Appendix

Reconstruction Boolean network ensembles form single-cell data for unravelling dynamics in the aging of human hematopoietic stem cells

Julian D. Schwab^{a,#}, Nensi Ikonomi^a, Silke D. Werle^{a,#}, Felix M. Weidner^{a,#}, Harmut Geiger^b, Hans A. Kestler^{a,*}

 ^aInstitute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
 ^bDepartement of Molecular Medicine, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
 [#]equal contribution

*corresponding author

15

10

5

Tables

Table A.1 Available single-cell RNA sequencing data for HSC aging. Summary of available datasets including information on reference, species, number of samples, and details on the sample composition.

number of sum	ies, and details	on the sumple e	omposition.	
Author	Accession number	Species	#Samples	Comment
Kowalczyk et al. 2015 [1]	GSE59114	Mus musculus	2128	-Two mouse strains -All mice are pooled -LT-HSC, ST-HSCs, and MPPs from young and old mice
Grover et al. 2016 [2]	GSE70657	Mus musculus	135	-2 ages -only LT- HSCs
Kirschner et al. 2017 [3]	GSE87687	HPC7 cells from mus musculus	12	-TPO treatment -4 points in times of treatment

	GSE87631	Mus musculus	1152	-2 mouse strains: WT and Jak2V617F -2 ages (young and old) -mice are pooled
Ratliff et al. 2020 [4]	GSE138544	Homo sapiens	730	-8 individuals -8 time points

Table A.2 Complete inactive genes in all ensemble networks. The color legend indicates if the literature findings match the expected behavior of a quiescent LT-HSC. Green indicates that the activity is coherent with quiescent HSC, while for pink genes, the activity is contrasting. For blue highlighted genes, we did not find any information in the context of HSCs. In total, genes that have an activity level < 1% are considered to be inactive.

Gene	Literature	Reference
ZAP70	T-, B-, NK cells specific factor. Its loss causes loss of CD8+.	[5,6]
VCAM1	VCAM-1 is minimally expressed on most resting vascular endothelial cells and is inducible in many tissue vascular beds following injury or stress.	[7]
TRAF3	Evidence of activity in myeloid cells.	[8]
TRAF2	TRAF2 is both a target of CYLD and an activator of TNIK and CTNNB1. Loss of TNIK does not alter HSC but his hyperactivation causes leukemic transformation.	[9, 10]
TRADD	TRADD is activated upon stress stimulation.	[11]
TRAF1	Activated upon TPO specific stimulation.	[12, 13]
TNFSF11 (RANKL)	Involved in osteoclasts formation. Expressed by osteoblasts and stroll cells. It is an NF- κ B activator that binds to its surface receptor in osteoblast and osteoclast progenitors.	[14]
TNFRSF1A	TNFRSF1A (p55) is constitutively expressed. Its loss does not affect HSCs.	[15]
TNFRSF11 A	Is the receptor of RANKL and is involved in osteoclast differentiation.	[14]
TNFAIP3	Its expression is reduced in aged HSC. Nevertheless, it is induced upon TNF stimulation.	[16, 17]
TNF	External stimulator of HSC behavior.	[17]

