

Supplementary Information for

The conserved fertility factor SPACA4/Bouncer has divergent modes of action in vertebrate fertilization

Yoshitaka Fujihara[#], Sarah Herberg[#], Andreas Blaha, Karin Panser, Kiyonori Kobayashi, Tamara Larasati, Maria Novatchkova, Hans-Christian Theußl, Olga Olszanska, Masahito Ikawa* & Andrea Pauli*

Corresponding authors: Masahito Ikawa & Andrea Pauli

Email: ikawa@biken.osaka-u.ac.jp, andrea.pauli@imp.ac.at

This PDF file includes:

Figures S1 to S6 Table S1 SI References

Figure S1

B IZUMO1

Izumo1_Xenopus_tropicalis/1-409 Izumo1_Danio_retix/1-336 Izumo1_Tak/lugu_rubripes/1-322 Izumo1_Python_bivitatus/1-368 chus_anati lus/1-397 lens/1-350

E TMEM95

F FIMP

		10	20	30	40	50	60	70	80	90	100	110	120	
16orf92_Ornithorhynchus_anatinus/1-111	1									- MSRPRASAPP	I TVPAGRG-		- TPFPGHDPQRS	29
C16or192_Anolis_carolinensis/1-88 216or192_Dasypus_novemcinctus/1-238 2005_2005_2005 2005_2005_2005_2005_2005	1 MR LWQWAW 1	LWLAGLGAV	'E TGGQLSGEF	GEGRRLGER	KASLGLGG IGAGVGVAG	T PRAWLFS CTRGHRNWPS	LHPSLPPTP\ QLPPRE-	/PGLLTDCSAG	TQFLGIKPSP	SRAMPRLTAS -	- ALPAGLGR	GLLGGCHHLC AVVTEF/	CSAFPAPSPGRA AW-VLAPRPKRA	122 50
mr_mus_musculus/-///												- L MALLY	STIL IN KKD-G	2.0
	130	140	150	160	170	180	190	200	210	220	230	240	250	
C16orf92_Ornithorhynchus_anatinus/1-111	30 IEP <mark>A</mark> LDQE	- I MFL	GEPNWFE	YADTDQAKII	VVYHL I GE	KPVFFSSKTYS:	SKFLGQV <mark>L</mark> F	SFILLLLI	FQLCYHMYCK	KGP *				111
C16orf92_Anolis_carolinensis/1-88	1 MADGKL	LWK I WE TMD	STPSGRLWFE	YPDSNKKKIL	AIYKYIGE	E PE FVAPSNFP	N-LLRTI <mark>L</mark> VO	SVIIILAFFV	YQIISKVLFK	KS NAG		<u>-</u>	<u>-</u>	88
C16orf92_Dasypus_novemcinctus/1-238	123 EISAPGSE	SWLFL	EAPDFFE	YPDSDQAR11	ALSEFIGE	EPITFVDSEQP:	SYGAGEA <mark>L</mark> RE	OGLVAASSAIG	- E - RSPV TPP	GSPQSRGPSQN	QHPPPPGLH	PLCFLAGIPS	SA <mark>F</mark> PPS TQQS	238
IMP_Homo_sapiens/1-132	51 TAS <mark>A</mark> LGTE	SPR <mark>FL</mark>	DRPDFFC	YPDSDQARL	AVAQFIGE	KP I V F I NSGS SI	PGLFHHILVO	BLLVVAFFFLL			F	QFCTHIN	FQKGA	132
IMP_Mus_musculus/1-111	30 TRPSVSGA	RPQQV	VNRLFFC	YPDSDRASL	AVARFIGE	KPITFVKTDSS	PGLFQNILVO	STLVVAFFFLL			F	QFCLHVN	FQKGA	111

