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Supplementary Information Text

Materials

Sample information: Archaeological Sites

Veretye, Karelia, Russia

TRF-04-09:AL3253

The Veretye (BepeTbë) [a.k.a. Veret’ye] Culture derives its name from the Veretye 1 site. It is 

located in Arkhangelsk Province, northern European Russia, on the bank of Kinema River ca. 1 

km from its mouth; the river flows to Lake Lacha. Geographic coordinates for the Veretye 1 site 

are: 57,197296 ° N, 29,73683 ° E. The excavated area is ca. 1470 m2. The site has a single 

cultural component associated with the Mesolithic epoch (1, 2). Planigraphically, there are 

remains of dwellings and other structures (of everyday life use), and scattered artefacts. Cultural 

material is located in oxygen-free peat layers (wetland site), and the preservation of bones, 

antlers and other perishable materials (wood, birch bark, and plant fibres) is generally very good. 

Material culture is represented by a large set of stone tools used for making items for hunting, 

fishing, and working the wood. No pottery is found. Numerous tools on bone, antler, and wood 

are also found.

Chronology of the Veretye 1 site is based on 14C dates obtained on different materials from the 

cultural layer: a) charcoal: 9600 ± 80 BP (Le-1469), 9050 ± 80 BP (GIN-4031), 8560 ± 120 BP 

(GIN-2452), 8520 ± 80 BP (GIN-4030), 8270 ± 100 BP (Le-1470), and 7960 ± 100 BP (Le-1471); 

b) antler: 9370 ± 80 BP (GIN-4833) and 8340 ± 120 BP (GIN-4832); and c) wood: 8750 ± 70 BP 

(Le-1472), 8550 ± 130 BP (GIN-2452), and 7700 ± 80 BP (Le-1773) (2). Oshibkina thinks that 

14C dates on charcoal and worked wood of ca. 9600–8550 BP are the most closely associated 

with the cultural component (1).

Bones and skulls of 42 dogs were found at the Veretye 1 site, and it constitutes 12.6% of total 

animal bones from this site (2). One dog was sampled from the site for this study and underwent 

whole genome sequencing. A previously published genome from a second dog from the site was 

included in the dataset (3). The dog genome published by Bergstrom et al. was directly 14 C 

dated to 9575 ± 50 BP (OxA-36900), with a corresponding calendar age of 10,780–11,080 cal 

BP, a median age of approximatelty 10,930 cal BP (with ± 1 sigma; using IntCal13 dataset) (3). 

The dog remains sequenced for this study were recovered from the same context as the dog 

sequenced in Bergstrom et al. (3).
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Ishkinino, Orenburg Province, Russia

TRF-04-04:AL2307

Iskinino is a Late Bronze Age site in the southern Urals of the Eurasian steppe belt, located within

the Sukhaya Guberlya River valley (4). The site is situated in one of the richest mining areas of 

the Trans-Urals region where cobalt-copper-pyrite was exploited during the Bronze Age (5). 

Several small contemporaneous sites were located in close proximity to one another, collectively 

called Ishkinino cluster, that possibly operated as a large economic unit (5). The site consists of 

several dwellings. Study of animal bones shows that people were breeding both cattles and small

stock (sheep and goats), and horses. The main activities were mining of copper ore and smelting 

of it. Animal bone 14C dates from this site are 3020 ± 150 BP (LE-8854) (or 1610–900 cal BC), 

3190 ± 100 BP (LE-8855) (1730–1210 cal BC), and 2940 ± 200 BP (LE-9342) (1680–600 cal BC)

(4). The overall time of human occupation is around 1500–1200 BC, considering relatively large 

standard deviations for the 14C dates. One dog from the site was sequenced for this study.

Ust'-Polui, Iamal-Nenets Region, Russia

TRF-05-04:736-6410, TRF-05-05:736-6430, TRF-05-07:736-6608, TRF-05-08:736-6648, TRF-
05-10:736-4921, TRF-05-03:736-6581/3, TRF-05-06:736-7407, TRF-05-09:736-31679, TRF-05-
11:736-5034

Genomic information was obtained from five dogs recovered from excavations at the site of Ust’-

Polui in Iamal. The site was occupied during the Iron Age, with radiocarbon dates from the sites 

placing the occupation between 2,210 and 1,810 BP (6). Almost a quarter (21%) of the faunal 

remains present at the site belong to dogs, representing over 100 individuals (6, 7). The site is 

thought to have been a ceremonial site rather than a settlement (6). The site shows evidence for 

young dogs having been eaten, possibly in the context of rituals while other dogs appear to have 

been intentionally buried (7). The site also contains materials typically associated with sledding, 

such as parts of harnesses and sleds (7). Nine dogs from the site were sequenced for this study, 

sufficient nuclear genome coverage was obtained for four of the nine samples, while sufficient 

mitochondrial genome coverage was obtained from five individuals.

Tiutei-Sale I, Iamal Peninsula, Russia

TRF-05-14:783-1020

Tiutei-Sale I is a medieval settlement located on the northwest shore of the Iamal Peninsula, 

overlooking a cove where several streams enter the Kara Sea (8). The site was occupied during 

multiple periods, between the 6th and 8th centuries CE and again between the twelfth and 

fourteenth centuries CE (8, 9). The site was interpreted as a warm-season settlement where 

people focused on hunting reindeer and arctic fox, and occasionally procured marine resources 

such as walrus and seals. One dog was sampled for this study, deriving from the later phase of 

occupation, and it was directly dated to 1,111 +/- 30 BP, or 1,169 to 936 cal. BP.
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Iarte 6, Iamal Peninsula, Russia

TRF-05-16:677-7393-7403

Iarte 6 is located on the open tundra of the central Iamal Peninsula. It is a medieval settlement 

with remains of seven house pits, and based on a large set of radiocarbon dates and 

dendrochronology, dates from 1016 to 1122 CE, or 934 - 828 cal. BP (8, 9). Excavations at Iarte 

6 produced one of the largest reindeer assemblages in the Arctic, numbering just over 22,000 

specimens. It is unclear if the reindeer were wild, domesticated, or a combination of both. 

