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Supplementary Figure 1. RNF213 binds to premature, mature and non-conjugatable ISG15 

(a-f) HIV-1 GAG protein was genetically fused to wild-type ISG15, non-conjugatable ISG15AA or the 

precursor form of ISG15, and transiently expressed in HEK293T cells treated or not with interferon-α (IFN-

I). Virus-like particles (VLPs) were purified, lysed and protein were digested into peptides for identification 

and quantification by liquid chromatography tandem mass spectrometry (LC-MS/MS). Volcano plots show 

the result of a t-test to compare VLPs containing ISG15 versus VLPs containing E.coli dihydrofolate 

reductase (eDHFR) as negative control (n=4 replicates). The fold change (in log2) of each protein is shown 

on the x-axis, while the statistical significance (−log P-value) is shown on the y-axis. Proteins outside the 

curved lines represent specific ISG15 interaction partners. Proteins identified as common ISG15 interaction 

partners in all six screens are indicated (n=29) and listed in Supplementary Data 1. The volcano plot in (a) 

is identical to the volcano plot in Figure 1b. 
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Supplementary Figure 2. Binding of RNF213 requires both N- and C-terminal domains of ISG15  

 (a-c) HIV-1 GAG protein was genetically fused to ISG15AA (a), the ISG15 N-terminal (b) or the ISG15 

C-terminal domain (c). Constructs were transiently expressed in HEK293T and the Virotrap experiments 

coupled to liquid chromatography tandem mass spectrometry (LC-MS/MS) were performed as in Figure 1 

and Supplementary Figure 1 (n=3 replicates). Common ISG15 interaction partners from Supplementary 

Figure 1 are annotated on the volcano plots and listed in Supplementary Data 1. (d) Heatmap showing the 

expression level (log2 Label Free Quantification (LFQ) intensity) of ISG15, eDHFR, HIV-1 GAG and 

common ISG15 interaction partners from Supplementary Figure 1 after non-supervised hierarchical 

clustering. On the right side, the same heatmap is shown with originally missing values colored in gray. All 

common ISG15 interactors including RNF213 bind to full length ISG15, but not to the C- or N-terminal 

domain alone. 
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Supplementary Figure 3. ISG15 co-immunoprecipitation coupled to mass spectrometry  

(a-c) Immunoprecipitation coupled to mass spectrometry (IP-MS) using HA antibodies was performed from 

lysates of HEK293T or HeLa cells transfected with HA-ISG15AA or mock and treated with IFN-I for 24h 

or 48h. Pulled down proteins were digested with trypsin on the beads prior to their identification and 

quantification by liquid chromatography tandem mass spectrometry (LC-MS/MS). Volcano plots show the 

result of a t-test to compare ISG15 pull downs versus mock control (n=3 replicates). The fold change (in 

log2) of each protein is shown on the x-axis, while the statistical significance (−log P-value) is shown on 

the y-axis. Proteins outside the curved lines represent significantly enriched proteins. Except for ISG15 

itself, no interacting proteins were identified in the ISG15 pull down experiments. (d) Venn diagram 

showing the overlap between the common ISG15 interaction partners identified by Virotrap (n=29, 

Supplementary Figure 1) and GST (Glutathione S-Transferase) pull down in HEK293T cells (Figure 1d). 

Next to ISG15 itself, only RNF213 overlaps between those two type of experiments. 
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Supplementary Figure 4. RNF213 binds non-covalently to ISGylated proteins but not to 

ubiquitinated proteins 

(a) GFP immunoprecipitation (IP) was performed from lysates of HEK293T cells expressing eGFP-

RNF213 or FLAG-eGFP in combination with HA-ISG15 and the ISGylation machinery (E1, E2, E3). A 

smear of ISGylated co-immunoprecipitated proteins was detected by immunoblotting (IB) after IP with 

eGFP-RNF213, but not with FLAG-eGFP. (b) FLAG immunoprecipitation was performed in HEK293T 

cells expressing 3xFLAG-RNF213 or FLAG-eGFP in combination with HA-ISG15 and the ISGylation 

machinery (E1, E2, E3). After immunoprecipitation, beads were washed either with a buffer containing 1% 