G LLCFC1/SOF1

	10	20	30	40	5 0	éo	70	80	90	100	110	120	130	140	150	
LLCFC1_Omithorhynchus_anatinus/1-131	1 MERSGVT	RRVPPLAVIVL	LLLLLPVPGVTP	HKGRLGRRGF	SPPAEDNA	VMPAGPGEGOE	LEETFIVS	SVGEDLOTVNM	ARPEEEAGE	KGEEEEEGGA	VVAEAAALRE	DHLFDLAFCFN	LASILIFL			131
LLCFC1_mouse/1-108	1 MTSLGSQI	HRATEL TA L	LLLLLLQVKGVKT	LIVSASLDG	K <mark>SQ KI</mark>	DKVSSEDQGEEE	EYEEHFEAS	SEGEQWOEIDM	VQQED-T		- ISOAITLO	DHLLDLAFCFN	LASIMFFL-			108
LLCFC1_Dasypus_novemcinctus/1-110	1 MGRLMTSLSSQ	CRAVELAT I	LLL LRVKGVKS	OK - GASDIE	IR <mark>SP</mark> KI	DK TPS TDQDQE	ALEEHEMAA	SVGEMMQMLDM	AQQEEDQ		- TSEAAAVHE	DHI FDLAFCFN	LAS I MV FL-			110
LLCFC1_Homo_sapiens/1-122	1 MPPLAPQ	CRAVELVP I	LLL LQVKPLNG	SP - G PK	IG <mark>SQ</mark> TI	EKTPSADONOE	OFEEHEVAS	SVGEMMOVVDM	AQQEEDQ		-SSKTAAVH	K <mark>h</mark> sfh <mark>l</mark> sfcfs	LASVMVESC	3GP L R R T F P N I C	LCFMLTH	122

Fig. S1. Analysis of the conservation of mammalian fertility factors across vertebrates. (A-G)Protein sequence alignments of mammalian fertility factors known to be essential for sperm-egg interaction in mice. (A) CD9, (B) IZUMO1, (C) SPACA6, (D) JUNO/IZUMO1R, (E) TMEM95, (F) FIMP, (G) LLCFC1/SOF1. To D: Although folate receptor homologs (JUNO/IZUMO1R belong to the folate receptor family) are found outside of mammals, amino acids defining the JUNO/IZUMO1R (highlighted in red) are different outside of mammals [1]. Based on this definition, JUNO/IZUMO1R homologs are only present in mammals (red line).

Fig. S2. Expression analysis of mammalian Ly6/uPAR proteins. (A) Phylogenetic tree of selected groups of Ly6/uPAR proteins across vertebrates. Maximum-likelihood phylogenetic tree based on Ly6/uPAR protein sequence alignments across vertebrates (adapted from [2]). Branches supported by ultrafast bootstrap values (>=95%) are marked with a blue dot. SPACA4 (red) is present in mammals, reptiles and amphibians; Bouncer (vellow) is present in fish. The sperm and egg symbols next to selected species' genes indicate expression in testis (blue) or ovaries (green). (B) Genomic localization of Ly6/uPAR genes in mice. Ly6/uPAR genes are clustered in the genome. Only chromosomes containing at least one Ly6/uPAR gene are shown. Testis-expressed genes are highlighted with a blue box; Spaca4 is highlighted in red. (C) Mouse and human Ly6/uPAR proteins are expressed in various tissues, including in gametes (extension of Fig. 1B including human orthologs). Heatmaps of expression levels of homologous mouse (Mm; left) and human (Hs; right) Lv6/uPAR proteins (homologous proteins are shown in one row) across various adult tissues. Heatmaps are color-coded based on z-scores of the normalized gene expression values (average of the square-root) of RNA-Seq data from murine and human adult tissues [3] (www.gtexportal.org). Adult tissues are indicated at the bottom. Gene names are given on the left (mouse) and right (human) of the corresponding heat-maps. Numbers behind gene names indicate chromosome locations in mice or humans. Spaca4 is highlighted in red. (D) Murine Spaca4 is expressed in the male but not the female germline. RT-PCR for Spaca4 from cDNA of the indicated mouse tissues relative to the housekeeping gene *Gapdh*. The template cDNA was generated from a mixture of the tissue from 3-4 different mice.