Remains of dogs/wolves at this location account for less than 1% of the total number of faunal 

remains found at this site (8, 9). Two dogs from the site were sampled for this study.

Ust'-Voikar, Iamal-Nenets Region, Russia

TRF-05-17:1232-6837

Ust'-Voikar is a medieval town located southwest on the left bank of Gornyi Ob River in the 

southern portion of the Iamal-Nenets region of Northwest Siberia. This town was occupied 

between the thirteenth and twentieth centuries CE (10). The majority of the faunal remains found 

at the site belong to reindeer, but arctic fox, hare, dogs, and other species also were present (10).

Dog remains were found throughout the excavated area and belong mostly to adult individuals, 

but a few juvenile skeletons were also found. One dog from the site was sequenced for this study 

and was directly dated to 857 +/- 30, calibrated to 900 to 693 cal. BP.

Endyrskoe 1, Khanty-Mansi Region, Russia

TRF-05-12:755-2100

This fortified habitation site is located about 70 km from the town of Niagan’ on the bank of the 

Endyr’ River in the Khanty-Mansi Region of Northwest Siberia (11, 12). This is an Early Iron Age 

and medieval fortified site containing multiple dwellings, with occupation appearing to focus on 

the 6-7th and 11-16th centuries CE (11, 12). The faunal remains from the site have not been 

reported, but the skulls of several dogs were present in the foundations of some of the dwellings. 

One specimen was sampled and sequenced for this study. This specimen was directly dated to 

1460 +/- 30, calibrated to 1398 to 1302 cal. BP.

Peregrebnoe 1, Khanty-Mansi Region, Russia

TRF-05-13:203-508

This medieval period habitation site is located on the Ob River in the Khanty-Mansi Region of 

Northwest Siberia within the modern town of Peregrebnoe (13). This site is typologically dated to 

the 12th through mid-13thcenturies CE. The site was fortified and contained multiple dwellings. 

The faunal remains at the site primarily consist of fur-bearing animals but remains of domestic 

horses and cattle also are present. A total of 144 dog remains were found at the site. One 
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specimen was sampled and sequenced for this study, which was directly dated to 1093 +/- 31, 

calibrated to 1060 to 935 cal BP.

Bolgar, Volga River, Russia

TRF-04-10:AL2275

The site of Bolgar (Bolghar) is one of the capitals of the Volga Bulgaria (Volga–Kama Bulghar) 

state. It is located on the left bank of the Volga River, in the middle course of the basin. Cultural 

layer is dated from the end of the tenth century CE to the beginning of the fifteenth century CE. 

Before the Mongol invasion in the thirteenth century CE, it was one of the major cities of the 

Volga Bulgaria. After the defeat by the Mongol armies in 1236, this city became the center of the 

Bulgarian Ulus of the Golden Horde, one of the Mongol states. During the Golden Horde time, in 

the second half of the thirteenth century and in the fourteenth century, the Bolgar became 

significantly larger than in pre-Mongol time, and experienced its heyday. In its central part of site, 

40 m to SW of the Cathedral Mosque, a craftsmen quarter appears with a large number of crafts: 

metallurgy, glass-making, processing of ornamental stones (in particular, amber), and bone-

carving (14). In the fourteenth century CE, one of such crafts in this part of the city was the 

taming and breeding of specialized animals for hunting: bone remains of daytime birds of prey 

with an appropriate gender and age profile were recorded, as well as artifacts testifying about 

hunting with the help of prey birds. In the same quarter, at excavation pit No. 192, in 2013 in a 

large Depression 1 among typical “kitchen” remains, skeletons of 16 adult dogs that died at one 

time with traces of healing injuries were found; also, scattered bones of several puppies were 

recorded. According to our assumption, this was a collection of specially trained hunting dogs 

(15). A DNA sequenced sample comes from one of the dogs in this excavation pit.

Sample information: Ethnographic Samples

The 5th Thule Expedition 1921-1924 under Danish explorer Knud Rasmussen’s leadership 

travelled from Greenland to Arctic Canada, to Alaska and Siberia (16). The expedition only spent 

48 hours in Siberia due to complications with visas. In order to fulfil the purpose of his expedition, 

Rasmussen in 1927, from the widow of the German antique dealer Eugen Alexander, purchased 

three Siberian collections including clothing with components made of dog fur. The  collections 

were donated to the National Museum of Denmark. In the museum’s Siberian collections were 

also included items, exchanged with Russian institutions. Further information can be found on 

SkinBase (http://skinddragter.natmus.dk/Clothing). Several samples were attributed to a general 

location, such as Amur Delta (K.1-3/89375), Chukotka (TRF-02-01/K.613/19451), while others 

were attributed to the culture from which they were collected rather than a specific location, 

Chukchi (TRF-02-49/K.607/19448), Nivkh (TRF-02-21/K.1-1/89373_a), and Nenets/Khanty (TRF-

02-25/K.3-7/90206_a). Dogs from the Kamchatka Krai, specifically dogs of the Koryaks were 

added to the National Museum of Denmark collections also from clothing made with dog fur in 
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1961, (TRF-02-53/K.1161b/67204, TRF-02-54/K.1160b/67202). Mitochondrial genomes from 

these individuals as well as other dogs from the National Museum of Denmark have been 

previously identified as dog fur(17). One ethnographic dog sample was obtained from the island 

of Sakhalin off the east coast of Russia, just north of Japan (TRF-01-51/ZMK 1054). Museum 

records at the Natural History Museum of Denmark show that this dog was collected in 1872.