TLR4	Hematopoietic progenitors express TLR4. When stimulated with TLR4 ligand myeloid progenitors give rise to monocytes or macrophages	[18, 19]
TIRAP	Constitutive expression of TIRAP in HSCPCs promotes upregulation of interferon- γ promoting bone marrow failure. It is also responsible for the induction of myelodysplastic syndrome.	[20]
TICAM2	Neutrophil influencing factor, whose activity relates to their exhaustion.	[18]
TICAM1	Responsible for response to bacterial-produced LPS in HSCs. Plays a role therefore in infections and stress-induced proliferation of HSCs.	[21]
TAB2	Tab1/Tab2 double deletions completely eliminated the reconstitution activity of HSCs, whereas Tab1 or Tab2 single deletion did not cause any abnormality. Tab1/Tab2 double deficient lineage-negative, Sca-1+, c-Kit+ (LSK) cells did not proliferate and underwent cell death. Relevant for HSC activation, nevertheless here we are looking at LT-HSCs, which are not activated yet. Nonetheless, mong bone marrow cells, the mRNA levels of Tak1, Tab1, and Tab2 were significantly higher in the undifferentiated populations including LT-HSCs and progenitor cells compared to differentiated bone marrow cells.	[22]
TAB1	Tab1/Tab2 double deletions completely eliminated the reconstitution activity of HSCs, whereas Tab1 or Tab2 single deletion did not cause any abnormality. Tab1/Tab2 double deficient lineage-negative, Sca-1+, c-Kit+ (LSK) cells did not proliferate and underwent cell death. Relevant for HSC activation, nevertheless here we are looking at LT-HSCs, which are not activated yet. Nonetheless, mong bone marrow cells, the mRNA levels of Tak1, Tab1, and Tab2 were significantly higher in the undifferentiated populations including LT-HSCs and progenitor cells compared to differentiated bone marrow cells.	[22]
SYK	Largely expressed in progenitors and Vascular endothelial cells. Expressed as fusion protein TEL-SYK causes fatal myelopoiesis in mice.	[22]
RIPK1	Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3- mediated necroptosis.	[23]
RELA	RELA is down-regulated in LT-HSCs by ZFP521, which preserves their quiescence and self-renewal. Activation of RELA via loss of ZFP521 leads to	[24]

	uncontrolled NF- κ B activation, loss of quiescence, increased proliferation, and apoptosis.	
RELB	Knockout induces excessive quiescence via loss of self- renewal and impaired engraftment of HSCs.	[25]
PTGS2	PTGS2 is relevant in HSC formation and recovery after injury. Its up-regulation promotes the expansion of HSCs.	[26, 27]
PRKCQ	Mainly expressed in muscle and lymphoid tissue (T and B cells, thymocytes). Its expression is connected to the oncogenic growth of stem cells.	[28, 29]
PRKCB	Hyper expressed in HSCs during psoriasis disease.	[28]
PLCG2	Specific to megakaryocytes.	[30]
PLCG1	Required for the maintenance of leukemic stem cells.	[31]
PLAU	PLAU is the receptor of uPAR. Mobilized HSCs are uPAR negative.	[32]
NFKB2	Constitutive activation of NFKB2 and 1 causes bone marrow failure and loss of quiescence gene signature.	[33]
PIAS4	-	-
PARP1	Involved in oxidative stress protection of HSC induced by salidroside. Induced in DNA damage response and highly expressed in AML, where it is used as a prognostic factor.	[34, 35]
NFKB1	Constitutive activation of NFKB2 and 1 causes bone marrow failure and loss of quiescence gene signature.	[33]
MYD88	Involved in myeloid and lymphoid differentiation. Activated in HSCs after bone marrow transplantation. Also known to drive the proliferation of HSCs upon infection.	[36, 37]
MAP3K7	Tak1 single or Tab1/Tab2 double deletions completely eliminated the reconstitution activity of HSCs. Among bone marrow cells, the mRNA levels of Tak1, Tab1, and Tab2 were significantly higher in the undifferentiated populations including LT-HSCs and progenitor cells compared to differentiated bone marrow cells.	[22]
MAP3K14	Constitutive activation of MAP3K14 (NIK) impairs self- renewal and induces bone marrow failure.	[38]
LY96	Leukocyte specifically expressed gene.	[39]
LTA	Lymphoid lineage marker that is expressed at low levels in HSCs and progenitors.	[40]
LTB	Lymphoid lineage marker that is expressed at low levels in HSCs and progenitors.	[40]
LCK	T cell-specific activated promoter.	[41]
LBP	Mediator of endotoxemia.	[42]