Fig. S3. Analysis of the expression of selected mammalian fertility factors during murine spermatogenesis. (A) Overview of the different stages of spermiogenesis detected via scRNA-Seq

(single-cell RNA-Seq), represented in a tSNE1-tSNE2 (t-distributed stochastic neighbor embedding) plot. (*B-F*) Expression patterns and values of selected fertility factors during murine spermatogenesis were derived from published single-cell RNA-Seq data [44]. The web-browser version https://marionilab.cruk.cam.ac.uk/SpermatoShiny/ was used to generate the plots for (*B*) *Spaca4*, (*C*) *Izumo1*, (*D*) *Spaca6*, (*E*) *Tmem95* and (*F*) *Dcst1*. The *Spaca4* temporal expression pattern resembles *Izumo1's*, *Spaca6's*, and *Dcst1's* pattern.

Figure S4

117/77

m=6

genotype of male

m=2

m=2

of males

genotype of male

m=3

m=3

of males

O motile

---LTY

progressive

117/77

m=5

Fig. S4. Generation and phenotypic analysis of Spaca4 knockout mice. (A) Overview of the C57BL/6J-Spaca4 knockout alleles generated by CRISPR/Cas9-mediated targeted mutagenesis. (Left) Schematics of the wild-type and knockout alleles. Yellow dashed lines indicate the site of the deletions. Predicted disulfide bridges are indicated in orange. SP, signal peptide; TM, transmembrane region. (Right) Amino acid sequences of the protein products that are predicted to be produced from the different alleles. One mutant allele contains a 117-nt in-frame deletion after amino acid 42. The other allele contains a 77-nt out-of-frame deletion after amino acid 47. Cysteines predicted to form disulfide bridges are indicated in orange; the SP sequence is shown in grey; the out-of-frame additional protein sequence in the 77del allele is shown in red. (B) Spaca4 knockout male mice are sub-fertile. Litter sizes of C57BL/6J-Spaca4 wild-type (+/+), heterozygous (+/-), transheterozygous (117/77) and homozygous (77/77 or 117/117) males of the indicated allele combinations caged with B6129F1 wild-type females, or B6129F1 wild-type males caged with transheterozygous (-/-) females. Successful mating was confirmed by plug checks. Data are means \pm SD. ***p < 0.0001, **p < 0.001 (Kruskal-Wallis test with Dunn multiple-comparisons test); n.s., not significant. n = number of litters; m = number of male mice tested. (C) SPACA4 protein is absent in morphologically normal sperm of Spaca4 knockout mice. Immunostaining of sperm detects SPACA4 protein (magenta) under permeabilizing conditions in the head of sperm derived from wild-type (+/+) but not Spaca4 knockout (77/77del) mice. DAPI (cyan) staining labels the sperm nucleus. A control immunostaining in which the primary antibody was omitted is shown on the right. DIC, differential interference contrast image. Scale bar, 25 µm. (D) Sperm number is normal in Spaca4 knockout males. Sperm number of Spaca4 wild-type (+/+), heterozygous (+/-) and transheterozygous (-/-) males. Data are means \pm SD. n.s., not significant (one-way ANOVA with Dunnett's multiple-comparisons test). m = number of male mice tested. (E) Overall sperm motility is not affected in Spaca4 knockout males. Sperm motility of Spaca4 wild-type (+/+), heterozygous (+/-) and transheterozygous (-/-) males. Shown is the percentage of sperm that was motile (open circles, comparison +/+ versus -/-: p = 0.65) and progressively motile (closed circles, comparison +/+ versus -/-: p = 0.41). Data are means \pm SD. n.s., not significant (One-way ANOVA) with Dunnett's multiple-comparisons test). m = number of male mice tested.

