACATACCACGATCTGCTGAAAATTATCAAG GACAAGGACTTCCTGGACAATGAGGAAAACGAGGACATTCTGGAAGATATCGTGCTGACCCTGACACTGTTTGAG GACAGAGAGATGATCGAGGAACGGCTGAAAACCTATGCCCACCTGTTCGACGACAAAGTGATGAAGCAGCTGAA GCGGCGGAGATACACCGGCTGGGGCAGGCTGAGCCGGAAGCTGATCAACGGCATCCGGGACAAGCAGTCCGG CAAGACAATCCTGGATTTCCTGAAGTCCGACGGCTTCGCCAACAGAAACTTCATGCAGCTGATCCACGACGACAG CCTGACCTTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTGCACGAGCACATTGCCA ATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTGCAGACAGTGAAGGTGGTGGACGAGCTCGTGAAAGTG ATGGGCCGGCACAAGCCCGAGAACATCGTGATCGAAATGGCCAGAGAGAACCAGACCACCCAGAAGGGACAGAA GAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGGGCAGCCAGATCCTGAAAGAACACC CCGTGGAAAACACCCCAGCTGCAGAACGAGAAGCTGTACCTGTACTACCTGCAGAATGGGCGGGGATATGTACGTGG

ACCAGGAACTGGACATCAACCGGCTGTCCGACTACGATGTGGACGCTATCGTGCCTCAGAGCTTTCTGAAGGACG ACTCCATCGACAACAAGGTGCTGACCAGAAGCGACAAGAACCGGGGCAAGAGCGACAACGTGCCCTCCGAAGA GGTCGTGAAGAAGATGAAGAACTACTGGCGGCAGCTGCTGAACGCCAAGCTGATTACCCAGAGAAAGTTCGACA ATCTGACCAAGGCCGAGAGAGGCGGCCTGAGCGAACTGGATAAGGCCGGCTTCATCAAGAGACAGCTGGTGGAA ACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCCGGATGAACACTAAGTACGACGAGAATGACAA GCTGATCCGGGAAGTGAAAGTGATCACCCTGAAGTCCAAGCTGGTGTCCGATTTCCGGAAGGATTTCCAGTTTTA CAAAGTGCGCGAGATCAACAACTACCACCACGCCCACGACGCCTACCTGAACGCCGTCGTGGGAACCGCCCTGA TCAAAAAGTACCCTAAGCTGGAAAGCGAGTTCGTGTACGGCGACTACAAGGTGTACGACGTGCGGAAGATGATCG CCAAGAGCGAGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTCTACAGCAACATCATGAACTTTTTCAAGAC CGAGATTACCCTGGCCAACGGCGAGATCCGGAAGCGGCCTCTGATCGAGACAAACGGCGAAACCGGGGAGATC GTGTGGGATAAGGGCCGGGATTTTGCCACCGTGCGGAAAGTGCTGAGCATGCCCCAAGTGAATATCGTGAAAAAG ACCGAGGTGCAGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCCAAGAGGAACAGCGATAAGCTGATCGCCAG AAAGAAGGACTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGTGG CCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGGGATCACCATCATGGAAAGA AGCAGCTTCGAGAAGAATCCCATCGACTTTCTGGAAGCCAAGGGCTACAAAGAAGTGAAAAAGGACCTGATCATC AAGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACGGCCGGAAGAGAATGCTGGCCTCTGCCGGCGAACTGCA GGGCTCCCCCGAGGATAATGAGCAGAAACAGCTGTTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGA GCAGATCAGCGAGTTCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGACAAAGTGCTGTCCGCCTACAACAA GCACCGGGATAAGCCCATCAGAGAGCAGGCCGAGAATATCATCCACCTGTTTACCCTGACCAATCTGGGAGCCCC TGCCGCCTTCAAGTACTTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAGGTGCTGGACGCCA CCCTGATCCACCAGAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGGAGGTGACTCTGGA GGATCTAGCGGAGGATCCTCTGGCAGCGAGACACCAGGAACAAGCGAGTCAGCAACACCAGAGAGCAGTGGCG GCAGCAGCGGCGGCAGCAGCACCCTAAATATAGAAGATGAGTATCGGCTACATGAGACCTCAAAAGAGCCAGATG TTTCTCTAGGGTCCACATGGCTGTCTGATTTTCCTCAGGCCTGGGCGGAAACCGGGGGCATGGGACTGGCAGTT CGCCAAGCTCCTCTGATCATACCTCTGAAAGCAACCTCTACCCCGTGTCCATAAAACAATACCCCATGTCACAAG AAGCCAGACTGGGGATCAAGCCCCACATACAGAGACTGTTGGACCAGGGAATACTGGTACCCTGCCAGTCCCCC TGGAACACGCCCCTGCTACCCGTTAAGAAACCAGGGACTAATGATTATAGGCCTGTCCAGGATCTGAGAGAAGTC AACAAGCGGGTGGAAGACATCCACCCCACCGTGCCCAACCCTTACAACCTCTTGAGCGGGCTCCCACCGTCCCA CCAGTGGTACACTGTGCTTGATTTAAAGGATGCCTTTTTCTGCCTGAGACTCCACCCCACCAGTCAGCCTCTTC GCCTTTGAGTGGAGAGATCCAGAGATGGGAATCTCAGGACAATTGACCTGGACCAGACTCCCACAGGGTTTCAAA AACAGTCCCACCCTGTTTAATGAGGCACTGCACAGAGACCTAGCAGACTTCCGGATCCAGCACCCAGACTTGATC CTGCTACAGTACGTGGATGACTTACTGCTGGCCGCCACTTCTGAGCTAGACTGCCAACAAGGTACTCGGGCCCTG TTACAAACCCTAGGGAACCTCGGGTATCGGGCCTCGGCCAAGAAGCCCAAATTTGCCAGAAACAGGTCAAGTAT AGAAATGGCAGCCCCCTGTACCCTCTCACCAAACCGGGGACTCTGTTTAATTGGGGCCCAGACCAACAAAGGC CTATCAAGAAATCAAGCAAGCTCTTCTAACTGCCCCAGCCCTGGGGTTGCCAGATTTGACTAAGCCCTTTGAACTC TTTGTCGACGAGAAGCAGGGCTACGCCAAAGGTGTCCTAACGCAAAAACTGGGACCTTGGCGTCGGCCGGTGGC CTACCTGTCCAAAAAGCTAGACCCAGTAGCAGCTGGGTGGCCCCCTTGCCTACGGATGGTAGCAGCCATTGCCGT ACTGACAAAGGATGCAGGCAAGCTAACCATGGGACAGCCACTAGTCATTCTGGCCCCCCATGCAGTAGAGGCACT AGTCAAACAACCCCCCGACCGCTGGCTTTCCAACGCCCGGATGACTCACTATCAGGCCTTGCTTTTGGACACGGA CCGGGTCCAGTTCGGACCGGTGGTAGCCCTGAACCCGGCTACGCTGCCCACTGCCTGAGGAAGGGCTGCAA CACAACTGCCTTGATATCCTGGCCGAAGCCCACGGAACCCGACCCGACCTAACGGACCAGCCGCTCCCAGACGC CGACCACACCTGGTACACGGATGGAAGCAGTCTCTTACAAGAGGGACAGCGTAAGGCGGGGAGCTGCGGTGACCA CCGAGACCGAGGTAATCTGGGCTAAAGCCCTGCCAGCCGGGACATCCGCTCAGCGGGCTGAACTGATAGCACTC ACCCAGGCCCTAAAGATGGCAGAAGGTAAGAAGCTAAATGTTTATACTGATAGCCGTTATGCTTTTGCTACTGCCCA TATCCATGGAGAAATATACAGAAGGCGTGGGTGGCTCACATCAGAAGGCAAAGAGATCAAAAATAAAGACGAGATC TTGGCCCTACTAAAAGCCCTCTTTCTGCCCAAAAGACTTAGCATAATCCATTGTCCAGGACATCAAAAGGGACACA