Sample information: Comparative Dataset

Included in the analyses for comparison was a panel of publically available dogs (n=115), wolves 

(n=39), an Andean fox, and a black-backed jackal, see Dataset S2 for full list of accession 

numbers.

Methods

DNA was extracted from bone (n=17), tooth (n=3), and skin (n=9) samples to address the 

questions in this study (Dataset S1).

Sample Preparation

Samples obtained from bones and teeth were cleaned of surface contaminants prior to sampling 

to aid in the reduction of contaminant DNA. Surface cleaning was conducted through superficial 

drilling of the outer surface with a Dremel drill. In the case of samples obtained from teeth, both 

the outer surface and the enamel layer of the tooth were removed by drilling. Between 30 and 

100 mg of bone powder was drilled for extraction from the bone sample. For bone samples which 

were derived from the petrous bone powder was drilled from the interior, for all other bone 

samples the densest part of the bone was drilled. For tooth samples 15 to 30 mg of powder was 

drilled from the cementum layer of the tooth.

Samples obtained from hides were based on macroscopic identification of dog hides used as 

materials for clothing identified garments which possessed dog fur stored in the ethnographic 

collections of the National Museum of Denmark. Further confirmation of the taxonomic 

assignment was performed with shallow shotgun sequencing in a previous study (17). Eight 

samples were taken from clothing which were believed to be dog hides. Samples were taken from

the hide approximately the size of a grain of rice for DNA extraction. Sterile scalpels were used to

remove hair from the hides, the hair was retained for other analyses (17).

Extraction

Bones and teeth processing involved a pre-digestion step, performed prior to the extraction in 

order to improve endogenous content of the samples. A 30 minute incubation of the bone/tooth 

powder and hide sample with 315 ul of 0.5M EDTA and 7.5 ul of 10 ng/ul proteinase K was 
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utilised for pre-digestion procedure. After the incubation the samples were centrifuged for 5 

minutes at 13,000 rpm and the supernatant was removed. The undigested bone/tooth powder 

underwent an overnight digestion with 630 ul of 0.5M EDTA, 70 ul of 1M UREA, and 15 ul of 10 

ng/ul  proteinase K, following (18). The hide samples were incubated overnight at 37°C with a 

lysis buffer according to (19). All extracts were purified using Qiagen MinElute columns.

Library Build

Libraries were built for each sample for the shallow shotgun sequencing (screening) on the 

Illumina 2500 HiSeq platform. The single tube library build protocol, ‘BEST’, was used to prepare 

libraries with Illumina adapters and indexing primers (20). This protocol involves no purification 

steps after the extract has been purified until the library build is completed and ready for indexing 

PCRs. Several extractions underwent USER (Uracil-Specific Excision Reagent) treatment prior to

undergoing the blunt end repair step, see Dataset S1, in order to remove uracil sites before 

library building. The USER treatment involved the addition of 4.8 µl of Thermolabile USER II (1U/

µl) to 32µl of the DNA extract and a 3 hour incubation at 37°C, followed by a purification with 

MinElute columns and elution in 32µl EB. As per the BEST library built protocol, after extraction 

the DNA undergoes blunt end repair with a denaturing step at 65°C, without purification the 

sample proceeds to the adapter ligation when adapters were ligated to the ends of the DNA 

fragments. Finally, after the adapter ligation the nicks in the strands are filled, then the library was

purified using Qiagen MinElute columns. All indexing was performed with AmpliTaq Gold (2.5U 

uL-1) for non-USER treated libraries and USER treated libraries were indexed using Polymerase 

Pfu Turbo (2.5U uL-1).

Sequencing

The shallow shotgun screening was performed at Science for Life Laboratory in Stockholm, 

Sweden. After assessment of the clonality and endogenous DNA content further libraries were 

built for the BGISEQ-500 sequencing platform with platform specific adapters and indexing 

primers (21). Deeper shotgun sequencing was undertaken at the BGI sequencing facilities in 

Shenzhen, China on the BGI libraries. Additional Illumina sequencing was performed on the 

original Illumina shotgun sequencing libraries at the Science for Life Laboratory sequencing 

facilities in Stockholm, Sweden on the HiSeq X platform.

Data Preparation

Ancient genomes

All sequenced reads were mapped to the CanFam3.1 reference genome (22) using BWA aln (23,

24) after adapters were removed and paired reads were merged with AdapterRemoval (25). The 
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mapped bam files were filtered with samtools and duplicates were removed with picard-tools 

mark duplicates (http://broadinstitute.github.io/picard/). Following duplicate removal, bam files 

corresponding to the same sample from different sequencing platforms were merged together 

using SAMtools (26). These reads were then re-mapped to VulVul2.2 (red fox assembly; 

accession: GCA_001887905.1) also using BWA. Quality control was performed using QualiMap 

v2.2.1 (27), 20 samples with at least 0.1x coverage of the nuclear genome were analysed in the 

downstream analyses.

Modern genomes

Raw reads from modern samples were downloaded from public repositories (Dataset S2) and 

aligned to canFam3.1 (dog reference genome) and VulVul2.2 (red fox assembly; accession: 

GCA_001887905.1) using BWA mem (24), with a realignment step as implemented in GATK 

(28).