Triton-X-100 or with a buffer containing 1% Triton-X-100 and 1 % Sodium dodecyl sulfate (SDS) to 

remove ISGylated proteins that were non-covalently bound to FLAG-RNF213. (c) Workflow showing the 

strategy for co-immunoprecipitation of ISGylated proteins with separate expression of FLAG-RNF213 and 

ISGylated proteins. FLAG immunoprecipitation is performed from a lysate of HEK293T cells expressing 

3xFLAG-RNF213. After binding of FLAG-RNF213, beads are washed and subsequently mixed with a 

lysate of HEK293T cells expressing HA-ISG15 and the ISGylation machinery (E1, E2, E3). In this way, 

we can exclude that (part of) the smear of co-immunoprecipitated ISGylated proteins is actually derived 

from ISGylated RNF213 itself. (d) FLAG immunoprecipitation was performed from lysates of HEK293T 

cells expressing 3xFLAG-RNF213, FLAG-RNF31 (HOIP) or FLAG-eGFP as control. According to the 

workflow in (c), after binding of the bait protein beads were mixed with a lysate of HEK293T cells 

expressing HA-ISG15 and the ISGylation machinery (E1, E2, E3). While FLAG-RNF213 was capable of 

pulling down ISGylated proteins, FLAG-RNF31 or FLAG-eGFP were not. (e) FLAG immunoprecipitation 

of 3xFLAG-RNF213, FLAG-RNF31 or FLAG-eGFP was performed as in (d), but after binding of the bait 

protein beads were mixed with a lysate of HEK293T cells expressing HA-Ubiquitin. FLAG-RNF31 

efficiently pulled down ubiquitinated proteins, but FLAG-RNF213 and FLAG-eGFP did not. Source data 

are provided as a Source Data file. 



Supplementary Figure 5
b

THP-1 cells THP-1 cells

a

N
um

be
r o

f L
D

 / 
ce

ll

c

AUP1

CNX

RNF213

PLIN2

ly
sa

te

cy
to

m
em

b

LD ly
sa

te

cy
to

m
em

b

LD
RAB18

PLIN1

GAPDH

BIP

100
75
50

37

25

20

(kD)

150
500

50

50
37

75

50

37

75

25

(kD)

0

5

10

15

Rnf2
13

 
-/-  +IFN-I

Rnf2
13

+/+  +IFN-I

Rnf2
13

 
-/-  un

tre
ate

d

Rnf2
13

+/+  un
tre

ate
d

n.s. n.s.

0

50000

100000

150000

BMDM cells

Vo
xe

l L
D

 / 
ce

lls

Rnf2
13

 
-/-  +IFN-I

Rnf2
13

+/+  +IFN-I

Rnf2
13

 
-/-  un

tre
ate

d

Rnf2
13

+/+  un
tre

ate
d

BMDM cells

n.s. n.s.

Merge Neutral Lipid Droplet Hoechst

Rnf213 +/+

untreated
- oleic acid

Rnf213 -/-
untreated

- oleic acid

Rnf213 +/+

IFN-I treated
- oleic acid

Rnf213 -/-
IFN-I treated

- oleic acid

Rnf213 +/+

untreated
+ oleic acid

Rnf213 -/-
untreated

+ oleic acid

Rnf213 +/+

IFN-I treated
+ oleic acid

Rnf213 -/-
IFN-I treated

+ oleic acid

B



Supplementary Figure 5. RNF213 deficiency does not destabilize lipid droplets in macrophages. 