GCGCCGAGGCTAGAGGCAACCGGATGGCTGACCAAGCGGCCCGAAAGGCAGCCATCACAGAGACTCCAGACAC CTCTACCCTCCTCATAGAAAATTCATCACCCTCTGGCGGCTCAAAAAGAACCGCCGACGGCAGCGAATTCGAGCC

CAAGAAGAAGAGGAAAGTCTAA<mark></mark>

## pU6-Csy4RS-gRNA coding sequence

(spacer of pegRNA colored grey, spacer of nick-sgRNA colored in yellow, scaffolds colored in blue, RT+PBS colored in red, Csy4 recognition site colored in purple)

Supplementary information, Fig. S6 Coding sequences of pCMV-Csy4-NMRT and pU6-Csy4RS-gRNA used in this study



Supplementary information, Fig. S7 Enhancing point mutation efficiency by ePE in HEK293T cells. Sanger sequencing chromatograms of targeted mutations by canonical PE and ePE of 7 sites indicated in Fig. 1e in HEK293T cells. Asterisks indicate the desired editing. The PAM sequence and spacer sequence of pegRNA are underlined in red and black, respectively.



Supplementary information, Fig. S8 ePE increases targeted base transition and transversion efficiency in HeLa cells.

- a. Statistical analysis of increase for targeted base transition and transversion in Fig. 1g. Data are presented as mean values ± SD, n = 3 independent experiments, two-tailed student's t-test (\*P < 0.05, \*\*P < 0.005, \*\*\*P < 0.0005).</li>
- **b.** Sanger sequencing chromatograms of the sites in **Fig. 1g**. The PAM sequence and spacer sequence of pegRNA are underlined in red and black, respectively. Asterisks indicate the desired editing.



# Supplementary information, Fig. S9 Increasing base transition and transversion efficiency by ePE

## in N2a cells.

- a. Statistical analysis of efficiency of targeted base transition and transversion in Fig. 1h. Data are presented as mean values ± SD, n = 3 independent experiments, two-tailed student's *t*-test (\*P < 0.05, \*\*P < 0.005, \*\*\*P < 0.0005).</li>
- **b.** Sanger sequencing chromatograms of the sites in **Fig. 1h**. The PAM sequence and spacer sequence of pegRNA are underlined in red and black, respectively. Asterisks indicate the desired editing.



# Supplementary information, Fig. S10 ePE without nicking the non-edited strand also increases base transition and transversion efficiency.