IRAK1	IRAK1 is overexpressed in cells with myelodysplastic syndromes.	[43]
IL1B	Important for differentiation into myeloid cells and chronic IL-1 exposure impairs HSC self-renewal capacity.	[44]
IKBKG	-	-
ICAM1	ICAM-1 is a secreted factor by the bone marrow and ICAM-1 deficient mice HSCs show impaired quiescence.	[45]
GADD45G	Can induce differentiation of LT-HSC and cytokine induction.	[46]
GADD45B	Important for the genotoxic stress response of the bone marrow and thus affect the survival of hematopoietic cells.	[47]
GADD45A	Important for the genotoxic stress response of the bone marrow and thus effect the survival of hematopoietic cells.	[47]
EDARADD	-	-
EDAR	-	-
EDA2R	Upregulated in the bone marrow post-irradiation.	[48]
EDA	-	-
DDX58	Induced during myelopoiesis.	[49]
CXCL8	Rapidly mobilized in cells with long-term repopulating potential in the peripheral blood.	[50]
CXCL3	Upregulated in human quiescent HSCs in comparison to proliferating ones; Oct-1 a repressor of CXCL3 is highly expressed in CD34 ⁺ HPC.	[51, 52]
CXCL2	Upregulated in human quiescent HSCs in comparison to proliferating ones.	[52]
CXCL12	Constantly expressed in the bone marrow.	[50]
CXCL1	Upregulated in human quiescent HSCs in comparison to proliferating ones.	[52]
CSNK2B	Nothing is known for HSCs, but it is an important factor for bone health indicating secretion by the bone.	[53]
CSNK2A2	q-PCRs showed only CSNK2A2 expression in 1 out of 11 HSCs.	[54]
CHUK	Active when HSC differentiate	[55]
CD40LG	Involved in lymphoproliferation	[56]
CD40	Expressed in the bone marrow.	[57]
CD14	Mesenchymal progenitor cells in humans lack expression of CD14.	[58]
CCL4L2	Oct-1 a repressor of CCL4L2 is highly expressed in CD34 ⁺ HPC.	[51]
CCL4	Secreted by the bone marrow.	[50]
CCL21	Secreted by the bone marrow.	[50]

CCL19	Secreted by the bone marrow.	[50]
CCL13	Expressed by surrounding cells.	[59]
CARD11	-	-
CARD10	CARD10 expression accumulates during differentiation.	[60]
BTK	Expressed in all hematopoietic lineage, except T-cells.	[61]
BLNK	Downregulated in aged HSCs.	[62]
BIRC2	-	-
BCL2L1	Important for senescent HSCs.	[63]
BCL2A1	-	-
BCL2	Populations of HSCs show only a few BCL-2 expression cells.	[64]
BCL10	Essential in lymphoid immune cells.	[65]
TRIM25	-	-
TNFRSF14	Involved in mesenchymal stem cells. Not known for hematopoietic stem cells.	-
UBE21	-	-
IL1R1	IL1 β signaling is not essential for the normal maintenance of HSCs. Chronic exposure to the ligand inhibits bone marrow hematopoietic stem cell proliferation. IL1R1 loss does not affect HSCs during maintenance or homeostasis.	[66]

Table A.3 Expected hallmarks of HSCs aging matched by the attractor landscape. Mainly described hallmarks of HSC aging are reported and their matched attractor activity. Green indicates that the hallmark is captured by the attractor landscape. Pink indicates that the hallmark is not captured by the attractor pattern.

Hallmark of aging	References
Loss of quiescence/ reduced self-renewal	[62, 67]
Altered DNA damage response	
Myeloid skewing	
Altered cellular polarity	
Altered homing/repopulation abilities	
Increased inflammatory response	
Telomere extension	
Impaired autophagy/metabolic activation	

Figures

Figure A.1: Clustering of log-normalized gene expression data of NF- κ B pathway by individual (eight individuals in total: young A = 19 years old (y.o), B = 40 y.o., C = 21 y.o., D = 37 y.o., aged A = 66 y.o., B = 70 y.o., C = 61 y.o., D = 68 y.o.). Aged Samples are colored in different shades of grey and young in shades of green.

Figure A.2: Clustering log-normalized and z-transformed gene expression data of NFκB pathway by individual (eight individuals in total: young A = 19 years old (y.o), B =
40 y.o., C = 21 y.o., D = 37 y.o., aged A = 66 y.o., B = 70 y.o., C = 61 y.o., D = 68 y.o.). Aged samples are colored in different shades of grey and young in shades of green.

Figure A.3: tSNE plot of gene expression data of NF- κ B genes (according to KEGG-DB) using log-normalized expression data. Data was centered and z-transformed before applying tSNE, all using the R-package Seurat. Each dot shows one sample. Aged samples are colored in red, young samples in blue.