(a) THP-1 or primary human monocytes cells were cultured in the presence of 10 mM BSA-conjugated 

oleic acid. Lipid droplets (LDs)-enriched fractions were isolated by ultracentrifugation floatation assay on 

a sucrose step-gradient. Membrane (Memb) bound fraction proteins and cytosolic (Cyto) proteins were 

isolated by ultracentrifugation sedimentation assay. SDS-PAGE and silver staining shows equal protein 

loading for each fraction (left panel). Immunoblotting reveals that RNF213 is mainly associated to lipid 

droplet. Immunoblotting against PLIN1, PLIN2, RAB18 and AUP1 shows efficient LD isolation. 

Immunoblotting against CNX and BIP was used as markers for the membrane fraction. Immunoblotting 

against GAPDH was used as a marker for the cytosolic fraction. (b) Representative images of bone marrow-

derived macrophages (BMDM) cells derived from Rnf213+/+ or Rnf213-/- mice. Cells were treated with 

interferon-β, 200 µM mM BSA-conjugated oleic acid or both 24 h prior to fixation. Scale bars in the pictures 

are 10 microns (Hoechst = 2'-[4-ethoxyphenyl]-5-[4-methyl-1-piperazinyl]-2,5'-bi-1H-benzimidazole 

trihydrochloride trihydrate) . (c) At least 100 cells were used to count the volume (voxel, left panel) and 

number (right panel) of lipid droplets per cell (right panel) from five different fields containing each 20 to 

30 cells. Quantification was performed with the Volocity software. No differences in volume or number of 

lipid droplets were observed between Rnf213+/+ and Rnf213-/- cells (representative results from a single 

experiment, AVG ± SEM, n=5 fields, two-tailed unpaired t-test, n.s.= not significant), indicating that 

RNF213 deficiency does not lead to reduced stability of lipid droplets in macrophages. Source data are 

provided as a Source Data file. 
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Supplementary Figure 6. IFN-I induction and regulation of RNF213 and ISG15 in human cell lines 

(a) HeLa, A549 or THP-1 cells were either untreated or treated with the indicated type of interferon (IFN-

α/β/γ) for 48 h prior to lysis and immunoblotting against RNF213, ISG15 and tubulin as loading control. 

RNF213 and ISG15 are co-induced, primarily by interferon-α and β. (b) HeLa cells were treated or not with 

interferon-β (IFN-I) prior to lysis and distribution of RNF213 between the soluble and membrane-

associated fraction was quantified by immunoblotting. Purity of the soluble and membrane associated 

fractions was evaluated using GAPDH and Ribophorin I as respective marker proteins (AVG ± SEM, n=4 

independent replicates, two-tailed unpaired t-test, n.s. = not significant). Interferon treatment led to a non-

significant decrease and increase of RNF213 in the soluble and membrane fractions, respectively. (c) 

Immunoblots against UBE1L and tubulin as loading control confirmed knockdown of UBE1L in the 

experiment shown in Figure 3b. Source data are provided as a Source Data file. 
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Supplementary Figure 7. RNF213 counteracts in vitro infection with HSV-1 

(a-b) HeLa cells were transfected with a pool of siRNAs targeting RNF213 (siRNF213) or a pool of 

scrambled siRNAs (siScramble) as control (a). Alternatively, HeLa cells were transfected with 3X-FLAG-

RNF213 or a mock plasmid as control (b). 24h hours later, cells were treated with interferon-β (IFN-I) for 

an additional 24 h. Immunoblotting against OAS3, STAT1, phosphorylated STAT1 (pSTAT1, Y701), 

MX1, IFIT1 and ISG15 confirmed that RNF213-depleted cells and RNF213-overexpressing cells 

efficiently induce ISG expression in response to IFN-I. Immunoblots against tubulin were used as loading 

control and blots against RNF213 and FLAG confirmed knockdown and overexpression, respectively. (c-

h) Wild-type (c-e) or ISG15 knockout HeLa cells (f-h) were infected up to 72 h with eGFP-expressing 

recombinant herpes simplex virus 1 (HSV-1) at multiplicity of infection (MOI) 0.1. 72 h prior to infection, 

cells were transfected with a pool of siRNAs targeting RNF213 (siRNF213) or a pool of scrambled siRNAs 