- a. Targeted editing efficiency of base transition and transversion by canonical PE and ePE without nicking the non-edited strand at six sites in HEK293T cells. Data are presented as mean values ± SD, n = 3 independent experiments, two-tailed student's t-test (\*P < 0.05, \*\*P < 0.005, \*\*\*P < 0.0005).</li>
- b. Sanger sequencing chromatograms of the sites in (a). The PAM sequence and spacer sequence of



pegRNA are underlined in red and black, respectively. Asterisks indicate the desired editing.

# Supplementary information, Fig. S11 Effects of RT template length on the efficiency of ePE in HEK293T cells.

Targeted editing efficiency of base transition and transversion by canonical PE and ePE with different RT template lengths at six sites in HEK293T cells.



Supplementary information, Fig. S12 ePE increases targeted precise deletion and insertion.

- a. Statistical analysis of editing efficiency of targeted precise insertion with canonical PE and ePE in
  Fig. 1i.
- b. Statistical analysis of editing efficiency of targeted precise deletion with canonical PE and ePE in
  Fig. 1j.
- c. Analysis of potential non-target indels induced by canonical PE and ePE in Fig. 1i.
- **d.** Analysis of potential non-target indels induced by canonical PE and ePE in **Fig. 1j**. Mean values  $\pm$  SD, n = 3 independent experiments, two-tailed student's *t*-test (\*P < 0.05, \*\*P < 0.005, \*\*\*P < 0.0005).



# Supplementary information, Fig. S13 Analysis of byproduct and non-target indel induced by canonical PE and ePE.

**a.** Analysis of byproduct induced by targeted base conversions by canonical PE and EPE for 13 sites in HEK293T cells. Targeted base and nearby 2 bp sequence were shown. The red triangle indicates

the targeted base.

**b.** Statistical analysis of unintended indels induced by canonical PE and ePE for 13 sites in HEK293T cells. Mean values  $\pm$  SD, n=3 independent experiments (\*P < 0.05, \*\*P < 0.005, \*\*\*P < 0.0005).



Supplementary information, Fig. S14 Off-target analysis of prime editing induced by canonical PE and ePE.

- **a.** Off-target analysis of prime editing for *SITE1* induced by canonical PE and ePE.
- **b.** Off-target analysis of prime editing for *FBN1* induced by canonical PE and ePE.
- c. Off-target analysis of prime editing for *RIT1* induced by canonical PE and ePE. Mean values  $\pm$  SD, n=3 independent experiments, two-tailed student's *t*-test (\*P < 0.05, \*\*P < 0.005, \*\*\*P < 0.0005).

# Supplementary information, Table S1 Primers used for constructing of pU6-Csy4RS-gRNA plasmids.

| NO.                   | Forward primer                                                      |  |
|-----------------------|---------------------------------------------------------------------|--|
| Csy4peg-bone-F        | GAGAGGGTCTCAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATC         |  |
| Csy4peg-bone-R        | CTCTCGGTCTCACGGTGTTTCGTCCTTTCCAC                                    |  |
| scaffold oligo-top    | AGAGCTAGAAATAGCAAGTTGAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCG |  |
| scaffold oligo-bottom | GCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTCAACTTGCTATTTCTAG |  |

# Supplementary information, Table S2 pegRNAs and nick sgRNAs used in human cells.

| NO.          | gene    | Spacer sequence      | 3'-extension sequence            | Nick sgRNA sequence  | Length<br>of PBS<br>(nt) | Length of<br>RT template<br>(nt) | Type of<br>mutations |
|--------------|---------|----------------------|----------------------------------|----------------------|--------------------------|----------------------------------|----------------------|
| ALDOB        | ALDOB   | CCACCCTGTGCTGAGTGTAT | TCTCTCCCTCCAAGACACTCAGCACAGG     | TAGCTTCCTATCCAATGCCA | 13                       | 15                               | +2AtoC               |
| FAM171B      | FAM171B | ATCTGACCTTTTCTCCACAC | TAATTGTTCCGGTCTGGAGAAAAGGTC      | TAGACTAACTGTCCCTTTCT | 13                       | 14                               | +1CtoG               |
| FBN1         | FBN1    | GCTTCCTGCTGCTGTTCTCT | AGGCTTTACCCATAGAACAGCAGCAGG      | TTTACCCATAGAACAGCAGC | 13                       | 14                               | +2CtoA               |
| KCNA1        | KCNA1   | CCACCTCCCTGGCCATCCTC | AAGCGGATGACCCTAAGGATGGCCAGGGAG   | CAAGCGGATGACCCTAAGGA | 13                       | 17                               | +3CtoT               |
| IDS          | IDS     | TTGCCTATAGCCAGTATCCC | TCTGAAGGCCGGAGATACTGGCTATAG      | CCTATAGTCTATGGTGCGTA | 13                       | 14                               | +2CtoT               |
| RIT1         | RIT1    | TGCTACAGCAGCTACCAACT | GGAACTCGCCTAGTTGGTAGCTGCTGT      | GATTCTGGAACTCGCCTAGT | 13                       | 14                               | +4GtoA               |
| RNF2         | RNF2    | GTCATCTTAGTCATTACCTG | AACGAACATCTCAGGTAATGACTAAGATG    | TCAACCATTAAGCAAAACAT | 13                       | 16                               | +6GtoA               |
| SITE1        | ALDOB   | CATACTGTCCTTTGGCCGCC | GCTAACTGCTAGGCGGCCAAAGGACAG      | AGGCAGACAGGGTCAAGGTG | 13                       | 14                               | +5GtoA               |
| SITE2        | FAM171B | TTGTGATCTCTCCATTGAAC | ACAGGAAGACCAGTGCAATGGAGAGATC     | GTGTGAGGAGAACAGACAGT | 13                       | 15                               | +1AtoC               |
| MSH2         | MSH2    | ACAAACGTCTCACCCTATGT | ACATTTGGCCCAGATAGGGTGAGACGT      | AAAGAAAACAGGGAGAGAAG | 13                       | 14                               | +2GtoC               |
| FTL          | FTL     | CGCGATGATGTGGCTCTGGA | GGCTCACGCCTGCCAGAGCCACATCAT      | CTGCCAGAGCCACATCATCG | 13                       | 14                               | +3AtoC               |
| GFAP         | GFAP    | AGCCTGTGTCCATATAAAGG | TTCCAACTCCTCCATTATATGGACACA      | CCAGAATCCAATCTCCCTCA | 13                       | 14                               | +1AtoT               |
| SDHB         | SDHB    | CTCAGGTAATCCACCTGCCT | TTGGGAGGCCGAGTCAGGTGGATTACC      | ATTTTATAGGCCAGGCGTGG | 13                       | 14                               | +1CtoA               |
| FAM171B_+2bp | FAM171B | ATCTGACCTTTTCTCCACAC | TAATTGTTCCGGTGGATGGAGAAAAGGTC    | TAGACTAACTGTCCCTTTCT | 13                       | 16                               | +2bp                 |
| FBN1_+2bp    | FBN1    | GCTTCCTGCTGCTGTTCTCT | AGGCTTTACCCAGAGCGAACAGCAGCAGG    | TTTACCCATAGAACAGCAGC | 13                       | 16                               | +2bp                 |
| KCNA1_+2bp   | KCNA1   | CCACCTCCCTGGCCATCCTC | AAGCGGATGACCCTGAGGTGATGGCCAGGGAG | CAAGCGGATGACCCTAAGGA | 13                       | 19                               | +2bp                 |
| RIT1_+2bp    | RIT1    | TGCTACAGCAGCTACCAACT | GGAACTCGCCCAGTCGTGGTAGCTGCTGT    | GATTCTGGAACTCGCCTAGT | 13                       | 16                               | +2bp                 |
| MSH2_+2bp    | MSH2    | ACAAACGTCTCACCCTATGT | ACATTTGGCCCACAATTAGGGTGAGACGT    | AAAGAAAACAGGGAGAGAAG | 13                       | 16                               | +2bp                 |
| SDHB_+2bp    | SDHB    | CTCAGGTAATCCACCTGCCT | TTGGGAGGCCGAGGCACAGGTGGATTACC    | ATTTTATAGGCCAGGCGTGG | 13                       | 16                               | +2bp                 |
| SITE12bp     | ALDOB   | CATACTGTCCTTTGGCCGCC | GCTAACTGCCAGGGCCAAAGGACAG        | AGGCAGACAGGGTCAAGGTG | 13                       | 12                               | -2bp                 |
| RIT12bp      | RIT1    | TGCTACAGCAGCTACCAACT | GGAACTCGCCCATGGTAGCTGCTGT        | GATTCTGGAACTCGCCTAGT | 13                       | 12                               | -2bp                 |
| ALDOB2bp     | ALDOB   | CCACCCTGTGCTGAGTGTAT | TCTCTCCCTCCAACACTCAGCACAGG       | TAGCTTCCTATCCAATGCCA | 13                       | 13                               | -2bp                 |
| GFAP2bp      | GFAP    | AGCCTGTGTCCATATAAAGG | TTCCAACTCCTCTTATATGGACACA        | CCAGAATCCAATCTCCCTCA | 13                       | 12                               | -2bp                 |
| MSH22bp      | MSH2    | ACAAACGTCTCACCCTATGT | ACATTTGGCCCATAGGGTGAGACGT        | AAAGAAAACAGGGAGAGAAG | 13                       | 12                               | -2bp                 |
| SDHB2bp      | SDHB    | CTCAGGTAATCCACCTGCCT | TTGGGAGGCCGACAGGTGGATTACC        | ATTTTATAGGCCAGGCGTGG | 13                       | 12                               | -2bp                 |