Pseudo-haploidisation

Pseudo-haploid calling was performed on all samples generated in this study and the 

comparative reference panel using the -doHaploCall utility in ANGSD (29). We obtained SNPs 

coordinates, previously genotyped (67,850,544 SNPs) from a publically available VCF provided 

by the NHGRI Dog Genome Project (30). These SNP were extracted by ANGSD during the 

pseudo-haploid calling, all other SNPs were excluded from the dataset for the samples when 

aligned to the CanFam3.1 reference genome. During the pseudo-haploid calling, random bases 

were sampled with a minimum mapping quality of 20 and minimum base call of 20, transitions 

were discarded, genotypes were only recorded for sites which had at least 3x coverage, and the 

first and last five bases were trimmed to remove deaminated sites in ancient and historical 

samples.

angsd -doHaploCall 1 -doCounts 1 -minMapQ 20 -minQ 20 -minInd 1 -setMinDepth 1 -b 

bamlist.txt -minMinor -trim 5 -noTrans 1 -out SiberianDogs_Haploid -checkBamHeaders 0

The ANGSD output was converted to PLINK format with the haploToplink utility from ANGSD. In 

PLINK the dataset was filtered to remove CpG islands and filtered for linkage disequilibrium by 

removing SNPs with an R2 value greater than 0.1 with any other SNP within a sliding window of 

50-SNPs and advanced by 10 SNPs each time (31). Sites were retained if covered by at least 

75% of individuals for downstream analyses. This filtering resulted in the retention of 4,177,995 

SNPs.
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Data Analysis

PCA Analyses

PCAs (principal component analysis) were generated from the pseudo-haploid dataset using 

smartPCA (32, 33). Ancient samples were projected onto two PCAs: Run-1 contained all canids 

in the reference panel including dogs and wolves while Run-2 contained only dogs.

Neighbour Joining Tree Construction

Neighbour joining trees were built from an identity-by-state matrix generated with PLINK (34, 35) 

after the previously described filtering with samples with a minimum mean coverage of 0.5x. Only 

the sites genotype data for at least 75% of individuals were retained for the neighbour joining tree

construction (4,177,995 SNPs). The neighbour joining trees were built using the black-backed 

jackal as an outgroup and 100 replicate trees were generated each using a random combination 

of 1,000,000 of the SNPs. The bootstrap support for each node of the tree was calculated by 

BOOSTER (36) using these 100 replicates. 

Pairwise Distances

Identity-by-state (IBS) pairwise distances were calculated for each of the Siberian and Arctic dog 

using the filtered 4,177,995 sites in plink. The pairwise distances were plotted on maps according

to the geographic origin of the comparative sample, intrasite comparisons were excluded from the

maps, this was true for individuals from (Veretye and Ust’-Polui), see Fig. S4a-c. The IBS values 

were also plotted in ascending order for each ancient and historical Siberian dog (11,000 to 150 

years ago) compared to the other ancient Siberian dogs and several ancient European and Near 

Eastern dogs with at least 0.5x coverage, see Fig. S4d-e. IBD for modern Arctic dogs (50 years 

ago to present) were  plotted for ancient Siberian, European, and Near Eastern dogs, as well as 

historical Siberian dogs with at least 0.5x coverage, see Fig. S4f.

D-Statistics with qpDstat

D-statistics (D-stats) were calculated with qpDstat in AdmixTools (37) using the black-backed 

jackal as an outgroup. For investigation of West Eurasian ancestry in Arctic dogs D-stats were 

calculated of the form D(black-backed jackal, source; target, sister population). Source 

populations tested were represented by modern Portugese Village, ancient Near Eastern, ancient

Europe, modern African dogs, and New Guinea Singing Dogs and the sister group used for 

comparison was the Zhokhov ancient Arctic dog or another Siberian/Steppe dog where stated. D-

statistic calculations were based on 2,115,941 sites which had genotype information from at least 

90% of individuals.
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D-stats were also used to investigate wolf ancestry in all of the dogs sampled also using qpDstat 

in AdmixTools. The set of 2,115,941 filtered to only include sites with genotypes for at least 90% 

of individuals was used to calculate D-statistics. The black-backed jackal was set as an outgroup 

in the formula D(black-backed jackal, wolf; target, sister population). Individual wolves were 

tested as source populations for wolf ancestry representing Pleistocene wolves (n=2), modern 

Siberian wolves (n=2), modern European wolves (n=2), a modern Chinese wolf (n=1), and a 

Tibetian wolf (n=1).

Table S1, TreeMix sample list:

List of samples and their population names included in the analysis.

Sample: Population:
HXH Ancient Europe
Newgrange Ancient Europe
Parknabinnia Ancient Europe
TepeGhela Levant 2.3kya
ASHQ01 Levant 2.3kya
ASHQ06 Levant 2.3kya
VillageDog_Borneo1 Modern Asia
VillageDog_Borneo2 Modern Asia
VillageDog_Borneo3 Modern Asia
Ishkinino Steppe 3.2kya
Baikal1 Baikal 6.9kya
GSD_Aasiat1 Greenland Sled Dogs
GSD_Ilulissat1 Greenland Sled Dogs
GSD_Tasiilaq2 Greenland Sled Dogs
Yana1 Siberia Historical 0.1kya
Sakhalin1 Siberia Historical 0.1kya
Chuchki1 Siberia Historical 0.1kya
SiberianHusky1 Siberian Huskies
SiberianHusky2 Siberian Huskies
SiberianHusky3 Siberian Huskies
Veretye1 Veretye 10.9kya
Veretye2 Veretye 10.9kya
WolfSiberia1 Wolf Modern
WolfSiberia2 Wolf Modern
WolfChina11 Wolf Modern
CGG23 Wolf Pleistocene
Ust-Polui2 Iamal 2.0kya
Ust-Polui3 Iamal 2.0kya
Ust-Polui4 Iamal 2.0kya
Ust-Voikar Iamal 1.0kya
Tiutei-Sale1 Iamal 1.0kya

Zhokhov Zhokhov 9.5kya
PortauChoix N. America 4.0kya

C.mesomelas Jackal
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TreeMix Analyses

TreeMix (38, 39) was used to infer population splits and admixture events for the populations. 

Each population used for the TreeMix analyses contained one to three individuals depending on 

the available samples in the study and reference panel. Filtering was performed on the dataset 

before running TreeMix to remove all sites with missing data, resulting in the retention of 104,681 

sites. TreeMix analyses were run with 100 bootstrap replicates over 500 blocks. Up to eight 

migration edges were modelled, the plotted replicate for each edge model was chosen based on 

the near mean residual score and the consistency of the modelled edges compared to other 

replicates. The individuals chosen as representatives of each population included in the analysis 

are listed in the following table (Table S1).