(siScramble) as control. Additionally, cells were treated with interferon-α 16 h prior to infection (d, g). The 

viral load was determined by monitoring the GFP signal in each condition every 24 h to generate a viral 

growth curve (right panels in (c, d, f ,g) show a representative viral growth curve from a single experiment, 

n=4 technical replicates, curve connecting AVG, two-tailed unpaired t-test comparing siRNF213 to 

siScramble, a.u. = arbitrary units). The area under the curve (AUC) was calculated for each growth curve 

and the average AUC of three independent experiments is shown relative to the siScramble control (left 

panels in (c, d, f ,g), AVG ± SEM, n=3 independent experiments, two-tailed unpaired t-test,). Immunoblots 

against RNF213 and ISG15, with tubulin as loading control, confirmed knockdown of RNF213 and the 

absence of ISG15 in the knockout cells (e, h). Asterisks indicate p-values with * p < 0.05, ** p < 0.01, *** 

p < 0.001 and **** p < 0.0001. Source data are provided as a Source Data file. 
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Supplementary Figure 8. RNF213 counteracts in vitro infection with RSV and CVB3 

(a) A549 cells were infected with human respiratory syncytial virus (RSV)-A2 for up to six days at 

multiplicity of infection (MOI) 0.001. Immunoblotting against RSV-G confirmed infection, while pSTAT1 

indicated type-I interferon signaling especially 2 to 4 days post infection. Tubulin was used as loading 

control. (b) HeLa cells were infected with coxsackievirus B3 (CV) up to 48 h at MOI 0.01. Immunoblotting 

against coxsackie viral protein VP1 confirmed infection, while the absence of pSTAT1 indicated no 

induction of type-I interferon signaling. (c-e) HeLa cells were infected with CV at MOI 0.01 for 24 h. 24 h 

prior to infection, cells were transfected with 3X-FLAG-RNF213 or a mock plasmid as control. The 

intracellular viral RNA load was determined by qRT-PCR (representative results from a single experiment, 

AVG ± SEM, n=3 technical replicates, one-tailed unpaired t-test) (c). The intracellular viral protein load 

was determined by immunoblotting against VP1, with GAPDH as loading control (d). Extracellular viral 

titers were determined by counting plaque forming units (PFUs) after serial dilution (representative results 

from a single experiment, AVG ± SEM, n=3 technical replicates, one-tailed unpaired t-test) (e). 

Overexpression of RNF213 leads to a significant decrease in CV infection as measured by lower viral 

genome (c), protein (d) and titer (e). Asterisks indicate p-values with * p < 0.05 and ** p < 0.01. Source 

data are provided as a Source Data file. 
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Supplementary Figure 9. RNF213 counteracts Listeria infection in vitro 

(a) HeLa cells were infected with Listeria monocytogenes EGD (Listeria) and cultured for up to 48 h post 

infection (p.i.) at a multiplicity of infection (MOI) of 25. Immunoblotting against Listeria EF-TU confirmed 

infection, while phosphorylated STAT1 (pSTAT1, Y701) showed a slight induction of type-I interferon 

signaling 24 h post infection. Tubulin was used as loading control. (b) HeLa cells were infected with 

Listeria for 16 h at MOI 25. 24 h prior to infection, cells were transfected with a pool of siRNAs against 

RNF213 (siRNF213 pool, used in all other experiments) or individual siRNAs against RNF213 (siRNF213 

