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Supplementary 

Materials and methods 

Histology 

For histology, each biopsy specimen was fixed in formalin and embedded in paraffin. A 

minimum of seven step sections were stained with hematoxylin and eosin, Prussian blue, 

periodic acid-Schiff stain with and without prior diastase digestion, reticuline and 

chromotrope- aniline blue staining 
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Supplementary Table 1S: Overview of the clinical indices and frequencies of genetic 

risk factors for NC, HO, NAFL and NASH patient groups (1) 

 

(1) Patients were grouped according to NAS[1]. Values are given as counts (with 
percentage) or as mean with standard error (in parentheses). MAF: frequency of the 
minor allele; Statistical tests: *ANOVA; ** Fisher exact test. 

 

Common chemicals and lipid standards 

All solvents were of LC-MS or better grade. 700 µL of the internal standard mix for human 

samples contained: 1778 pmol of D7-cholesterol; 2215 pmol of D7- CE 16:0; 1041 pmol 

of D5-TG 50:0; 595 pmol of D7-DG 33:1; 1376 pmol of PC 25:0; 386 pmol of LPC 13:0; 

589 pmol of PE 25:0; 85 pmol of LPE 13:0; 480 pmol of PI 25:0, 140 pmol of PG 25:0; 73 

pmol of Cer 30:1,2; 127 pmol of D7-PA 33:1; 78 pmol of U-13C LPA 16:0; 271 pmol of 

 Total (n=337) NC (49) 

Normal 

control 

HO (51) 

Healthy obese 

NAFL (143) 

Simple steatosis 

NASH (94) 

Steatohepatitis 

P value 

between 

all 4 groups 

P value 

between 

HO/NAFL/NASH 

NAS score 0.00 (0) 0.00 (0) 1.46 (0.06) 3.80 (0.16) <0.0001* <0.0001* 

Age 67.7 (1.6) 42.3 (1.5) 45.6 (1.2) 45.4 (1.4) <0.0001* 0.317* 

BMI 24.1 (0.5) 46.9 (1.1) 47.1 (0.9) 49.0 (1.2) <0.0001* 0.340* 

Sex, % female 51 % 92 % 66 % 64 % <0.0001** 0.0006** 

Diabetes % 19 % 11 % 27 % 40 % 0.001** 0.001** 

ALT (IU/L) 24.8 (1.9) 25.1 (2.6) 30.0 (1.8) 54.5 (5.6) <0.0001* <0.0001* 

AST (IU/L) 30.9 (3.9) 23.0 (1.5) 26.4 (1.0) 44.5 (4.0) <0.0001* <0.0001* 

Bilirubin (mg/dl) 
0.51 

(0.05) 
0.40 (0.03) 0.46 (0.02) 0.84 (0.27) 0.157* 0.107* 

PNPLA3_rs738409 (MAF) 0.20 0.15 0.23 0.31 0.046** 0.043** 

TM6SF2_rs58542926 (MAF) 0.07 0.06 0.05 0.09 0.699** 0.513** 

MBOAT7_rs641738 (MAF) 0.40 0.43 0.43 0.41 0.883** 0.851** 

HSD17B13_rs72613567 (MAF) 0.38 0.23 0.25 0.30 0.050** 0.048** 

SERPINA_rs28929474 (MAF) 0.05 0.03 0.04 0.03 0.841** 0.834** 

SERPINA_rs17580 (MAF) 0.03 0.03 0.01 0.04 0.215** 0.186** 
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d18-SM 30:1,2; 64 pmol of LPI 13:0, 137 pmol of PS 25:0, 74 pmol of LPS 13:0; 75 pmol 

of LPG 13:0, and 137 pmol of CL 56:4. 

Sample preparation 

Sample preparation is described in the main text. 

Pilot experiment and making the Quality Control (QC) sample 

First, selected samples were chosen for the pilot shotgun lipidomics run as previously 

described in [2]. The goal of this selection was to identify and analyze samples with 

extreme lipid content. To consider all features, including meta-data, a regression analysis 

was performed. Specifically, a gradient boosted tree was applied since it is well suited for 

ranking models [3]. The initial data were numerically formatted by converting categorical 

data into values, and by removing incomplete entries; additionally, a feature was added 

based on the concurrence of multiple factors, e.g. fat content, inflammation and fibrosis. 