Figure A.4: tSNE plot of gene expression data of NF- κ B genes (according to KEGG-DB) using log-normalized expression data. Data was centered and z-transformed before applying tSNE, all using the R-package Seurat. Each dot shows one sample. Samples are colored according to the corresponding individual (eight individuals in total: young A = 19 years old (y.o), B = 40 y.o., C = 21 y.o., D = 37 y.o., aged A = 66 y.o., B = 70 y.o., C = 61 y.o., D = 68 y.o.).

Figure A.5: Runtime of network reconstruction algorithms using *best-fit algorithm* with and without *inferInput* by Maucher et al. [68] as preprocessing step (here named filtered best-fit). Runtime is measured in seconds (y-axis). The x-axis shows the varying network size. 20 time series tuples were measured for each of 100 random networks of each size between 20 and 200 in steps of 20. Simulation was performed for both on non-noisy (A) and noisy (5% noise, B) time-series data.

inputs in each regulatory function for each reconstructed network with the corresponding original network. Figure A shows the results for the reconstruction from data without noise, Figure B for reconstruction from data with 5% noise. The sensitivity distribution is measured over the 100 random networks of each size from 20 to 200 (xaxis), respectively. All reconstructions are based on time- series with 20 time points.

Results are measured for the different reconstruction approaches best-fit (red) and filtered best-fit with inferInput by Maucher et al. [68] as preprocessing step (blue).

Figure A.7: Boxplots showing the measured specificity when predicting the regulatory inputs in each regulatory function for each reconstructed network with the corresponding original network. Figure A shows the results for the reconstruction from data without noise, Figure B for reconstruction from data with 5% noise. The sensitivity distribution is measured over the 100 random networks of each size from 20 to 200 (x-

90

axis), respectively. All reconstructions are based on time- series with 20 time points. Results are measured for the different reconstruction approaches best-fit (red) and filtered best-fit with inferInput by Maucher et al. [68] as preprocessing step (blue).

Figure A.8: Runtime of network reconstruction algorithms using best-fit algorithm and filtered best-fit algorithm with *inferInput* by Maucher et al. [68] as preprocessing step. Runtime is measured in seconds (y-axis). Time-scales on the y-axis are shown in logarithmic scaling. The x-axis shows the varying network size. 10 random networks of each size between |V| = 20 and |V| = 200 in steps of 20 were created. Based on these network time-series with |V| + 10 number of time points. Simulation was performed for

both on non-noisy (A) and noisy (B) time-series data.

Figure A.9: Boxplots showing the measured sensitivity when predicting the regulatory inputs in each regulatory function for each reconstructed network with the corresponding original network. Figure A shows the results for the reconstruction from data without noise, Figure B for reconstruction from data with 5% noise. The sensitivity distribution is measured over the 100 random networks of each size from 20 to 200 (x-

110 axis), respectively. Reconstructions are based on time-series with |V| + 10 time points, where |V| refers to the number of regulatory components in the network. Results are measured for the different reconstruction approaches *best-fit* (red) and *filtered best-fit* with *inferInput* by Maucher et al. [68] as preprocessing step (blue).

Figure A.10: Boxplots showing the measured specificity when predicting the regulatory inputs in each regulatory function for each reconstructed network with the corresponding original network. Figure A shows the results for the reconstruction from data without noise, Figure B for reconstruction from data with 5% noise. The sensitivity

120 distribution is measured over the 100 random networks of each size from 20 to 200 (x-axis), respectively. Reconstructions are based on time-series with |V| + 10 time points, where |V| refers to the number of regulatory com- ponents in the network. Results are measured for the different reconstruction approaches *best-fit* (red) and *filtered best-fit* with *inferInput* by Maucher et al. [68] as preprocessing step (blue).

Figure A.11: Static measures per individual. The four properties as described in Section 2.6 for each individual (eight individuals in total: young A = 19 years old. (y.o.), B = 40 y.o., C = 21 y.o., D = 37 y.o., aged A = 66 y.o., B = 70 y.o., C = 61 y.o., D = 68 y.o.).