Table S2, Admixturegraph backboness:

List of samples forming the backbones used in the Admixturegraph analysis.

Backbone 
ID

Arctic 
Representative

Near East 
representative

European 
representative

Outgroup

backbone1 Zhokhov TepeGhela Newgrange
C.mesomela
s

backbone2 Zhokhov ASHQ01 Newgrange
C.mesomela
s

backbone3 Zhokhov TepeGhela HXH
C.mesomela
s

backbone4 Zhokhov ASHQ01 HXH
C.mesomela
s

Admixturegraph

We developed a wrapper for the Admixturegraph R package (40), using the snakemake workflow 

manager (41), to efficiently test similar models (backbone) across multiple samples (target). The 

workflow consists of three modules and relies on a series of conda environments which ensure 

the reproducibility of the results and the scalability of the analysis. The first module 

(subsetting.smk) requires a ped and map file as input. Here we used the file produced by ANGSD

and filtered via PLINK as described in the pseudo-haploidisation section above with an extra 

filtering step based on minor allele frequencies (--maf 0.05) which resulted in a panel comprising 

1,050,169 SNPs. For each combination of target/backbone, specific individuals are extracted 

from the ped using PLINK. These .map and .ped files serve as input for the second module 

(dstats.smk) which convert them in eigenstrat format using the Admixtools convertf utility and 

calculate the D-statistics for all possible quadruplets using qpDstats. The last module 

(modelling.smk) generates all input files for Admixgraph (R package), which is then employed to 

fit a series of predefined models. Our wrapper produces multiple outputs including the goodness 

of fit for each target/backbone pair as pdfs, and a heatmap representing the number of outliers 

under each backbone/target combination (e.g. Fig. S6b; Fig. S6c). A full description of the 
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workflow, the set of rules defining each module, as well as the python and R scripts used are 

available here https://github.com/a-karma/Arctic_Dogs.git.

We use this method to test multiple models using different backbones (see Table S2). For each 

backbone/target (all Siberian genomes) combination we tested a set of 6 models (Fig. S6a) and 

we determined the number of outliers. A D-statistic is considered an outlier if its expected value 

under a given model falls outside the 99% confidence interval centered around the observed 

statistic.

F4-ratio test

Admixture proportions were estimated using the qpF4ratio module of AdmixTools (37).

First  we  extracted  the  relevant  individual  from  the  pseudo-haplodized  panel  filtered  panel

(1,050,169 SNPs) described in the section above using plink. We then converted these output file

in eigenstrat format by running the following commands:

plink1.9 --file arctic_dog_master --keep f4_ratio_keep_list.txt --dog --recode --out f4_ratio_run

convertf -p f4_ratio_run_convertf.par

Finally we perform the test by running:

qpF4ratio -p f4_ratio_run.par > f4_ratio_test.log

A  consistent  set  of  parameters  was  employed  for  all  the  analyses.  An  example  of  the

f4_ratio_run.par is reported below.

genotypename: f4_ratio_run.eigenstratgeno
snpname: f4_ratio_run.snp
indivname: f4_ratio_run.ind
popfilename: f4_ratio_pop_list.txt
blgsize: 0.005

qpBrute

We performed an heuristic exploration of the admixture graph space using qpBrute (44), a python

based utility that automates the building and fitting of admixture models using qpGraph 

(Admixtools)(37). The utility works in a stepwise fashion, by adding a new leaf at each iteration, 

until it exhausts the leaf nodes in the population list. When a new node can not be inserted on a 

subgraph without producing outliers (i.e. |Z| >=3 for the f-statistic) that sub-graph is discarded.

We conducted three separate analyses to assess:

A) continuity between Zhokhov and Baikal dogs

B) continuity between Iron Age and Medieval dogs from the Iamal peninsula

12

https://paperpile.com/c/yl8pml/Asw2X
https://paperpile.com/c/yl8pml/Asw2X
https://paperpile.com/c/yl8pml/Asw2X
https://paperpile.com/c/yl8pml/Asw2X
https://paperpile.com/c/yl8pml/Asw2X
https://paperpile.com/c/yl8pml/Asw2X


C) the ancestry of modern arctic breeds.

For each analysis we set up multiple runs which differ in the representative of the Ancient 

European population and/or the representative of the Ancient Arctic lineage. The list of samples 

and populations considered for each run are reported in Table S3.

In order to complete each run we first preprocessed the data by extracting the selected 

individuals from the pseudo-haplodized filtered panel of 1,050,169 SNPs, using the following 

PLINK command:

plink1.9 --file arctic_dogs_master --keep keep_list_qpbrute_run.txt --dog --recode --out 

qpbrute_run

We then converted the qpbrute_run.map and qpbrute_run.ped files using the Admixtools convertf 

utility and specifying the packedancestrymap as the desired output format in the parameter file for

convertf:

convertf -p qpbrute_run_convertf.par

Finally, we modified the .ind output file manually by adding the desired population names and run 

the following commands:

conda activate qpbrute

python qpbrute.py --par qpbrute_run.par --prefix run_name_adm_graphs --pops 

list_of_population_names_involved_separated_by_a_space --out Out --threads 32

The file (qpbrute_run.par) contains all the parameters required by qpGraph. The following set of 

parameters was consistently employed through all the analyses:

indivname: run_name.ind
snpname: run_name.snp
genotypename: run_name.packedancestrymapgeno
outpop: NULL
useallsnps: YES
blgsize: 0.005
lsqmode: YES
diag: .0001
hires: YES
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Table S3a, Samples involved in the qpbrute analysis A:

Table of genome and population names used in each qpbrute run.