Samples ranked 1-19 and 349-367 representing the extreme fatty and non-fatty samples 

were analyzed in the pilot experiment. 36 samples from the pilot experiment were pooled 

together in order to create a single quality control (QC) sample. During pilot experiment 

we consistently quantified 255 lipid species from 19 lipid classes, including energy 

storage lipids CE, TG and DG; membrane lipids: Cer, Chol, CL, PA, PC, PE, PG, PI, PS 

and SM; and lysolipids: LPA, LPC, LPE, LPG, LPI and LPS. 

After the pilot we performed the full cohort run, adding the pooled QC sample to each 

measurement batch to control for inter-batch variation. All samples were pipetted in 96 

well plates, each row had one well with a blank extraction sample and one well with a QC 

sample. Biological samples and QC were measured as technical duplicates by splitting 

them to separate wells. 

MS2 validation 

To validate the assignment of SMs, we isolated corresponding molecular ions at the unit 

m/z range and subjected them to high resolution HCD FT MS/MS. In MS2 spectra of 

[M+H]+ precursors we detected characteristic phosphocholine head group fragment m/z 

184.074. Fragmenting [M+ HCOO]- precursors at low normalized collision energy (nCE) 
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of 15% produced demethylation fragments [M- CH3]- as neutral loss of Δm/z = - 60.021 

(losing one methyl group (CH3) and the formate adduct (HCOO)). Taken together, this 

confirmed their elemental composition and assignment of the molecular ions to SM class. 

PE O- 38:7 was identified by HCD FT MS/MS as a plasmalogen PE O-16:1 / 22:6 by its 

accurate m/z; neutral loss of phosphoethanolamine group Δm/z = 141.019 in positive and 

acyl anion of FA 22:6 (m/z = 327.233) together with subsequent CO2 loss (Δm/z= 43.990) 

in negative mode.  

 

Identification of SM molecular species by LC-MSn 

Pooled lipid extracts (500 µL in methanol / chloroform 1:1) were dried and re-

suspended in 100 µL 2-propanol : chloroform : methanol (90:5:5 v/v/v). Data acquisition 

was performed on an LTQ Orbitrap Velos Pro instrument (Thermo Fisher Scientific) 

coupled to an Ultimate 3000 UHPLC (Thermo Fisher Scientific) as described [4-6]. 

Chromatographic separation was performed on BEH C8 column (100 × 1 mm, 1.7 μm) 

from Waters (Milford, MA) at 50 °C. Mobile phase A was deionized water containing 10 

mM ammonium formate and 0.1 vol% of formic acid. Mobile Phase B was a mixture of 

acetonitrile/isopropanol 5:2 (v/v) with the same formate buffer. Gradient elution started at 

50 % of B  rising to 100 % B over 40 minutes; 100 % B were held for 10 minutes and then 

the column was re-equilibrated with 50 % B for 8 minutes before the next injection. The 

injection volume was 2 μL; flow rate of 150 μL/min was infused into HESI II ion source. In 

the autosampler samples were kept at 8 °C. The mass spectrometer was operated in 

Data Dependent Acquisition mode. Every sample was measured once in positive polarity 

and five times in negative polarity. Full scan profile spectra were acquired in the Orbitrap 

mass analyzer at the target mass resolution of Rm/z=400 = 100,000. For MS/MS 

experiments, the precursor masses of SM 34:0;2, SM 41:3;2, SM 42:4;2, SM 43:1;2 and 

SM 43:3;2 were added to the inclusion list and were fragmented in parallel mode by CID 

using an NCE of 50%. Subsequently, an additional MS3 scan event targeted neutral loss 

fragments of Δm/z = 60. Data analysis was performed by Lipid Data Analyzer [6–8].  
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Raw data processing 

The LipidXplorer output was processed in several ways, including different filtering steps 

(implemented in Python programming language) (Supplementary Figure 1S). In the first 

step we averaged over the technical replicates of each patient sample and separated the 

QC probes from the rest of the cohort. Subsequently, we discarded all datapoints for 

which the calculated standard deviation (SD) exceeded 40% by setting them to NaN in a 

first filtering (SD filter, 40%). To avoid loss of datapoints close to the experimental 

detection threshold, we did not filter datapoints smaller or equal to two times the minimum 

detected for the respective lipid species (i.e., DP <= 2*min(species)). Filtering was not 

applied to cholesterol since it was quantified by PRM. 