- Figure A.12: Comparison of interactions with String DB. (A) shows the matrix of the
 comparison of all young network interactions to the STRING DB using experimental
 and database knowledge. (B) shows the matrix of the comparison of all aged network
 interactions to the STRING DB using experimental and database knowledge. (C) shows
 the matrix of the comparison of all young network interactions to the STRING DB
 using experimental, database knowledge, text-mining, and co-expression knowledge.
 (D) shows the matrix of the comparison of all aged network interactions to the STRING
- (D) shows the matrix of the comparison of all aged network interactions to the STRING DB using experimental, database knowledge, text-mining, and co-expression knowledge. Yellow indicates matches between Boolean network and STRING DB, green mean no interaction in the Boolean network, and blue indicates a mismatch between Boolean network and STRING DB.

Figure A.13: Boxplots showing attractor properties in different ensembles. The number of attractors of each network within the ensembles was measured and grouped via age

(A) and individual (C). The number of attractors found for each network within the ensembles was measured and grouped via age (A) and individual (C). The number of attractors found for each network within the ensembles was measured and grouped via age (B) and individual (D). Attractors were simulated exhaustively for all 100 networks in the ensembles representing each individual in 20 repeated runs (1000 random pseudo time tuples per run; eight individuals in total: young A = 19 years old (y.o.), B = 40 y.o., C = 21 y.o., D = 37 y.o., aged A = 66 y.o., B = 70 y.o., C = 61 y.o., D = 68 y.o.).

Figure A.14: Boxplots showing the number of bi-fan and feedforward loop motifs measured in the 2000 randomly sampled networks from each individuals' ensemble (100 networks with 20 repetitions). Individuals are encoded as follows: young A = 19 years old (y.o.), B = 40 y.o., C = 21 y.o., D = 37 y.o., aged A = 66 y.o., B = 70 y.o., C = 61 y.o., D = 68 y.o.

References

- Kowalczyk MS, Tirosh I, Heckl D et al. (2015) Single-cell RNAseq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25:1860-1872.
 - 2. Grover A, Sanjuan-Pla A, Thongjuea S et al. (2016) Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat Commun. 7:11075.
 - 3. Kirschner K, Chandra T, Kiselev V et al. (2017) Proliferation Drives Aging-Related Functional Decline in a Subpopulation of the Hematopoietic Stem Cell Compartment. Cell Rep. 19:1503-1511.

170

-

	4.	Ratliff ML, Garton J, James JA, Webb CF (2020) ARID3a
		expression in human hematopoietic stem cells is associated with
		distinct gene patterns in aged individuals. Immun Ageing. 17:1-
		15.
180	5.	Cuvelier GDE, Rubin TS, Wall DA, Schroeder ML (2016) Long-
		term outcomes of hematopoietic stem cell transplantation for
		ZAP70 deficiency. J Clin Immunol. 36:713-724.
	6.	Otsu M. Steinberg M. Ferrand C et al. (2002) Reconstitution of
		lymphoid development and function in ZAP-70–deficient mice
185		following gene transfer into bone marrow cells. Blood, 100:1248-
100		1256.
	7.	Ulvanova T. Scott LM. Priestley GV et al. (2005) VCAM-1
	<i>.</i>	expression in adult hematopoietic and nonhematopoietic cells is
		controlled by tissue-inductive signals and reflects their
190		developmental origin Blood 106.86-94
170	8	Lalani AL Moore CR Luo C et al. (2015) Myeloid cell TRAF3
	0.	regulates immune responses and inhibits inflammation and tumor
		development in mice. I Immunol 194.334-348
	9	Amrein MA Bührer FD Ruckstuhl C Hönner S Riether C
195	γ.	Ochsenbein A (2017) The Traf? and Nck-Interacting Kinase Is a
175		Conserved Regulator of Self-Renewal in Hematonoietic and
		Leukemia Stem Cells Blood
	10	Tesio M Tang Y Müdder K et al. (2015) Hematopoietic stem cell
	10.	quiescence and function are controlled by the CYLD–TRAF2–
200		n38MAPK nathway I Exp Med 212:525-538
200	11	Baldridge MT King KY Goodell MA (2011) Inflammatory
		signals regulate hematopoietic stem cells. Trends in immunology.
	12	Biechonski S. Yassin M. Milvaysky M (2017) DNA-damage
	121	response in hematopoietic stem cells: an evolutionary trade-off
205		between blood regeneration and leukemia suppression.
200		Carcinogenesis
	13.	Graaf CAD, Kauppi M, Baldwin T et al. (2010) Regulation of
	101	hematopoietic stem cells by their mature progeny. Proc Natl Acad
		Sci U S A. 107:21689-21694.
210	14.	Boyce BF. Xing L (2007) The Rankl/Rank/Opg pathway. Current
210	1 11	osteoporosis reports.
	15	Schuettpelz L, Link D (2013) Regulation of hematopoietic stem
	101	cell activity by inflammation. Front Immunol. 4:204.