Sample ID Population Name Run A1 Run A2 Run A3 Run A4 Run A5 Run A6
Zhokhov Arctic yes yes yes yes yes yes
Baikal1 Baikal yes yes no no yes yes
Baikal2 Baikal yes yes yes yes no no
Baikal3 Baikal yes yes yes yes no no
Ishkinino Steppe yes yes yes yes yes yes
Samara1 Steppe yes yes yes yes yes yes
ASHQ01 Levant yes yes yes yes yes yes
ASHQ08 Levant yes yes yes yes yes yes
ASHQ06 Levant yes yes yes yes yes yes
HXH A_EU yes no no yes yes no
Parknabinnia A_EU no yes yes no no yes
Newgrange A_EU yes yes yes yes yes yes
C.mesomelas Outgroup yes yes yes yes yes yes

Table S3b, Samples involved in the qpbrute analysis B:

Table of genome and population names used in each qpbrute run.

Sample ID Population Name Run B1 Run B2 Run B3 Run B4

Zhokhov Arctic yes yes yes yes

Baikal2 Arctic no no yes yes

Baikal3 Arctic no no yes yes

Ishkinino Steppe yes yes yes yes

Samara1 Steppe yes yes yes yes

ASHQ01 Levant yes yes yes yes

ASHQ08 Levant yes yes yes yes

ASHQ06 Levant yes yes yes yes

HXH A_EU no yes yes no

Parknabinnia A_EU yes no no yes

Newgrange A_EU yes yes yes yes

Ust-Polui2 Iamal_Iron yes yes yes yes

Ust-Polui3 Iamal_Iron yes yes yes yes

Ust-Polui4 Iamal_Iron yes yes yes yes

Tiutei-Sale1 Iamal_Med yes yes yes yes

Ust-Voikar Iamal_Med yes yes yes yes

C.mesomelas Outgroup yes yes yes yes
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Table S3c, Samples involved in the qpbrute analysis C:

Table of genome and population names used in each qpbrute run.

Sample ID
Population
Name

Run
C1

Run
C2

Run
C3

Run
C4

Run
C5

Zhokhov Arctic yes yes yes yes yes
Baikal2 Baikal no no yes no no
Baikal3 Baikal no no yes no no
Ishkinino Steppe yes yes yes yes yes
Samara1 Steppe yes yes yes yes yes
ASHQ01 Levant yes yes yes yes yes
ASHQ08 Levant yes yes yes yes yes
ASHQ06 Levant yes yes yes yes yes
HXH A_EU yes no no no no
Parknabinnia A_EU no yes yes yes yes
Newgrange A_EU yes yes yes yes yes
VillageDog_Borneo1 East_Asia yes yes yes no no
VillageDog_Borneo2 East_Asia yes yes yes no no
VillageDog_Borneo3 East_Asia yes yes yes no no
NewGuineaSingingDog1 East_Asia no no no yes yes
NewGuineaSingingDog2 East_Asia no no no yes yes
NewGuineaSingingDog3 East_Asia no no no yes yes
SiberianHusky1 Husky yes yes yes yes no
SiberianHusky2 Husky yes yes yes yes no
SiberianHusky3 Husky yes yes yes yes no
GSD_Ilulissat1 GSD no no no no yes
GSD_Qaanaaq1 GSD no no no no yes
GSD_Tasiilaq2 GSD no no no no yes
C.mesomelas Outgroup yes yes yes yes yes

Testing for Reference Bias

The aim here was to compare D-statistics computed from alignment to the dog (CanFam3.1) and 

fox (VulVul2.2) reference genomes.  To do so, we first pseudo-haplodise the data aligned to the 

fox reference genome applying the following filtering thresholds using ANGSD: random bases 

were sampled with a minimum mapping quality of 20 and minimum base call of 20, transitions 

were discarded, initial and final three bases were trimmed to remove deaminated sites, and 

included only sites with coverage for at least 40 of the 47 (85.1%) individuals. These filters 

resulted in the retention of 978,502,332.

angsd -doHaploCall 1 -doCounts 1 -minMapQ 20 -minQ 20 -minInd 40 -setMinDepth 1 -b 

bamlist.txt -minMinor -trim 5 -noTrans 1 -out Sib_vulpes_40 -checkBamHeaders 0

Further filtering was performed before downstream analyses took place to retain only sites with at

least a minor allele frequency of 5% and with data present for at least 75% of individuals. 

Following this filtering 6,912,616 SNPs were used in downstream analyses. D-statistics (D-stats) 
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were then calculated with qpDstat in AdmixTools (37) using the black-backed jackal as outgroup 

based. 

The doAbbababa utility of ANGSD was also run to calculate D-statistics from the bam files 

mapped to the dog and fox reference genomes in blocks of 100,000 sites and quality filters.

angsd -doAbbababa 1 -doCounts 1 -rmTrans 1 -blockSize 100000 -bam bamlist.txt -useLast 1 -

minQ 20 -minMapQ 20 -doCheck 0 -out <reference>

In order to compare the results from the admixture graph modelling analysis and f4-ratio analysis,

we processed the angsd output (978,502,332 SNPs) in plink and applied the same filtering 

procedure by running:

plink1.9 --tfile ANGSD_output  --make-bed --dog --missing-genotype N --output-missing-genotype

0 --out Sib_vulpes_40_haplo --allow-extra-chr --memory 100000

plink1.9 --bfile Sib_vulpes_40_haplo --allow-extra-chr --indep-pairwise 50 10 0.1 --threads 10 --

memory 100000 --make-bed --out Sib_vulpes_40_to_prune

plink1.9 --bfile Sib_vulpes_40_to_prune --allow-extra-chr --extract 

Sib_vulpes_40_to_prune.prune.in --out Sib_vulpes_haplo_pruned --memory 100000 --make-bed

plink1.9 --bfile Sib_vulpes_haplo_pruned --allow-extra-chr --maf 0.05 --geno 0.25 --recode --out 

Sib_vulpes_haplo_pruned_maf5_geno25

We then renamed the contigs using a custom script (also available in the Utils folder of our 

wrapper) and extract the first 95 contigs by running:

plink1.9 --file Sib_vulpes_pruned_renamed --allow-extra-chr --chr-set 95 --chr 1-95 --recode --out

Sib_vulpes_pruned_renamed_95_contigs

After these filtering steps, 4,430,009 SNPs were retained.