The obtained dataset is composed of 365 patient samples (compared to 784 probes in 

the raw data set) and still 411 lipid species from 22 lipid classes. The total number of 

150,015 datapoints includes 61,759 numeric zeros and 9,334 NaNs (Supplementary 

Figure 1S). 

In a second preprocessing step, we applied a group-wise detection filter of 15%. To this 

end, we grouped the patient samples according to their disease status (NC, HO, NAFL, 

NASH and none). Subsequently, a lipid species that were not detected in at least 15% of 

all patient samples of one status group was set to zero in this status group. This 

introduced 1,875 additional numeric zeros into our dataset (Supplementary Figure 1S). 

We applied a plate bias correction using the ComBat approach [9] as detailed below. The 

extraction date was used as a batch covariate. Before adjusting, all lipid species with less 

than 2 numeric values >0 were discarded and the data was transformed into log-2 space. 

The correction was performed with non-parametric priors. 

In summary, the preprocessing provided us with a final dataset (Supplementary Figure 

1S) with a total number of 115,340 datapoints, each representing a measurement for one 

out of 316 lipid species in one patient (out of 365). Those datapoints sum 101.013 numeric 
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(non-zero) values plus 6,381 NaNs (Supplementary Figure 1S). This dataset was used 

for all further analyses. 

 

 

Supplementary Figure 1S: Preprocessing of LipidXplorer output dataset. 
LipidXplorer output was processed in several steps: elimination of not trustworthy 
datapoints (standard deviation (SD) threshold 40%), patient group specific detection filter 
(threshold 15%), and plate bias correction have been applied. A detailed explanation of 
filtering steps is in the main text (Materials and Methods) and Supplementary, Raw data 
processing. 
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Supplementary Figure 2S: QC overview for each lipid class. Histograms of standard 

deviation (SD) between QC probes for all species of a lipid class. Standard deviation in 
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QC was below 5% for 98% of lipid species except cholesterol and a few TG species 

(Supplementary Figure 2S.) 

 

Bioinformatics and data mining 

After batch correction lipid-wise z-scores were computed and biclustering was performed. 

Biclustering (simultaneous clustering of samples and features in a data matrix) allows to 

simultaneously extract patient subgroups with corresponding lipid signatures to analyze 

the differences between the groups. Accordingly, biclusters are two-dimensional matrices 

that consist of a subset of patients and lipid species (details in Supplementary, 

Bioinformatics and data mining and Supplementary Figure 3S A). 

Since the lipidomic data contained missing values, we selected two biclustering 

algorithms; isa [10] and QUBIC [11] were applied under default parameters. Together, 

they identified 462 biclusters. To address redundancies, biclusters that were fully 

contained in other biclusters were removed resulting in a total set of 380 biclusters. To 

deal with this quantity of biclusters, we developed a consensus approach inspired by 

Hanczar and Nadif [12]. We used a custom two-dimensional similarity function and 

generated a network of similar biclusters for a better visualization and a parameter for the 

number of clusters (See Supplementary Figure 3S B). This network comprises highly 

overlapping biclusters containing very similar sets of patients and lipid species. In these 

networks, biclusters were colored using pie-charts that represent the distribution across 

the five groups of patients. Interesting components were marked with blue/red outlines 

corresponding to healthy and disease endotypes. Finally, the subset of patients as well 

as the subset of lipids were extracted from each connected component representing 

consistency in any cofactor with a general focus on disease states. Biclustering analysis 

was performed using the R programming language. 