Figure S5 A

Fig. S5. Male *Spaca4* knockout mice are sub-fertile. (*A*) Targeted disruption of the murine *Spaca4* gene to generate *Spaca4*^{tm10sb}. To disrupt the *Spaca4* gene, the single exon was replaced with a neomycin resistance cassette (*neo*), and a thymidine kinase cassette (*tk*) was used for negative selection. Labeled arrows indicate primer binding sites. (*B*) Genotyping of *Spaca4*^{tm10sb} knockout mice. Both the wild-type allele (a 0.3-kb band) and the knockout allele (a 0.5-kb band) were amplified by PCR, using primers #5269 and #5298 for the wild-type allele and primers #781 and #5269 for the knockout allele. (*C*) RT-PCR analysis of testis in wild-type and *Spaca4*^{tm10sb} knockout mice. The *Spaca4*-specific 236-nt band was amplified from wild-type but not from

Spaca4^{tm10sb} knockout testis. Gapdh was used as a control. (D-E) Spaca4^{tm10sb} knockout mice are sub-fertile. (D) Spaca4^{tm10sb} knockout males (-/-) copulated normally but were sub-fertile compared to wild-type (+/+) and heterozygous Spaca4^{tm10sb} (+/-) mutant males (comparison +/+ versus -/-: p = 0.0333, unpaired t-test). Data are means \pm SD. n.s., not significant. n = number of litters; m = number of male mice tested. (E) In vitro fertilization of oocytes from wild-type females using sperm from wild-type (+/+), heterozygous Spaca4^{tm10sb} (+/-) or homozygous Spaca4^{tm10sb} (-/-) males. Plotted is the percentage of 2-cell stage embryos as a measure of successful fertilization. Data are means \pm SD. p = 0.003 (Kruskal-Wallis test with Dunn multiple-comparisons test); n.s., not significant. m = number of males tested.

Figure S6

Α

В

С

Fig. S6. Spaca4 knockout sperm has reduced binding capacity to ZP-containing wild-type oocytes. (A) Assessment of the number of total sperm bound, acrosome-intact sperm bound (IZUMO1-staining negative) and acrosome-reacted sperm bound (IZUMO1-staining positive) by immunostaining of sperm incubated with ZP-containing wild-type oocytes under nonpermeabilizing conditions. Sperm was stained with anti-IZUMO1 antibodies (green) as a read-out for a successful acrosome reaction, and Hoechst (DNA label; white) to detect all bound sperm derived from wild-type (+/+) and Spaca4 knockout (Spaca4^{77/77del}) males. BF, bright field. Scale bar, 50 µm. (B) Quantification of the number of sperm bound to ZP-containing wild-type oocytes. Sperm was derived from wild-type (+/+) and Spaca4^{77/77del} (-/-) males. Total sperm bound (left); acrosome-reacted sperm bound (right). Data are means \pm SD (the value of the mean is indicated). P-value is of Student's t test. Numbers of total sperm bound, oocytes (n) and males (m) tested are indicated. Related to Fig. 3B. (C) Sperm motility was assessed under IVF conditions using the computer-assisted sperm analysis system CEROS II. Sperm motility of transheterozygous B6J (117del/77del; -/-) males was compared to wild-type B6J (+/+) males (left); similarly, sperm motility of B6D2F1 Spaca4tm10sb knockout (-/-) males was compared to wild-type B6D2F1 (+/+) males (right) to control for possible differences in the genetic backgrounds of both mutants. Motility of spermatozoa was assessed after 10 min incubation and after 120 min incubation. Plotted is the velocity in µm/sec. VAP: average path velocity, VSL: straight line velocity, VCL: curvilinear velocity. Data are means \pm SD. n.s., not significant (Student's t test). m = 3 male mice tested for each genotype.