D, siRNF213 INV6645, siRNF213 INV4009) or a pool of scrambled siRNAs (siScramble). The percentage 

of bacteria inside cells is shown relative to siScramble-transfected cells (AVG ± SEM, n=4 independent 

experiments, two-tailed unpaired t-test). (c-d) HeLa cells were infected with Listeria for 1 h at MOI 25. 24 

h prior to infection, cells were transfected with plasmids encoding 3xFLAG-RNF213 or 3xFLAG-

RNF213ΔC or with an empty vector (mock) as control (c). Alternatively, 24h prior to infection, cells were 

transfected with siRNF213 or siScramble as control (d). Intracellular Listeria were quantified after serial 

dilution by counting colony-forming units (CFUs) in a gentamycin assay (AVG ± SEM, n=4 independent 

experiments, two-tailed unpaired t-test). Knockdown or overexpression of RNF213 did not affect bacterial 

uptake. (e) HeLa cells were infected with Listeria for 16 h at MOI 25. 48 h prior to infection, cells were 

transfected with a pool of siRNAs targeting RNF213 (siRNF213) or a pool of non-targeting scrambled 

siRNAs (siScramble) as control. Additionally, 24 h prior to infection cells were transfected with a plasmid 

encoding HA-ISG15 or with an empty vector (mock) as control.  Intracellular Listeria were quantified after 

serial dilution by counting colony-forming units (CFUs) in a gentamycin assay. The percentage of 

intracellular bacteria relative to mock transfected cells is shown (AVG ± SEM, n=3 independent 

experiments, two-tailed unpaired t-test). Asterisks indicate p-values with * p > 0.05, ** p > 0.01 and *** p 

> 0.001. Source data are provided as a Source Data file. 
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Supplementary Figure 10. RNF213 colocalizes with lipid droplets and intracellular Listeria 

monocytogenes 

(a) HeLa cells transfected with eGFP-RNF213 and counterstained for lipid droplets (LDs). Following 

transfection cells were left untreated or infected with Listeria monocytogenes EGD (Listeria) for 24 h at a 

multiplicity of infection (MOI) of 25. Using microscopy images from the experiment shown in Figure 8A, 

lipid droplets (LDs) in uninfected (n=66 cells) and Listeria-infected cells (n=40 cells) were quantified with 

Fiji and the number of LDs per cell was calculated (representative results from a single experiment, two-

tailed unpaired t-test, AVG uninfected = 46.03, AVG Listeria-infected = 88.24). (b) (upper panel) 

Representative image of HeLa cells infected with Listeria monocytogenes EGD stably expressing mCherry 

(Listeria) at a multiplicity of infection (MOI) of 20 for 6 h. Cells were transfected with eGFP-RNF213 for 

48 h prior to infection, scale bar is 10 microns. (lower panels) Insets showing colocalization of ubiquitin 

and RNF213 to the surface of cytosolic bacteria. Actin is shown in blue, RNF213 in green, bacteria in red, 

and ubiquitin in magenta (FK2 antibody), scale bar is 1 micron. All images were taken with a 63× Plan Apo 

objective of 8-11 optical sections (0.24µm) through the middle of the cell; images were deconvolved with 

Zeiss Zen imaging software. Asterisk indicates the p-value with * p < 0.05. Source data are provided as a 

Source Data file. 
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Supplementary Figure 11. CRISPR/Cas9 generation of RNF213 knockout mice  

(a) Generation of C57BL/6J RNF213 KO mice. The largest exon (exon 28) of the Rnf213 gene is 3603 bp 

and was targeted by 2 gRNAs, Rnf213_gRNA1 with protospacer sequence 5’ 

CAGAGCTTCGGAACTTTGCT 3’ and Rnf213_gRNA2, with protospacer sequence 5’ 

TGTGCCCCTCATCAACCGTC 3’. The distance between the Cas9 cut sites of both gRNAs is 2842 bp. 