Classification was performed using random forest classifiers from the “randomForest'' 

library in the R programming language. Lipidomic data were split into training (60%), 

validation (20%) and testing (20%) sets using bootstrapping. To increase robustness, 
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bootstrapping was repeated 100 times for each classification scenario. Per repetition, 100 

trees were trained and in case of class imbalance an equal number of samples from each 

group were drawn for each tree. The resulting 100 bootstrapped models were then 

evaluated using their corresponding test sets using precision-recall (PR) and receiver-

operator-characteristics (ROC) area under the curve (AUC) values. Feature importance 

was computed using the average Gini index over all bootstrapped models. 

 

Supplementary Figure 3S: Biclustering analysis. (A) Comparison of traditional 
clustering to biclustering, where samples and features (lipids) are clustered 
simultaneously. (B) Schematic description of the biclustering workflow. Biclusters are 
calculated using different algorithms, afterwards biclusters are represented as nodes in a 
network with edges between biclusters indicating a similarity exceeding a certain 
threshold. Connected components of biclusters are then extracted and merged as 
ensemble biclusters. 
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Genotyping 

Mutation variants analyzed in this paper: 

TM6SF2 variant rs58542926 (hcv89463510); 

PNPLA3 variant rs738409 (hcv7241); 

MBOAT7 variant rs641738 (hcv8716820); 

SERPINA1 variant PiZ (Glu342Lys) rs28929474 (hcv34508510); 

SERPINA1 variant PiS (Glu264Val) rs17580 (hcv594695); 

HSD17B13 rs72613567 (primer and probe sets manufactured through custom TaqMan 

Assay design). 

Genotyping for the presence of the two most relevant AAT mutations, the Pi*Z variant 

(rs28929474, also known as p.E342K or Glu342Lys) and the Pi*S variant (rs17580, also 

known as p.E264V or Glu288Val) was performed. For the NAFLD cohort, genomic DNA 

from all cases and controls was genotyped using TaqMan chemistry (Applied Biosystems) 

as described before [2]. Moreover, genotyping was performed for the PNPLA3 variant 

rs738409 (hcv7241), the TM6SF2 variant rs58542926 (hcv89463510) and the MBOAT7 

variant rs641738 (hcv8716820) on an automated platform with TECAN Freedom EVO 

and 384well TEMO liquid handling robots (TECAN, Männedorf, Switzerland). Reactions 

were completed and read in a 7900 HT TaqMan sequence detector system (Applied 

Biosystems, Foster City, CA, USA). All process data were logged and administered using 

a database-driven LIMS [2,14]. Genotyping of the single-nucleotide polymorphisms 

(SNP) of interest HSD17B13 rs72613567 (primer and probe sets manufactured through 

custom TaqMan Assay design) was performed using TaqMan SNP genotyping assays 

and chemistries (Applied Biosystems, Waltham, MA) on an automated platform with 

Tecan Freedom EVO and 384-well TeMO liquid handling robots (Tecan, Männedorf, 

Switzerland) as described previously [14]. 

 

Statistical analysis of mutation-correlated lipidome changes 
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Mutations were tested within each group, where the lipidomes of homozygotes, 

heterozygotes and normal genotypes were compared pairwise. The adopted procedure 

consisted of the following steps: a) log2-scaling of the dataset pruned of the samples with 

no information on the mutation; b) Shapiro test and correction of the p-values for multiple 

feature comparisons using Benjamini-Hochberg; c) analysis of variance using either 

ANOVA or the Levene’s test according to the results of the Shapiro test; d) the lipids 

displaying a significantly larger between-group variance were subjected to either Kruskal-

Wallis or ANOVA according to the results of the Shapiro test; e) when significant, Dunn’s 

or Tukey tests were respectively used post-hoc. At steps c) to e), p-values were adjusted 

for multiple group and feature comparisons using Benjamini-Hochberg. 
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Results 

 

 

Supplementary Figure 4S: Age and BMI characteristics of the cohort.  
Upper panel distribution of age in the four groups of patients split by gender.  
Lower panel distribution of BMI in the four groups of patients split by gender.  
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Supplementary Figure 5S: Typical t-SIM acquisition scheme used in this study. 