Table S1. List of primers

name of oligo	sequence	comments					
Spaca4_qPCR_F1	AGGACTGCGTCTTCTGTGAGC	qRT-PCR #1 primer for spaca4					
Spaca4_qPCR_R1	GCCCTTATTGCAAAGGTGGCCA						
SPACA4_qPCR_F2	TGGTGTTGGTTCTTTGCCCA	qRT-PCR #2 primer for <i>spaca4</i>					
SPACA4_qPCR_R2	GTAGCTGATGGGTTCCTCGC						
Gapdh_RT_F	AGTGGAGATTGTTGCCATCAACGAC	RT-PCR primer for gapdh					
Gapdh_RT_R	GGGAGTTGCTGTTGAAGTCGCAGGA						
HPRT_qPCR_F	GAACCAGGTTATGACCTAGATTTGTT	qRT-PCR primer for HRPT					
HPRT_qPCR_R	CAAGTCTTTCAGTCCTGTCCATAAT						
SPACA4_gRNA1	taatacgactcactataGGTGACGAAGAT	T7 promoter sequence - gRNA TARGETING SEQUENCE -					
	TGCTTCACgttttagagctagaaatagcaag						
		tracerOligo annealing sequence					
SPACA4_gRNA2	taatacgactcactataGGTAGCTGATGG	T7 promoter sequence - gRNA					
	GTTCCTCGgttttagagctagaaatagcaag	TARGETING SEQUENCE –					
		tracerOligo annealing sequence					
tracer_oligo	AAAAGCACCGACTCGGTGCCACTTTT	Common oligo used to generate					
	TCAAGTTGATAACGGACTAGCCTTAT	guideRNAs by annealing and in					
	TTTAACTTGCTATTTCTAGCTCTAAAA	vitro transcription (Gagnon et					
	С	al., 2014)					
SPACA4_gt_F	CACTACCAGCAGAACACACCT	SPACA4 genotyping					
SPACA4_gt_R	AGCICACIGICICIGACCGC						
Spaca4_targeting-s_F	CTCGAGACGCACATCTTTCCACATTG	Spaca4 short arm targeting					
	ACG	vector					
Spaca4_targeting-s_R	GCGGCCGCTAGATGCAGCTGAAGCT						
	CACT						
Spaca4_targeting-I_F	CAATTGATCCTTCCGCCATGTGGTTT	Spaca4 long arm targeting					
	С	vector					
Spaca4_targeting-I_R	TTAATTAAGCTCTTCAGTCCTCGGGT						
	TG						
Spaca4_screening+gt#78	GCTTGCCGAATATCATGGTGGAAAA	Screening PCR for ES cell					
1	TGGCC	targeting (short arm); #781 is					
Spaca4_screening#5081	AGGCTGTACACGTGCTCCTCTGGT	also used for genotyping the					
		neomycin-containing Spaca4					
C A : 1/5470		knockout mouse					
Spaca4_screening#5173		Screening PCR for ES cell					
<u> </u>		targeting (long arm)					
Spaca4_Screening#678							
Spaca/ c+#5260		Genotyping PCR for neomycin- containing <i>Spaca4</i> knockout mouse (Osaka, Japan)					
2hara+_Rr#2202							
Spaca/ gt#5208							
Jpaca4_81#J230							
	AAG						

SI References

- Grayson P. 2015 Izumo1 and Juno : the evolutionary origins and coevolution of essential sperm – egg binding partners. *R. Soc. Open Sci.* 2, 1–11. (doi:http://dx.doi.org/10.1098/rsos.150296)
- 2. Herberg S, Gert KR, Schleiffer A, Pauli A. 2018 The Ly6/uPAR protein Bouncer is necessary and sufficient for species-specific fertilization. *Science (80-.).* **361**, 1029–1033. (doi:10.1126/science.aat7113)
- Li B, Qing T, Zhu J, Wen Z, Yu Y, Fukumura R, Zheng Y, Gondo Y, Shi L. 2017 A Comprehensive Mouse Transcriptomic BodyMap across 17 Tissues by RNA-seq. *Sci. Rep.* 7, 1–10. (doi:10.1038/s41598-017-04520-z)
- 4. Ernst C, Eling N, Martinez-Jimenez CP, Marioni JC, Odom DT. 2019 Staged developmental mapping and X chromosome transcriptional dynamics during mouse spermatogenesis. *Nat. Commun.* **10**. (doi:10.1038/s41467-019-09182-1)