Screening for the deletion between both gRNAs was done with primers Rnf213_FW1 (5’ 

AGTTTCTTGATCTCTTCCCC 3’) and Rnf213_Rev6 (5’ CTCCTCCGTCAGATCCCTA 3’) generating 

a wild type PCR fragment of 3363 bp and a fragment of 523 bp in case of an exact deletion between both 

Cas9 cut sites. Several founders showed a deletion band. Founder 290-7 was further analyzed and showed 

a deletion of 2854 bp, resulting in a frameshift and premature stopcodons resulting in mouse line B6J-

RNF213em1Irc. This line was used for further breeding and the generation of Rnf213 -/- and Rnf213 +/+ 

littermate control mice. 
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Supplementary Figure 12. RNF213 knockout mice are strongly susceptible to Listeria infection 

(a-d) Rnf213 -/- and Rnf213 +/+ littermates were infected intravenously with 5 × 105 Listeria monocytogenes 

EGD (Listeria). Liver and spleen were isolated following 72 h of infection, and CFUs per organ were 

counted by serial dilution and replating; dots and squares depict individual animals (representative result 

of a single experiment, AVG ± SEM, two-tailed Mann–Whitney test). (a-b) Six mice per genotypes were 

used in experiment 2. (c-d) Seven Rnf213-/- and eight Rnf213+/+ mice were used in experiment 3 (note that 

the results of experiment 1 are shown in Fig. 9). Thus, in three independent experiments, 72 h post infection 

Rnf213-/- animals showed significantly higher bacterial loads in liver (~1 log) and spleen (~5 logs). (e-g)  

Twelve week old Rnf213-/- and Rnf213+/+ were infected intranasally with 6 x 106 plaque forming units 

(PFUs) of in-house generated mouse-adapted human respiratory syncytial virus (RSV) after isoflurane 

based sedation. Seventeen mice (n=9 Rnf213+/+ and n=8 Rnf213-/- littermates) were euthanized on day 5 post 

infection to determine the lung viral titers by serial dilution (e) (representative result of a single experiment, 

MED, two-tailed Mann–Whitney test, n.s. = not significant, p = 0,1742). Ten mice (n=5 for both genotypes) 

were used to follow-up bodyweight (f) (representative result of a single experiment, AVG ± SEM, two-way 

ANOVA test up-to day 7 post infection) and survival rate (g) (Mantel-Cox test) up to 14 days post infection. 

Asterisks indicate p-values with * p < 0.05, ** p < 0.01 and *** p < 0.001. Source data are provided as a 

Source Data file. 
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Supplementary Figure 13. The RNF213 E3 module is required for lipid droplet localization  

(a) Representative images of HeLa cells transfected with eGFP-RNF213 or eGFP-RNF213ΔC for 72 hours. 

Following transfection cells were left untreated for 18 h and then fixed (DAPI = 4′,6-diamidino-2-

phenylindole). Scale bars in the pictures and insets are respectively 10 microns and 0.5 microns. While 

eGFP-RNF213 adopts a spherical pattern reminiscent of lipid droplet localization reported by Sugihara et 

al., 2019 [1], eGFP-RNF213ΔC shows a diffuse cellular staining. (b) Representative images of an 

independent experiment in which HeLa cells were transfected with eGFP-RNF213ΔC and counterstained 

for lipid droplets. 72 hours post transfection cells were left untreated for 18h and then fixed. Scale bars in 

the pictures are 10 microns. Again, eGFP-RNF213ΔC was spread throughout the cell without co-

localization to lipid droplets. 



Supplementary Table 1. List of Listeria monocytogenes  strains used in this study

Strain names Characteristics Collection no.
Antibiotic 
Resistance

Reference

EGD L. monocytogenes  wild-type strain RAD0002/ BUG600 Murray et al 2

EGD - mCherry
pAD-PactA -mCherry chromosomally 
integrated in EGD

RAD0058
Chloramphenicol (7.7 

μg/ml)
This study***

EGDe prfA*
EGDe strain expresses a constitutively active 
form of PrfA carrying a point mutation 
(G145S)

RAD0010/ 
BUG3057 Bécavin et al 3

EGDe prfA* ΔplcA ΔplcB Δhly
L. monocytogenes strain  EGDe prfA* 
harboring chromosomal deletions of plcA , 
plcB , and hly

RAD0014/ 
BUG3648 Radoshevich et al 4



Supplementary Table 2. List of plasmids used in this study.