X-axes presents the time-line of a single acquisition. The sequence starts by applying 
spraying voltage (t=0) followed by a short spraying stabilizing period. Next, cholesterol is 
quantified using positive mode PRM followed by t-SIM acquisition of full mass range 
positive and negative mode spectra. To acquire a technical replicate, equal volume of the 
same lipid extract was taken from another well and spectra acquisition cycle was 
repeated.  
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Supplementary Table 2S: Comparison lipid class composition of human liver 

biopsies (in mol%) from this work and from [15]. 

 

 Vvedenskaya & Rose et al Gorden et al 

CE 5.11 3.90 

Cer 0.28 0.28 

CL 0.03 0.27 

DG 1.13 16.23 

LPC 0.33 0.30 

LPE 0.37 0.27 

LPG 0.06 0.15 

LPI 0.09 0.06 

PA 0.24 2.73 

PC 30.58 23.60 

PC O- 0.21 0.62 

PE 13.19 7.36 

PE O- 0.59 1.14 

PG 0.93 0.14 

PS 5.67 2.33 

SM 3.48 1.86 

TG 37.71 38.76 

 

 

 

 

 



15 

 

Supplementary Figure 6S: Comparison of plasma and liver lipidomes. Lipid 
abundances (in mol%) of normal control liver in females (f) and males (m) and of plasma 
in healthy females (f) and males (m). Plasma values were taken from [16]. 
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Supplementary Figure 7S. Changes of CE in samples with PNPLA3 mutation. 
Boxplots of CE species abundance (log2 scaled pmol per µg of total protein) of the 
different PNPLA3 mutation statuses (0 – no mutation, 1 – heterozygote, 2 – homozygote) 
in each patient group. 



17 

   

 

Supplementary Figure 8S A. Changes of TG in the samples with PNPLA3 mutation. 
Boxplots of TG 48:0 – TG 54:7 (log2 scaled pmol per µg of total protein) for the four 
patient groups for different PNPLA3 mutation statuses (0 – no mutation, 1 – heterozygote, 
2 – homozygote). 
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Supplementary Figure 8S B. Changes of TG in the samples with PNPLA3 mutation. 
Boxplots of TG 56:1 – TG 60:9 abundances (log2 scaled pmol per µg of total protein) of 
the different PNPLA3 mutation statuses (0 – no mutation, 1 – heterozygote, 2 – 
homozygote) in each patient group. 
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Supplementary figure 9S: Lipid classes abundance (log2-scaled pmol per µg of 
total protein) in HO (n=51) females (f) (n=47) and males (m) (n=4). 

  



20 

 

Supplementary Figure 10S: Lipid classes abundance (log2-scaled pmol per µg of 
total protein) in NAFL (n=143) females (f) (n=94) and males (m) (n=49). 
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Supplementary Figure 11S: Lipid classes abundance (log2-scaled pmol per µg of 
total protein) in NASH (n=94) females (f) (n=62) and males (m) (n=32). 
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Supplementary Figure 12S Association of samples to bicluster components and 
DG and TG abundances in sample groups: PCA of the lipidomics data. Color-coding 
scheme is in the inset. Biclustering was able to separate most of the patients into disease 
(steatotic) and healthy (non-steatotic) groups. 
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Supplementary Table 3S: The ten most abundant TG species in human liver from 

the four groups of the liver cohort, human white adipose tissue and human plasma 

from obese patients. TG species from NC are labeled with different colors, and species 

overlapping in other liver conditions and other tissues are highlighted with the same color. 

Species shared between liver and plasma are in yellow and orange. *[17]; **[18] 