- 20
- 20

	16.	Smith MA, Culver-Cochran AE, Adelman ER et al. (2020)
215		TNFAIP3 plays a role in aging of the hematopoietic system. Front
		Immunol. 11:536442.
	17.	Yamashita M, Passegué E (2019) TNF-α coordinates
		hematopoietic stem cell survival and myeloid regeneration. Cell
		Stem Cell. 25:357-372.
220	18.	Lin RC, Zhang Y, Pradhan K, Li L (2020) TICAM2-related
		pathway mediates neutrophil exhaustion. Sci Rep. 10:14397.
	19.	Nagai Y. Garrett KP. Ohta S et al. (2006) Toll-like receptors on
	- / .	hematopoietic progenitor cells stimulate innate immune system
		replenishment. Immunity. 24:801-812.
225	20.	Ibrahim R. Gonal A. Fuller M. Umlandt P. Chang L (2020)
		TIRAP drives myelosuppression through an Ifny-Hmgb1 axis that
		disrupts the marrow microenvironment. bioRxiv.
	21.	Takizawa H, Fritsch K, Kovtonyuk LV et al. (2017) Pathogen-
		induced TLR4-TRIF innate immune signaling in hematopoietic
230		stem cells promotes proliferation but reduces competitive fitness.
		Cell Stem Cell. 21:225-240.
	22.	Takaesu G, Inagaki M, Takubo K et al. (2012) TAK1 (MAP3K7)
		signaling regulates hematopoietic stem cells through TNF-
		dependent and-independent mechanisms. PLOS ONE.
235	23.	Roderick JE, Hermance N, Zelic M et al. (2014) Hematopoietic
		RIPK1 deficiency results in bone marrow failure caused by
		apoptosis and RIPK3-mediated necroptosis. Proc Natl Acad Sci U
		S A. 111:14436-14441.
	24.	Li Z, Fu X, Wu W et al. (2021) Zfp521 is essential for the
240		quiescence and maintenance of adult hematopoietic stem cells
		under stress. iScience. 24:102039.
	25.	Zhao C, Xiu Y, Ashton J et al. (2012) Noncanonical NF-κB
		signaling regulates hematopoietic stem cell self-renewal and
		microenvironment interactions. Stem Cells. 30:709-718.
245	26.	North TE, Goessling W, Walkley CR et al. (2007) Prostaglandin
		E2 regulates vertebrate haematopoietic stem cell homeostasis.
		Nature. 447:1007-1011.
	27.	Porter RL, Georger MA, Bromberg O et al. (2013) Prostaglandin
		E2 increases hematopoietic stem cell survival and accelerates
250		hematopoietic recovery after radiation injury. Stem Cells. 31:372-
		383.