# Supplementary information, Table S3 pegRNAs used for indel test in human cells.

| NO.                                    | Spacer sequence      | 3'-extension sequence                            |
|----------------------------------------|----------------------|--------------------------------------------------|
| FBN1-truncated pegRNA                  | GCTTCCTGCTGCTGTTCTCT | NULL                                             |
| FBN1-RaPBS_pegRNA                      | GCTTCCTGCTGCTGTTCTCT | AGGCTTTACCCATACTAGCGTAGCTAC                      |
| FBN1-extended pegRNA                   | GCTTCCTGCTGCTGTTCTCT | AGGCTTTACCCATAGAACAGCAGCAGGGTTCACTGCCGTATAGGCAG  |
| ALDOB-truncated pegRNA                 | CCACCCTGTGCTGAGTGTAT | NULL                                             |
| ALDOB-RaPBS_pegRNA                     | CCACCCTGTGCTGAGTGTAT | TCTCTCCCTCCAAGACTAGCGTAGCTAC                     |
| ALDOB-extended pegRNA                  | CCACCCTGTGCTGAGTGTAT | TCTCTCCCTCCAAGACACTCAGCACAGGGTTCACTGCCGTATAGGCAG |
| SITE1-truncated pegRNA                 | CATACTGTCCTTTGGCCGCC | NULL                                             |
| SITE1-RaPBS_ pegRNA                    | CATACTGTCCTTTGGCCGCC | GCTAACTGCTAGGCCTAGCGTAGCTAC                      |
| SITE1-extended pegRNA                  | CATACTGTCCTTTGGCCGCC | GCTAACTGCTAGGCGGCCAAAGGACAGGTTCACTGCCGTATAGGCAG  |
| FTL-truncated pegRNA                   | CGCGATGATGTGGCTCTGGA | NULL                                             |
| FTL-RaPBS_ pegRNA                      | CGCGATGATGTGGCTCTGGA | GGCTCACGCCTGCCCTAGCGTAGCTAC                      |
| FTL-extended pegRNA CGCGATGATGTGGCTCTG |                      | GGCTCACGCCTGCCAGAGCCACATCATGTTCACTGCCGTATAGGCAG  |

# Supplementary information, Table S4 pegRNAs and nick sgRNAs used in mouse N2a cells.

| NO.    | gene   | Spacer sequence      | 3'-extension sequence        | Nick sgRNA sequence  | Length<br>of PBS<br>(nt) | Length of<br>RT template<br>(nt) | Type of<br>mutations |
|--------|--------|----------------------|------------------------------|----------------------|--------------------------|----------------------------------|----------------------|
| Dnmt1  | Dnmt1  | CGGGCTGGAGCTGTTCGCGC | TGCAAGATGCCAGTGCGAACAGCTCCAG | CCGCGCGCGCGAAAAAGCCG | 13                       | 15                               | +2GtoA               |
| Fgf21  | Fgf21  | GTTTTGCCTCACAGGTCTCC | TTTGAGCTCCAGCAGACCTGTGAGGCA  | TGAGCTCCAGTAGACCTGTG | 13                       | 14                               | +2CtoG               |
| lfnar1 | lfnar1 | AGACGGGAACATGTGGGCAC | AAGGTTTCTCCAGAGCCCACATGTTCCC | AGACTTCTGCCAGATTCGTA | 13                       | 15                               | +2AtoT               |
| Trem2  | Trem2  | TATTATGGAGGCTGGAGTCC | TGGAGTGTACCAGAACTCCAGCCTCCAT | AAGAACACGAATGAGCCAGT | 13                       | 15                               | +2CtoT               |
| Rnf2   | Rnf2   | AGGATGTATTATATTACCTG | AACGAACACCTCCGGTAATATAATACA  | TCAACCATTAAGCAAAACAT | 13                       | 14                               | +2TtoG               |
| Tyr    | Tyr    | GAAGTTGCCTGAGCACTGGC | ATAATAGGACCTGCAAGTGCTCAGGCAA | GGACCTCAGTTCCCCTTCAA | 13                       | 15                               | +1GtoT               |
| Fgf5   | Fgf5   | GGCAGCCTGTACTGCAGAGT | AAACCGATGCCCACGCTGCAGTACAGGC | GAGCCATTGACTTTGCCATC | 13                       | 15                               | +1AtoC               |
| Mstn   | Mstn   | CAGAGGGATGACAGCAGTGA | TCCAAAGAGCCATCGCTGCTGTCATCCC | CATGGTAATGATTGTTTCCG | 13                       | 15                               | +1TtoC               |
| Cftr   | CFTR   | GGGGGTTATGTGCTAAGCCA | TGCTTATGGCCATGACTTAGCACATAAC | GGCCTTACTGAGAACTGATC | 13                       | 15                               | +1CtoT               |
| HOXD13 | HOXD13 | GAGGCATACATCTCCATGGA | GACTGGTAGCACTCCATGGAGATGTATG | GATCCTTGGCACAGTACACC | 13                       | 15                               | +6GtoT               |
| SITE3  | HOXD13 | AGTTCATTAACAAGGACAAG | GATCCGCCGCCCCTTGTCCTTGTTAATG | CCTTCGATTCTGAAACCAAA | 13                       | 15                               | +4CtoG               |
| Ar     | Ar     | TCTCACTTGTGGCAGCTGCA | TGAAGAAGACCTTGAAGCTGCCACAAGT | AGGGGAAAATATCAGGAAGT | 13                       | 15                               | +1GtoT               |
| SITE4  | Tyr    | CATTTGCACAGATGAGTACT | GACGACCTCCCAATTACTCATCTGTGCA | CAGGAGGAGAAGAAGGATGC | 13                       | 15                               | +2CtoA               |