Plasmid name Characteristics Collection no.
Antibiotic 
Resistance

Reference/accession 
number

pGL-T9G_MXB mamalian expression of human MXB / / Crameri et al 5

pMET7-GAG-ISG15GG Virotrap mature ISG15 / Carbenicilline Available upon request**

pMET7-GAG-ISG15AA Virotrap non-conjugatable ISG15 / Carbenicilline Available upon request**

pMET7-GAG-ISG15precursor Virotrap precursor ISG15 / Carbenicilline Available upon request**

pGL4.14-3xFLAG-RNF213 mamalian expression of human RNF213 BUG006 Carbenicilline Available upon request*

pCMV3-FLAG-HOIP (RNF31) mamalian expression of human RNF31 / Carbenicilline Addgene #50015

pRK5-HA-RNF4 mamalian expression of human RNF4 / Carbenicilline Addgene #59743

pMET7-Flag-eGFP mamalian expression of eGFP BUG001 Carbenicilline Available upon request*

pcDNA3.1-HA-ISG15GG
mamalian expression of human mature 
ISG15

BUG002 Carbenicilline Available upon request*

pcDNA3.1-HA-ISG15AA
mamalian expression of human non-
conjugatable ISG15

BUG003 Carbenicilline Available upon request*

pcDNA3-hUbe1L Addgene #12438 / Carbenicilline Addgene #12438

pcDNA3.1-Ubch8 Addgene #12442 / Carbenicilline Addgene #12442

pTriEx2-hHERC5 Available upon request* BUG024 Carbenicilline Available upon request*

pDEST-eGFP-RNF213 Available upon request* BUG016 Kanamycin Available upon request*

pGL4.14-3xFLAG-RNF213Δ Available upon request* BUG043 Carbenicilline Available upon request*

pMet7-FLAG -C-domain-RNF213 Available upon request* BUG054 Carbenicilline Available upon request*

pDEST-eGFP-RNF213ΔC. Available upon request* BUG077 Kanamycin Available upon request*

3xFLAG-RNF213R4810K, Available upon request* BUG120 Carbenicilline Available upon request*



lentiCRISPRv2 vector Addgene #52961 / / Addgene #52961

psPAX2 Addgene #12260 / / Addgene #12260

pMD2.G Addgene #12259 / / Addgene #12259

pSpCas9(BB)-2A-Puro (PX459) Addgene #48139 / / Addgene #48139

pMD2.G Addgene #12259 / / Addgene #12259

pcDNA3-FLAG-VSV-G Addgene #80606 / / Addgene #80606

pMET7-GAG-EGFP necessayr for GFP-positive lentiviral particles / Carbenicilline Addgene #80605

pSVsport (Mock plasmid) Thermo Fisher Scientific #10586014 BUG001 Carbenicilline
Thermo Fisher Scientific 
#10586014

pPL2
L. monocytogenes  site-specific phage 
integration vector

BUG2176
Chloramphenicol (35 

μg/ml) Lauer et al 6

pAD-PactA -mCherry
pPL2 expressing codon optimized mCherry 
under control of PactA

LRP0120
Chloramphenicol (35 

μg/ml)
This study***

*Francis.impens@vib-ugent.be

**Sven.eyckerman@vib-ugent.be

***Lilliana-radoshevich@uiowa.edu



Information Sequence/product number Provider

Primers

primer qRT-PCR for HPRT gene 
used in CV infection (forward)

AGTCTGGCTTATATCCAACACTTCG
Biotez (Berlin, 

Germany)

primer qRT-PCR for HPRT gene 
used in CV infection (reverse)