Liver, NC Liver, HO 
Liver, 
NAFL 

Liver, 
NASH 

Plasma, 
obesity* 

WAT, 
visceral, 

obesity ** 

WAT, 
breast, 

obesity ** 

WAT, 
lower back, 

obesity** 

WAT, 
thighs, 

obesity** 

TG 52:3 TG 52:2 TG 52:2 TG 52:2 TG 48:0 TG 52:2 TG 52:2 TG 52:2  TG 52:2  

TG 52:2 TG 52:3 TG 50:1 TG 50:2 TG 46:0 TG 54:2 TG 54:2 TG 54:2  TG 54:3  

TG 52:4 TG 50:2 TG 52:3 TG 52:3 TG 50:1 TG 54:3 TG 54:3 TG 54:3  TG 54:2  

TG 50:2 TG 50:1 TG 50:2 TG 50:1 TG 48:1 TG 52:3 TG 52:3 TG 52:3  TG 52:3  

TG 54:4 TG 54:3 TG 54:3 TG 54:3 TG 46:1 TG 54:4 TG 54:4 TG 54:4  TG 54:4  

TG 54:3 TG 52:4 TG 48:0 TG 48:1 TG 46:2 TG 52:4 TG 52:1 TG 52:4  TG 52:4  

TG 50:1 TG 54:4 TG 48:1 TG 50:3 TG 54:1 TG 52:1 TG 52:4 TG 52:1  TG 50:2  

TG 54:5 TG 48:1 TG 54:4 TG 48:2 TG 48:2 TG 50:2 TG 50:1 TG 50:2  TG 52:1  

TG 50:3 TG 50:3 TG 52:4 TG 54:4 TG 48:3 TG 50:1 TG 50:2 TG 50:1  TG 50:1  

TG 48:1 TG 48:2 TG 50:3 TG 52:4 TG 51:2 TG 50:3 TG 54:1 TG 50:3  TG 56:3  
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Supplementary Figure 13S: Visualization of clinical confounding factors and 
mutations on the bicluster network from Figure 2 C. Lipidome compositions are 
clustered into networks of connected components comprising lipid compositions specific 
for several patients. Sex: M – male, F – female. Diabetes (type 2): NA – data not available, 
Y – yes, N – no. Risk factor mutations in PNPLA3 and TM6SF2: unfilled – no data 
available; 0 - no mutation; 1 – heterozygote; 2 – homozygote. 
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Supplementary Figure 14S: Visualization of clinical confounding factors and 
mutations on the bicluster network from Figure 2 C. Lipidome compositions are 
clustered into networks of connected components comprising lipid compositions specific 
for several patients. Risk factor mutations in HSD17B13, SERPINA S and SERPINA Z 
mutations: unfilled – data not available, 0 - no mutation, 1 – heterozygote, 2 – 
homozygote. 
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Supplementary Table 4S: Number of covered samples and lipid signatures of 
selected bicluster-network components. 

 