	28.	Byerly J, Halstead-Nussloch G, Ito K, Katsyv I, Irie H (2016) PRKCO promotes oncogenic growth and anoikis resistance of a
255	29.	subset of triple-negative breast cancer cells. Breast Cancer Res. Meller N, Elitzur Y, Isakov N (1999) Protein kinase C-θ (PKCθ) distribution analysis in hematopoietic cells: proliferating T cells
		exhibit high proportions of PKC θ in the particulate fraction. Cell Immunol. 193:185-193.
	30.	Nakamura-Ishizu A, Takubo K, Kobayashi H, Suzuki-Inoue K,
260		Suda T (2015) CLEC-2 in megakaryocytes is critical for
		maintenance of hematopoietic stem cells in the bone marrow. J
		Exp Med. 212:2133-2146.
	31.	Schnoeder TM, Arreba-Tutusaus P, Mohr J et al. (2016) Myeloid
		leukemia stem cells depend on phospholipase C gamma 1 (Plcg1)
265		signaling. Blood. 128:1202.
	32.	Selleri C, Montuori N, Ricci P et al. (2005) Involvement of the
		urokinase-type plasminogen activator receptor in hematopoietic
	22	stem cell mobilization. Blood. 105:2198-2205.
	33.	Nakagawa MM, Chen H, Rathinam CV (2018) Constitutive
270		activation of NF-KB pathway in hematopoietic stem cells causes
		Erent Call Day Dial 6:142
	34	Gil Kulik P. Dudzińska F. Padzikowska Büchner F. et al. (2020)
	54.	Different regulation of PARP1_PARP2_PARP3 and TRPM2
275		genes expression in acute myeloid leukemia cells BMC Cancer
215		20:435
	35.	Li X. Erden O. Li L. Ye O. Wilson A. Du W (2014) Binding to
		WGR domain by salidroside activates PARP1 and protects
		hematopoietic stem cells from oxidative stress. Antioxid Redox
280		Signal. 20:1853-1865.
	36.	Fiedler K, Kokai E, Bresch S, Brunner C (2013) MyD88 is
		involved in myeloid as well as lymphoid hematopoiesis
		independent of the presence of a pathogen. Am J Blood Res.
		3:124.140.
285	37.	Yáñez A, Murciano C, O'Connor JE, Gozalbo D, Gil ML (2009)
		Candida albicans triggers proliferation and differentiation of
		hematopoietic stem and progenitor cells by a MyD88-dependent
		signaling. Microbes Infect. 11:531-535.
	38.	Xiu Y, Xue WY, Lambertz A, Leidinger M, Gibson-Corley K,
290		Zhao C (2017) Constitutive activation of NIK impairs the self-

		renewal of hematopoietic stem/progenitor cells and induces bone marrow failure. Stem Cells 35:777-786
	39.	McIntyre BAS. Alev C. Tarui H. Jakt LM. Sheng G (2008)
	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Expression profiling of circulating non-red blood cells in
295		embryonic blood. BMC Dev Biol. 8:21.
	40.	Höpner SS, Raykova A, Radpour R et al. (2021) LIGHT/LTβR
		signaling regulates self-renewal and differentiation of
		hematopoietic and leukemia stem cells. Nat Commun.
	41.	Bogert NV, Furkel J, Din S et al. (2020) A novel approach to
300		genetic engineering of T-cell subsets by hematopoietic stem cell
		infection with a bicistronic lentivirus. Scientific reports.
	42.	Gallay P, Heumann D, Le Roy D, Barras C, Glauser MP (1993)
		Lipopolysaccharide-binding protein as a major plasma protein
		responsible for endotoxemic shock. Proc Natl Acad Sci U S A.
305	42	90:9935-9938.
	43.	Rhyasen GW, Bolanos L, Fang J et al. (2013) Targeting IRAKT
		as a therapeutic approach for myelodysplastic syndrome. Cancer
	11	Distrag FM Mirantas Darhaita C Fong S at al. (2016) Chronia
210	44.	interleukin-1 exposure drives baematopoietic stem cells towards
510		precocious myeloid differentiation at the expense of self-renewal
		Nat Cell Biol 18:607-618
	45.	Liu YF, Zhang SY, Chen YY et al. (2018) ICAM-1 deficiency in
		the bone marrow niche impairs quiescence and repopulation of
315		hematopoietic stem cells. Stem Cell Reports. 11:258-273.
	46.	Thalheimer FB, Wingert S, De Giacomo P et al. (2014) Cytokine-
		regulated GADD45G induces differentiation and lineage selection
		in hematopoietic stem cells. Stem Cell Reports. 3:34-43.
	47.	Gupta M, Gupta SK, Balliet AG et al. (2005) Hematopoietic cells
320		from Gadd45a- and Gadd45b-deficient mice are sensitized to
		genotoxic-stress-induced apoptosis. Oncogene. 24:7170-7179.
	48.	Himburg HA, Sasine J, Yan X, Kan J, Dressman H, Chute JP
		(2016) A Molecular Profile of the Endothelial Cell Response to
	40	Ionizing Radiation. Radiat Res. 186:141-152.
325	49.	Zhang N-N, Shen S-H, Jiang L-J et al. (2008) RIG-I plays a
		critical role in negatively regulating granulocytic proliferation.
		PTOC NAU ACAU SCI U S A. 105:10555-10558.