# Supplementary information, Table S5 Primers used for cell genomic DNA amplification and targeted deep sequencing.

| NO.          | Forward primer               | Reverse primer         | Length of amplicon (nt) |
|--------------|------------------------------|------------------------|-------------------------|
| SITE1        | CTGAGTGAAGGTTTGACTGG         | CTCCTACTAGAAGCACTGGAG  | 238                     |
| FAM171B      | GGTAATGAGGAGGCGTATGGGC       | GGGCAAGGTCTGCGTAAAGT   | 213                     |
| FBN1         | TCGACCTCGAGGAGACAATG         | GGGCTGAGAGGACTGATCTTT  | 252                     |
| KCNA1        | CACCGAGATAGCTGAGCAGG         | GGATGACCCCGATGAAGAGG   | 206                     |
| IDS          | ACGTTGAGCTGTGCAGAGAA         | TTGAAGCCAACCCACACAGT   | 235                     |
| RIT1         | GTATGGAAAGGTAAGGCACTG        | CCTACCACTCTTCCCTACACC  | 237                     |
| RNF2         | ACGTAGGAATTTTGGTGGGACA       | ACGTCTCATATGCCCCTTGG   | 218                     |
| ALDOB        | CCTCATTGCCAATGGATCAG         | GAGCCCTCACTTTGGGTGTT   | 235                     |
| SITE2        | GGCAAACAAGGGAGTAATTC         | AGAGAGACGGGAAGCCATTG   | 262                     |
| MSH2         | CTCAGCATTCAGTGCTCTCC         | TCGCATTTGCACTAGTCCTC   | 239                     |
| FTL          | TTTGTGCGGTCGGGTAAACA         | CTGCTGGGAGATGTAGTCCAT  | 269                     |
| GFAP         | GCCCCTGTGTTTCATTCATG         | ACCACCGCTTCACAGCTGTG   | 250                     |
| SDHB         | GCCATCGTGCCTGTCTAATT         | AGTCGACATATCCCAACATC   | 260                     |
| Dnmt1        | TTGCCCTGTGTGGTACATGC         | AATATATGCCTCGGCATCGG   | 251                     |
| Fgf21        | AGGATGGAACAGTGGTAGGC         | CATAGAGAGCTCCATCTGGC   | 240                     |
| lfnar1       | GCCATACTAGTCCACATCTC         | CTGGCAAGAGTTCTGGTATC   | 250                     |
| Trem2        | GACCTACCTTCAGCAACACT         | CTCACAGCTCCTTCAGTGAC   | 251                     |
| Rnf2         | GTCTCAGGCTGTGCAGACAA         | CAAGACGCAGGACTGTTATG   | 206                     |
| Tyr          | CAGCTTTCAGGCAGAGGTTC         | CAAGACTCGCTTCTCTGTAC   | 213                     |
| FGF5         | TCCTCACCAGTCGCAGCTTC         | GCCTGTGGCCCAAAGGAATC   | 246                     |
| MSTN         | ATCCTCAGTAAGCTGCGCCT         | ACACTAGGACAGCAGTCAGC   | 250                     |
| CFTR         | GCCCCTTCTAAGCACAGTGT         | TAGATGGGCACTGGGCTCAT   | 204                     |
| Hoxd13       | CTACACAAGTCCCTATCAGC         | CGTTGCTCCTACCTGGAAAG   | 209                     |
| SITE3        | TAAACCAGCCGGACATGTGC         | GCCCACATCAGGAGACAGTG   | 144                     |
| Ar           | CAGTTTGGACAGTACCAGGG         | TCTGCTAGGCAAAAGAGAAGGG | 209                     |
| SITE4        | GAGAACTAACTGGGGATGAG         | GAGCATGAAAATGTGGCTGC   | 216                     |
| FAM171B_+2bp | GGTAATGAGGAGGCGTATGGGC       | GGGCAAGGTCTGCGTAAAGT   | 213                     |
| FBN1_+2bp    | NNNNNNNTCGACCTCGAGGAGACAATG  | GGGCTGAGAGGACTGATCTTT  | 260                     |
| KCNA1_+2bp   | CACCGAGATAGCTGAGCAGG         | GGATGACCCCGATGAAGAGG   | 206                     |
| RIT1_+2bp    | NNNNNNNGTATGGAAAGGTAAGGCACTG | CCTACCACTCTTCCCTACACC  | 245                     |
| SITE2_+2bp   | GGCAAACAAGGGAGTAATTC         | AGAGAGACGGGAAGCCATTG   | 262                     |
| MSH2_+2bp    | NNNNNNNCTCAGCATTCAGTGCTCTCC  | TCGCATTTGCACTAGTCCTC   | 247                     |
| SDHB_+2bp    | NNNNNNNGCCATCGTGCCTGTCTAATT  | AGTCGACATATCCCAACATC   | 268                     |
| SITE12bo     | CTGAGTGAAGGTTTGACTGG         | CTCCTACTAGAAGCACTGGAG  | 238                     |
| RIT12bp      | NNNNNNNGTATGGAAAGGTAAGGCACTG | CCTACCACTCTTCCCTACACC  | 245                     |
| ALDOB2bp     | NNNNNNNCCTCATTGCCAATGGATCAG  | GAGCCCTCACTTTGGGTGTT   | 243                     |
| SITE22bp     | NNNNNNNGGCAAACAAGGGAGTAATTC  | AGAGAGACGGGAAGCCATTG   | 270                     |
| GFAP2bp      | NNNNNGCCCCTGTGTTTCATTCATG    | ACCACCGCTTCACAGCTGTG   | 256                     |
| MSH22bp      | NNNNNNNCTCAGCATTCAGTGCTCTCC  | TCGCATTTGCACTAGTCCTC   | 247                     |
| SDHB2bp      | NNNNNNNGCCATCGTGCCTGTCTAATT  | AGTCGACATATCCCAACATC   | 268                     |