Non-steatotic 

component  

1 

Non-steatotic 

component  

2 

Steatotic 

component  

1 

Steatotic 

component 

2 

Lipid class 178 samples 35 samples 48 samples 122 samples 

CE 

20:1, 20:2, 22:5 22:5 16:0, 16:1, 

18:1, 18:2, 

18:3, 20:3, 20:4 

16:0, 16:1, 

18:1, 18:2, 

18:3, 20:2, 

20:3, 20:4, 

20:5, 22:1, 

22:2, 22:6 

Cer 

34:1;2, 36:1;2, 

38:1;2, 42:1;2, 

44:2;2 

  34:1;2, 36:1;2 

CL 74:8    

DG 

38:6, 40:6  30:1, 32:0, 

32:1, 32:2, 

34:1, 34:2, 

36:1, 36:2, 

36:3, 36:4 

30:0, 30:1, 

32:0, 32:1, 

32:2, 34:0, 

34:1, 34:2, 

34:3, 34:4, 

36:1, 36:2, 

36:3, 36:4, 

36:5, 36:6, 

38:1, 38:2, 

38:3, 38:6, 

40:2, 40:5 

LPA 20:4   16:1, 18:1, 18:2 



27 

LPC 

16:1, 18:0, 

18:2, 20:3, 

22:4, 22:6 16:0  18:3, 22:3 

LPCO  16:0   

LPE 
18:1, 20:0, 

20:1, 20:2, 22:6 16:0, 18:0   

LPG 18:2, 22:6   22:6 

LPI 18:0, 18:1, 22:6    

LPS 18:0, 22:1  20:5 20:1, 20:3, 22:1 

PA 

34:1, 34:2, 

36:1, 36:4, 

38:4, 38:5, 

40:4, 40:6, 42:4 

32:2 32:2 32:0, 32:2, 36:3 

PC 

30:0, 32:0, 

32:1, 34:1, 

34:2, 34:3, 

34:4, 36:1, 

36:2, 36:3, 

36:4, 36:5, 

36:6, 38:3, 

38:4, 38:5, 

38:6, 38:7, 

40:4, 40:5, 

40:6, 40:7, 

42:2, 42:5 

42:2  30:0, 36:1, 

42:4, 44:4, 

44:5 

PC O- 
32:0, 34:1, 

36:1, 36:2, 
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36:3, 36:4, 

36:5, 38:4, 

38:5, 38:6, 

40:5, 40:6 

PE 

34:1, 34:2, 

34:3, 36:1, 

36:2, 36:3, 

36:4, 36:5, 

36:6, 38:1, 

38:2, 38:4, 

38:5, 38:6, 

38:7, 40:4, 

40:5, 40:6, 

40:7, 40:8, 42:7     

PE O- 

34:2, 34:3, 

36:2, 36:3, 

36:4, 36:5, 

38:4, 38:5, 

38:6, 38:7, 

40:4, 40:5    

PG 34:0, 36:1, 40:8    

PI 

32:0, 34:0, 

34:1, 34:2, 

36:1, 36:2, 

36:3, 36:4, 

38:3, 38:4, 

38:5, 38:6, 

40:4, 40:5, 

40:6, 40:7 

  32:1, 34:1, 

36:1 
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PS 

32:1, 32:2, 

34:1, 34:2, 

34:4, 34:5, 

36:0, 36:1, 

36:2, 36:3, 

36:4, 36:5, 

38:0, 38:1, 

38:2, 38:3, 

38:4, 38:5, 

38:6, 40:1, 

40:2, 40:3, 

40:4, 40:6, 

40:7, 40:8, 

42:3, 42:4, 42:9 

32:1, 32:2 

  

SM 

32:1;2, 33:1;2, 

34:0;2, 34:1;2, 

35:1;2, 36:1;2, 

36:2;2, 38:1;2, 

39:1;2, 40:1;2, 

40:2;2, 41:1;2, 

42:1;2, 42:2;2, 

42:3;2, 43:1;2, 

43:2;2 

 41:3;2, 42:4;2 41:3;2, 42:4;2, 

43:3;2 

TG 

56:7, 56:8  50:4, 52:5, 

52:6, 54:2, 

54:3, 54:4, 

54:5, 54:6, 

54:7, 56:1, 

56:2, 56:3, 

56:4, 56:5, 

48:0, 48:1, 

48:2, 48:3, 

50:1, 50:2, 

50:3, 50:4, 

50:5, 52:2, 

52:3, 52:4, 

52:5, 52:6, 
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56:7, 56:8, 

58:1, 58:3, 

58:4, 58:5, 

60:2, 60:3 

54:2, 54:3, 

54:4, 54:5, 

54:6, 54:7, 

56:1, 56:2, 

56:3, 56:4, 

56:5, 56:6, 

56:7, 56:8, 

58:0, 58:1, 

58:2, 58:3, 

58:4, 58:5, 

58:6, 58:8, 

60:1, 60:2, 

60:3, 60:4, 

60:5, 60:7, 

60:8, 60:9 
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Supplementary Figure 15S: Classifiers trained to differentiate non-steatotic (NC & 
HO) from steatotic (NAFL & NASH) samples. (A) Feature importance defined by the 
mean Gini ranking for the classifications on bootstrapped lipidomics data. Lower values 
indicate higher importance. Error bars show the lowest and highest ranking achieved in 
different runs. The dot stands for the average. (B) Classification performance based on 
clinical markers (ALT, AST, AP, GGT, total bilirubin). (C) Classification performance 
based on highly saturated TGs (1-4 double bonds). (D) Classification performance based 
on low saturated TGs (5-8 double bonds).  
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Supplementary Figure 16S: Explanation of classification performance boxplots. 
Precision recall (PR) and receiver operator characteristic (ROC) area under the curve 
(AUC) are common measures of classification performance. A perfect classifier has a 
value of 100%, while a completely random classifier has a value of 50%. To ensure robust 
classification, boxplots showing the distribution of AUC values are used with multiple 
repetitions of the trained classification of bootstrapped data. 
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Supplementary Figure 17S: Profile of SM species (in mol%) in the four patient 
groups.  