Supplementary Text

F4-ratio test

We calculated the f4-ratio to estimate the admixture proportions in the two Veretye dogs as:

f4(ASHQ01, Out; Veretye1, Zhokhov) : f4(ASHQ01, Out; TepeGhela, Zhokhov) = 0.347±0.034

f4(ASHQ01, Out; Veretye2, Zhokhov) : f4(ASHQ01, Out; TepeGhela, Zhokhov) = 0.290±0.031

f4(TepeGhela,Out; Veretye1, Zhokhov) : f4(TepeGhela, Out; ASHQ01, Zhokhov) = 0.290±0.031

f4(TepeGhela, Out; Veretye2, Zhokhov) : f4(TepeGhela, Out; ASHQ01, Zhokhov) 0.250±0.028
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Values are all significant (as expected). The Near Eastern ancestry component of Veretye1 is

slightly higher but this could also be the result of differences in coverage.

We estimated the proportion of Near Eastern ancestry in Steppe dogs using the f4-ratio test.

f4(Levant, Out; Steppe, Arctic) : f4(Levant, Out; Iran, Arctic) = 0.569±0.027

f4(Iran, Out: Steppe, Arctic) : f4(Iran, Out; Levant, Arctic) = 0.574±0.027

Where:  Iran  =  TepeGhela;  Levant  =  ASHQ08 and  ASHQ01;  Out  =  C.mesomelas;  Steppe =

Ishkinino and Samara1; Arctic = Zhokhov.

We used the f4-ratio  to confirm previous findings and estimate the contribution of  the Arctic

lineage to the ancestry of Ancient European dogs (treated as a single population, including both

HXH and Newgrange).

f4(Zhokhov, Out; Ancient EU, Levant) : f4(Zhokhov, Out; Baikal, Levant) = 0.336±0.013

f4(Baikal, Out; Ancient EU, Levant) : f4(Baikal, Out; Zhokhov, Levant) = 0.329±0.013

Where: Ancient EU = HXH, Newgrange, and Parknabinnia; Levant = ASHQ01, ASHQ06, and

ASHQ08; Baikal = Baikal1, Baikal2, and Baikal3; Out = C.mesomelas.

We investigated this further by considering a single individual per population, and attempted to

quantify whether the Arctic ancestry component of European dogs varies across individuals and

whether it is closer to Baikal1 or Zhokhov.

f4(Zhokhov, Out; HXH, ASHQ01) : f4(Zhokhov, Out; Baikal1, ASHQ01) = 0.411±0.019

f4(Baikal1, Out; HXH, ASHQ01) : f4(Baikal1, Out; Zhokhov, ASHQ01) = 0.453±0.021

f4(Zhokhov, Out; Newgrange, ASHQ01) : f4(Zhokhov, Out; Baikal1, ASHQ01) = 0.288±0.019

f4(Baikal1, Out; Newgrange, ASHQ01) : f4(Baikal1, Out; Zhokhov, ASHQ01) = 0.312±0.021

f4(Zhokhov, Out; Parknabinnia, ASHQ01) : f4(Zhokhov, Out; Baikal1, ASHQ01) = 0.241±0.020

f4(Baikal1, Out; Parknabinnia, ASHQ01) : f4(Baikal1, Out; Zhokhov, ASHQ01) = 0.241±0.021

The Arctic ancestry component of European dogs indeed varies and seems to decrease over

time. These results are generally consistent with the IBS pairwise distances analysis and the

modelling with Admixturegraph (R package): amongst Ancient European dogs, HXH is the closest

to Arctic dogs and the Zhokhov dog seems to be closer to the source of the Arctic component in

European dogs.

Finally, we attempted to estimate the proportion of european ancestry in Baikal dogs (if any).
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f4(HXH, Out; Baikal1, Zhokhov) : f4(HXH, Out; Newgrange, Zhokhov) = 0.104±0.026

f4(Newgrange, Out; Baikal1, Zhokhov) : f4(Newgrange, Out; HXH, Zhokhov) = 0.070±0.022

f4(HXH, Out; Baikal2, Zhokhov) : f4(HXH, Out; Newgrange, Zhokhov) = -0.069±0.048

f4(Newgrange, Out; Baikal2, Zhokhov) : f4(Newgrange, Out; HXH, Zhokhov) = -0.054±0.041

f4(HXH, Out; Baikal3, Zhokhov) : f4(HXH, Out; Newgrange, Zhokhov) = 0.006±0.045

f4(Newgrange, Out; Baikal3, Zhokhov) : f4(Newgrange, Out; HXH, Zhokhov) = 0.011±0.038 

None of the values for the two oldest Baikal dogs is significantly different from zero while in the

case  of  the  youngest  Baikal  dog  (Baikal1)  we  estimated  a non-negligible  admixture fraction.