# Supplementary information, Table S6 Information of predicted off-target sites.

| NO.            | Chr. | Off-target site         | Mis-matches |
|----------------|------|-------------------------|-------------|
| SITE1-peg-OT1  | 1    | CATAaTGTCCTTTGGaaGCCAGG | 3           |
| SITE1-peg-OT2  | 19   | CcTACTGTCCTTTGGgaGCCTGG | 3           |
| SITE1-peg-OT3  | 4    | gATACTGTCCTTgGGgCGCCAGG | 3           |
| SITE1-peg-OT4  | 10   | CtTtCTGTCCTTTGGCgGCaGGG | 4           |
| SITE1-peg-OT5  | 10   | CcTtCTGcCCTTTtGCCGCCTGG | 4           |
| SITE1-peg-OT6  | 1    | gATtCTGTCCTgTGGCaGCCTGG | 4           |
| SITE1-peg-OT7  | 11   | aATACTGgCCTTTGGCtGgCTGG | 4           |
| SITE1-peg-OT8  | 11   | CAcACTGTCCTTTttCCaCCGGG | 4           |
| SITE1-nick-OT1 | 14   | AGGCAGcCAGGGTCcAGGTGGGG | 2           |
| SITE1-nick-OT2 | 6    | gaGCAGACAGGGTCAAGGTGTGG | 2           |
| SITE1-nick-OT3 | 10   | AatCAGcCAGGGTCAAGGTGTGG | 3           |
| SITE1-nick-OT4 | 11   | AGGgtGgCAGGGTCAAGGTGTGG | 3           |
| SITE1-nick-OT5 | 1    | AGGCAGAgAGGGTgAAtGTGGGG | 3           |
| FBN1-peg-OT1   | 17   | GCTTCCTGCTGCTGaTCTCTGGG | 1           |
| FBN1-peg-OT2   | 3    | GCTTCCTcCTGgTGTTCTCTTGG | 2           |
| FBN1-peg-OT3   | 10   | GtTaCCTGCTGCTGTTtTCTGGG | 3           |
| FBN1-peg-OT4   | 10   | aCTTCCTGCTGtTtTTCTCTAGG | 3           |
| FBN1-peg-OT5   | 10   | tCTTCCTGCTGCTGTaCTCaTGG | 3           |
| FBN1-peg-OT6   | 10   | GCTTCCTcaTGaTGTTCTCTGGG | 3           |
| FBN1-peg-OT7   | 10   | GCTTCCTGCTtCTGTcCaCTGGG | 3           |
| FBN1-nick-OT1  | 10   | TTTACCCATcGAAtAtCAGCAGG | 3           |
| FBN1-nick-OT2  | 11   | TTaACCCAgAGAACAGaAGCAGG | 3           |
| FBN1-nick-OT3  | 15   | TTTcCCCATAGAACAcgAGCAGG | 3           |
| FBN1-nick-OT4  | 15   | TTTcCCCAcAGAACAGtAGCTGG | 3           |
| FBN1-nick-OT5  | 16   | gTTACCCATgGAAaAGCAGCCGG | 3           |
| RIT1-peg-OT1   | 17   | TGCTAaAGCAGCTACCtACTTGG | 2           |
| RIT1-peg-OT2   | 12   | TGCTACtGCAGCTcCCAgCTGGG | 3           |
| RIT1-peg-OT3   | 12   | TtCTgCAGCAGaTACCAACTGGG | 3           |
| RIT1-peg-OT4   | 13   | TGCTACAGaAGCagCCAACTAGG | 3           |
| RIT1-peg-OT5   | 14   | TGCTtCAGCAGaTACCAgCTGGG | 3           |
| RIT1-peg-OT6   | 15   | TGtTcCAGaAGCTACCAACTGGG | 3           |
| RIT1-peg-OT7   | 2    | TtCTgCAGCAGaTACCAACTGGG | 3           |
| RIT1-peg-OT8   | 2    | TGCaACAGCAGCaACCAcCTGGG | 3           |
| RIT1-nick-OT1  | 4    | GATTCTGGAAaTCcCCTtGTTGG | 3           |
| RIT1-nick-OT2  | 11   | GcTTCTGGAACTCaCCTccTGGG | 4           |
| RIT1-nick-OT3  | 12   | GATTCTGGAtCTtGCCTgGcTGG | 4           |
| RIT1-nick-OT4  | 13   | GAcTCTGGgcCTCGCCTtGTAGG | 4           |
| RIT1-nick-OT5  | 13   | GATTtTGGtAtTCGCCTAtTTGG | 4           |