GACTTTGCTTTCGGTCAGG
Biotez (Berlin, 

Germany)

primer qRT-PCR for HPRT gene 
used in CV infection (probe)

TTTCACCAGCAAGCTTGCGACCTTGA
Thermo Fisher 

Scientific

primer qRT-PCR for CV genome 
used in CV infection (forward)

CCCTGAATGCGGCTAATCC
Biotez (Berlin, 

Germany)

primer qRT-PCR for CV genome 
used in CV infection (reverse)

ATTGTCACCATAAGCAGCCA
Biotez (Berlin, 

Germany)

primer qRT-PCR for CV genome 
used in CV infection (probe)

FAM-TGCAGCGGAACCG-MGB
Thermo Fisher 

Scientific

primer PCR for RNF213 
knockout mice (forward)

AGTTTCTTGATCTCTTCCCC 

Integrated DNA 
Technologies 

(ID&T) (Leuven, 
Belgium)

primer PCR for RNF213 
knockout mice (reverse)

CTCCTCCGTCAGATCCCTA

Integrated DNA 
Technologies 

(ID&T) (Leuven, 
Belgium)

siRNA

siRNA pool against RNF213 #M-023324-02
GE Healthcare 

Dharmacon

siRNA single against RNF213 #D-023324-05
GE Healthcare 

Dharmacon

siRNA single against RNF213 #HSS126645
Thermo Fisher 

Scientific

siRNA single against RNF213 #HSS184009
Thermo Fisher 

Scientific

siRNA non-targeting scramble #D-001210-01-05
GE Healthcare 

Dharmacon

siRNA single non-targeting 
scramble

#D-001210-01-05
GE Healthcare 

Dharmacon

Supplementary Table 3. List of primers used for qRT-PCR, siRNA sequences used for knockdown experiment and guide RNA 
sequences used for the generation of knockout HeLa cell lines .



siRNA pool non-targeting 
scramble

#D-001206-13-05
GE Healthcare 

Dharmacon

siRNA pool against ISG15 #M-004235-04-005
GE Healthcare 

Dharmacon

gRNA for Cas9 nucleases
gRNA1 used for ISG15 
knocknout HeLa cells

CACCGGAACTCATCTTTGCCAGTACAGG
Biotez (Berlin, 

Germany)

gRNA2 used for ISG15 
knocknout HeLa cells

AAACGTACTGGCAAAGATGAGTTCC
Biotez (Berlin, 

Germany)

gRNA1 from plasmid 1 used for 
RNF213 knocknout HeLa cells

CACCGGAGGCAGCCTCTCTCCGCAC

Integrated DNA 
Technologies 

(ID&T) (Leuven, 
Belgium)

gRNA2 from plasmid 1 used for 
RNF213 knocknout HeLa cells

AAACGTGCGGAGAGAGGCTGCCTCC

Integrated DNA 
Technologies 

(ID&T) (Leuven, 
Belgium)

gRNA1 from plasmid 2 used for 
RNF213 knocknout HeLa cells

CACCGTGCAGCCCCCATAGCAGGTG

Integrated DNA 
Technologies 

(ID&T) (Leuven, 
Belgium)

gRNA2 from plasmid 2 used for 
RNF213 knocknout HeLa cells

AAACCACCTGCTATGGGGGCTGCAC

Integrated DNA 
Technologies 

(ID&T) (Leuven, 
Belgium)

gRNA1 used for RNF213 
knocknout mice

CAGAGCTTCGGAACTTTGCT

Integrated DNA 
Technologies 

(ID&T) (Leuven, 
Belgium)

gRNA2 used for RNF213 
knocknout mice

TGTGCCCCTCATCAACCGTC

Integrated DNA 
Technologies 

(ID&T) (Leuven, 
Belgium)

Legend: guide RNA (gRNA).
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