	50.	Mukaida N, Tanabe Y, Baba T (2017) Chemokines as a conductor
		of bone marrow microenvironment in chronic myeloid leukemia.
330		Int J Mol Sci. 18:1824.
	51.	Pankratova EV, Stepchenko AG, Krylova ID, Portseva TN,
		Georgieva SG (2018) The regulatory interplay between Oct-1
		isoforms contributes to hematopoiesis and the isoforms imbalance
		correlates with a malignant transformation of B cells. Oncotarget.
335		9:29892-29905.
	52.	Sinclair A, Park L, Shah M et al. (2016) CXCR2 and CXCL4
		regulate survival and self-renewal of hematopoietic
		stem/progenitor cells. Blood. 128:371-383.
	53.	Chakrabarti S, Ren J, Wu J (2020) Phosvitin derived phospho-
340		peptides show better osteogenic potential than intact phosvitin in MC3T3-E1 osteoblastic cells. Nutrients. 12
	54.	Ramos CA, Bowman TA, Boles NC et al. (2006) Evidence for
		diversity in transcriptional profiles of single hematopoietic stem
		cells. PLoS Genet. 2:e159.
345	55.	Bottero V, Withoff S, Verma IM (2006) NF-kappaB and the
		regulation of hematopoiesis. Cell Death Differ. 13:785-797.
	56.	Kuo CY, Long JD, Campo-Fernandez B et al. (2018) Site-specific
		gene editing of human hematopoietic stem cells for X-linked
		hyper-IgM syndrome. Cell Rep. 23:2606-2616.
350	57.	Mavroudi I, Papadaki HA (2011) The role of CD40/CD40 ligand
		interactions in bone marrow granulopoiesis.
		ScientificWorldJournal. 11:2011-2019.
	58.	Hackett CH, Flaminio MJ, Fortier LA (2011) Analysis of CD14
		expression levels in putative mesenchymal progenitor cells
355		isolated from equine bone marrow. Stem Cells Dev. 20:721-735.
	59.	Vanbervliet B, Homey B, Durand I et al. (2002) Sequential
		involvement of CCR2 and CCR6 ligands for immature dendritic
		cell recruitment: possible role at inflamed epithelial surfaces. Eur
	6.0	J Immunol. 32:231-242.
360	60.	Tooze RM (2013) A replicative self-renewal model for long-lived
		plasma cells: questioning irreversible cell cycle exit. Front
		Immunol. 4:460.
	61.	Nisitani S, Satterthwaite AB, Akashi K, Weissman IL, Witte ON,
		Wahl MI (2000) Posttranscriptional regulation of Bruton's
365		tyrosine kinase expression in antigen receptor-stimulated splenic
		B cells. Proc Natl Acad Sci U S A. $9/(2/3)/(2/42)$.

- 62. Li X, Zeng X, Xu Y et al. (2020) Mechanisms and rejuvenation strategies for aged hematopoietic stem cells. J Hematol Oncol. 13:31.
- 63. Afreen S, Bohler S, Müller A et al. (2020) BCL-XL expression is 370 essential for human erythropoiesis and engraftment of hematopoietic stem cells. Cell Death Dis. 11:8.
 - Orelio C, Dzierzak E (2007) Bcl-2 expression and apoptosis in the 64. regulation of hematopoietic stem cells. Leuk Lymphoma. 48:16-24.
 - Rozmus J, McDonald R, Fung SY et al. (2016) Successful clinical 65. treatment and functional immunological normalization of human MALT1 deficiency following hematopoietic stem cell transplantation. Clin Immunol. 168:1-5.
- 66. Wang Y, Sun X, Yuan S et al. (2020) Interleukin-1β inhibits 380 normal hematopoietic expansion and promotes acute myeloid leukemia progression via the bone marrow niche. Cytotherapy. 22:127-134.
 - 67. De Haan G, Lazare SS (2018) Aging of hematopoietic stem cells. Blood. 131:479-487.
- 385

Maucher M, Kracher B, Kühl M, Kestler HA (2011) Inferring 68. Boolean network structure via correlation. Bioinformatics. 27:1529-1536.