# Supplementary information, Table S7 Primers used for off-target analysis.

| NO.            | Forward primer         | Reverse primer         | Length of amplicon (nt) |
|----------------|------------------------|------------------------|-------------------------|
| SITE1-peg-OT1  | CTAGGCACCTTGGAAGCTGC   | AGTACCAATGCCACCTCCTCC  | 257                     |
| SITE1-peg-OT2  | CCACGGACAGCAACAACTCC   | AGACAGTCTCAGAGCTGAGG   | 214                     |
| SITE1-peg-OT3  | CACAGGAAAGGGGCGCTGCA   | AGTCCACACAGGCAGCAAGC   | 249                     |
| SITE1-peg-OT4  | CCGGCCCTGAACATCGTTCT   | CTCTCCTGTTTCCCTGACTG   | 194                     |
| SITE1-peg-OT5  | TGCGCTCTGCACTCTCTGCT   | GGGAAGGTGACCACAGTCAG   | 243                     |
| SITE1-peg-OT6  | GGTGGTCCCAAAAGTTACCA   | GTCTCCTAGAATTCCCACAGG  | 218                     |
| SITE1-peg-OT7  | GCCCTTTCACCCAGAGTCCC   | CCCAGCTTGTCACGATCAAGG  | 221                     |
| SITE1-peg-OT8  | CCAGCCCACAGAGAATCATG   | CTTGGAAAGGCCTGGAGAGG   | 234                     |
| SITE1-nick-OT1 | GGCACATCATCCATTCAGGT   | CTGGATCTAGCCAGCGAGAC   | 201                     |
| SITE1-nick-OT2 | GTGAATGAGACAGCCCAGAG   | CTCTGCATGAGGTTCTGTGC   | 210                     |
| SITE1-nick-OT3 | GGGAAGATGAAGCTGGGGTA   | CCTCCTGCTTCTGGAGACAG   | 147                     |
| SITE1-nick-OT4 | CTGCAGATCTTCCTCACCAGG  | GTGCCTGCTGATGGGCAGAA   | 219                     |
| SITE1-nick-OT5 | GAGAGGAGCAAGCATGGGGA   | CCAGCCTTTCCCTACACCTC   | 232                     |
| FBN1-peg-OT1   | GGCTACCGTTTTCTGAGCGA   | TGGGTACTCAAGCCGGAGAG   | 246                     |
| FBN1-peg-OT2   | GTCTGGGAATCGACGCTGAC   | TGAATCCGTCTGGTCCTGGAC  | 259                     |
| FBN1-peg-OT3   | CCTGCTGGATCTTGGTTCCC   | AGAAAGGGAGAACATGCTGC   | 252                     |
| FBN1-peg-OT4   | GGATTTCCAACAGCTCAGAAC  | CTGTTTCAGGGCTCACTTAG   | 248                     |
| FBN1-peg-OT5   | CTAGTCTCTAGCTCTCTCCT   | CACCCCCTGAAGAACATTCC   | 254                     |
| FBN1-peg-OT6   | GGTCAGGGTTCTTCCAGCCA   | GGAGACTTTAGAGAGGGTCC   | 217                     |
| FBN1-peg-OT7   | GAGAAGTTGGTCACCTTCCC   | TAGGCCAACCAGGTCACCCT   | 227                     |
| FBN1-nick-OT1  | TCCAGAGTGACCATAGAATC   | CCACCCCAATATTTAGGTGGT  | 240                     |
| FBN1-nick-OT2  | AGTGGGTAAACACTACCGGC   | AGGTCATGTCTGCCTTGATT   | 239                     |
| FBN1-nick-OT3  | CATCACCTTGCACTGGTATA   | TAACTCCAGAGTAAACTGAC   | 231                     |
| FBN1-nick-OT4  | ATGCTACCTGGGCGGGATTTTG | AGAAAGGAGCAAAGGGGGCT   | 190                     |
| FBN1-nick-OT5  | CTGACCGATGGAAAAAAGCC   | GCTAGGTTCGTCTGCGTTTCT  | 196                     |
| RIT1-peg-OT1   | AGAGACCAAGGAGGGACTGT   | TCACCAGAAACGAAACACCAC  | 221                     |
| RIT1-peg-OT2   | GGTTTCCAGCAGCCCATTCT   | GGAGAAAGAATTCGACCAAG   | 196                     |
| RIT1-peg-OT3   | TGGACTTGCCACTGGTAATGT  | AAATGTGCTCTTACCCCAGCA  | 232                     |
| RIT1-peg-OT4   | GACATTTTCATCAGTGATGCC  | GCGGGAGTATCCACAGAATACT | 191                     |
| RIT1-peg-OT5   | TCTTCTCCTACTATGCTATC   | TTCCCACATGCCTTGCCTCAT  | 220                     |
| RIT1-peg-OT6   | TCAGGATCCTAGCAGGAAGCA  | CTCTAATCTTCATATCTGGGG  | 201                     |
| RIT1-peg-OT7   | CAGACTTGTGACTGGCATTGC  | CCTTTGCTCTCACACCACTAC  | 233                     |
| RIT1-peg-OT8   | TCTGCTGCTTTGTTGGAGACAC | AGGTTCCCTTGTCTACTAGC   | 237                     |
| RIT1-nick-OT1  | AGCCTCACAATAATGCTGACC  | CTTGAGAAACACAGGGTTGT   | 250                     |
| RIT1-nick-OT2  | TGAGAAGGCTGGGCAGGGAAAT | CCTTTCCACTTCCAGCCTGA   | 226                     |
| RIT1-nick-OT3  | GTTTCCGTGTGAAATGTGTC   | CCAAAGACATCTCCCCCTGA   | 218                     |
| RIT1-nick-OT4  | AGTTATTTGAGGTCTGGGGG   | GCAATGATCAGCACCAAGCT   | 187                     |
| RIT1-nick-OT5  | CAGAGTCCAAATCCTTCAGG   | CAGCAATTACAGAGGAACAG   | 240                     |