 

 

 

Supplementary Figure 18S: Profile of Cer species (in mol%) in four patient groups. 
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Supplementary Table 5S: Characterization of molecular composition of SM species 
by targeted LC-MSn 

 

SM species Precursor 
m/z 2  

Major component1 Minor component1 

SM 34:0;2 749.581 SM d18:0 / n16:0 SM d16:0 / n18:0 
    
SM 38:2;2 801.613 SM d18:2 / n20:0  
    
SM 43:3;2 869.675 inc. 3  
SM 41:3;2 841.644 inc. 3  
SM 42:4;2 853.640 SM d18:2 / n24:2 SM d18:1 / n24:3 
    
SM 43:1;2 873.707 SM d19:1 / n24:0 SM d18:1 / n25:0 
    
    

 
1 Semi-quantitative assessment based on the relative abundance of ketene loss frag-
ments as exemplified in Supplementary Figure 19S 
2 adducts with formate anions [M+HCOO]- 
3 identification of molecular species was inconclusive 
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Molecular species: SM d18:1 / n24:3 and SM d18:2 / n24:2 

 

 

 

Supplementary Figure 19S: Molecular species of SM 42:4;2 identified by LC-MSn.  

Upper panel: MS2 spectrum of [M+HCOO]- (precursor m/z: 853.6401; retention time: 
25.00 min; file: Method_2_S2_1). MS2 spectrum confirmed that this precursor belongs to 
SM class, yet revealed no further structural details. 

Lower panel: MS3 spectrum of precursor m/z: 793.615; retention time: 25.00 min; file: 
Method_2_S2_1) identified the fatty acid moieties of n24:2 and n24:3 by their ketene loss 
fragments  
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Supplementary Figure 20S: Classification performances. a) to f) precision recall (PR) 
and receiver operator characteristic (ROC) area under the curve (AUC) measures of the 
classification performance for NAFL subgroups (hNAFL, hsNAFL, sNAFL) against HO or 
NASH groups. Classification is based on the full lipidome. 
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Supplementary Figure 21S: Lipids differentiating NAFL subgroups (hNAFL, 
hsNAFL, sNAFL) against HO or NASH groups based on the full lipidome 
composition. Measures are expressed as mean Gini ranking for the classifications on 
bootstrapped lipidomics data. Lower values indicate higher importance. Error bars show 
the lowest and highest achieved ranking in different runs. The dot shows the average. 
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Supplementary Table 6S: Median values of indices related to NAS and fibrosis 1 for 

each condition including sub-groups of NAFL. 

Condition  NAS total NAS fat NAS ballooning NAS inflammation Fibrosis BMI 

HO 0.0 0.0 0.0 0.0 0 47.4 

hNAFL 1.2 1.1 0.1 0.0 0 45.7 

hsNAFL 1.4 1.3 0.1 0.0 0 47.2 

sNAFL 1.9 1.7 0.2 0.0 0 48.1 

NASH 3.8 2.1 0.6 1.1 1 49.0 

 

1 Histological indices used for calculating NAS (NAS fat, NAS ballooning, NAS 
inflammation) and fibrosis according to Kleiner et al. [1] 
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Supplementary Figure 22S: Classification of samples from the sNAFL subgroup 
against other NAFL samples. (A) Classification performance as PR and ROC AUC. (B) 
Measures are expressed as mean Gini ranking for the classifications on bootstrapped 
lipidomics data. Lower values indicate higher importance. Error bars show the lowest and 
highest achieved ranking in different runs. The dot shows the average. 
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Supplementary Figure 23S: Confirming PE O- 38:7 by MS2 spectrum acquired from 
[M+H]+ molecular ion. (A) Chemical structure of PE O- 38:7; (B) MS2 spectrum of PE 
O- 38:7 acquired from its [M+H]+ molecular ion.   
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