These results should be interpreted with caution though, given that the representatives of the

Ancient European population are themselves admixed. Hence, we used two representatives of

the Near eastern population as a proxy to estimate the non-Arctic component in Baikal  dogs

which confirmed the continuity of Baikal2 and Baikal3 as well as the attraction of Baikal1 towards

Europe/Near East.

f4(ASHQ01, Out; Baikal1, Zhokhov) : f4(ASHQ01, Out; TepeGhela, Zhokhov) = 0.078±0.035

f4(TepeGhela, Out; Baikal1, Zhokhov) : f4(TepeGhela, Out; ASHQ01, Zhokhov) = 0.126±0.031

f4(ASHQ01, Out; Baikal2, Zhokhov) : f4(ASHQ01, Out; TepeGhela, Zhokhov) = -0.082±0.079

f4(TepeGhela, Out; Baikal2, Zhokhov) : f4(TepeGhela, Out; ASHQ01, Zhokhov) = -0.023±0.060

f4(ASHQ01, Out; Baikal3, Zhokhov) : f4(ASHQ01, Out; TepeGhela, Zhokhov) = -0.009±0.069

f4(TepeGhela, Out; Baikal3, Zhokhov) : f4(TepeGhela, Out; ASHQ01, Zhokhov) = 0.023±0.063

Qpbrute

We  assessed  whether  including  different  combinations  of  Baikal  genomes  affected  our

conclusions that there was potentially an influx of Western Ancestry in these dogs between 6.9

and 7.5kya. To do so we ran qpbrute with different combinations of samples, 1) three Baikal dogs

as  a  single  population  (Baikal_A1  and  Baikal_A2),  2)  using  only  the  two  oldest  samples

(Baikal_A3  and  Baikal_A4),  3)  using  only  the  youngest  /  higher  coverage  sample  (Baikal1)

(Baikal_A5 and Baikal_A6). Visual inspections of the graphs leaving no outliers revealed that

there are not substantially more models involving admixture from Western sources into the high

coverage Baikal genome than in lower genomes.

In the case of Iamal dogs, although we observed a general increase in the number of fitting

models, the addition of the two oldest Baikal dogs to the ancient Arctic population had little effect

on  their  overall  topologies.  Most  discrepancies  were  observed  when  using  different
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representatives  of  the  European  population  (see  Table  S3b  and  Table  S4).  This  effect  of

including different representatives for European dogs was even more pronounced in the Siberian

dog analysis (see Siberian_C1 and Siberian_C2). The choice of the representative of the East

Asan population (village dogs from Borneo or New Guinea singing dogs), however, had little

effect (compare Siberian_C2 and Siberian_C4): fitting models are all variations of the first three

graphs reported in Fig S7. These results are broadly consistent with the TreeMix analysis and

represent three different solutions to resolve a polytomy at the root of dog phylogeny.

For each analysis, few chosen graphs were plotted in Fig. S7, Fig. S9, and Fig. S11. All other 

graphs can be found here: https://sid.erda.dk/share_redirect/DYIqytfNSR. A summary of each 

qpbrute run is reported in the following table (Table S4).

Table S4, qpbrute results summary:

The table reports the number of tested and fitting graphs for each run. Fitting models are 
categorised based on the number of admixture events (a) present in the graph.

Run ID # Fitting, a=2 # Fitting, a=3 # Fitting, a=4 # Tested Graphs % Fitting Graphs

Baikal_A1 4* 336 0 11,155 3,05%

Baikal_A2 4* 412 0 12,001 3,47%

Baikal_A3 0 428 0 14,676 2.92%

Baikal_A4 0 469 0 15,413 3,04%

Baikal_A5 4 394 0 13,448 2,96%

Baikal_A6 4 391 0 11,477 3,44%

Iamal_B1 0 3 330 61,744 0,54%

Iamal_B2 0 0 15 39,868 0,04%

Iamal_B3 0 0 20 40,718 0.05%

Iamal_B4 0 0 563 77,282 0.73%

Siberian_C1 0 0 1 40,527 0.0025%

Siberian_C2 0 0 94 55,603 0,17%

Siberian_C3 0 0 176 66,443 0,26%

Siberian_C4 0 0 124 60,141 0.21%

Siberian_C5 0 0 164 72,726 0.23%

* Two models were topologically identical.

Assessing Reference Bias in ancient Baikal genomes

Firstly, to test for reference bias we built a simple neighbour joining tree to compare the 

phylogenetic relationships seen in the dataset when aligned to the dog reference to the alignment

of the data for the same samples to the red fox reference. The general topology and relationships
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between samples in the neighbour joining tree largely stayed the same regardless of the 

reference (Fig. S12). We further investigate the reference bias effect by comparing D-statistics 

computed using alignment to the red fox and dog reference genome. Firstly, we tested whether 

the signal of gene flow from non-Arctic populations in early Holocene Baikal dogs could be driven 

by reference bias using ANGSD (Fig. S10). D-statistics, computed using the both Zhokhov and 

Baikal1 genomes aligned to the dog reference suggest that Baikal1 possess European like 

ancestry, which could be driven by the fact the reference genome is a European breed (boxer)

(Fig. S10a). This signal disappears when computing the same combinations using the red fox 

reference genome suggesting that it is potentially driven by reference bias in this low coverage 

genome from near Lake Baikal (Fig. S10a). In fact while the signal from Steppe dogs and Near 

Eastern dogs becomes less significant, the test now reports more shared derived allele between 

Zhokhov and European/East Asian dogs. This suggests that, 1) there has been limited additional 

admixture from the Near East/Steppe into the Baikal lineage, 2) the Zhokhov dog belonged to a 

lineage that was closer to the source of Arctic ancestry in European/Asian dogs. It remains 

possible, however, that admixture from European/East Asian lineage in the Zhokhov lineage 

could also explain this - although given the age and location of this sample this scenario seems 

less likely. When D-statistics are generated on the pseudo-haploid dataset aligned to the 

VulVul2.2 reference using qpDstat a shift in statistically significant signals is also apparent 

(compare Dataset S3 and Dataset S4). Particularly in the case of Baikal1 there are several D-

statistics that became significant when aligned to VulVul2.2 (ie. ancient European and Near 

Eastern dogs), while several lost their significance (ie. modern Europe and East Asia) (Dataset 

S4).

Assessing Reference Bias in admixture graph analyses

We performed the same admixture modelling analysis (as described in the Admixturegraph 

section above) using alignments to the red fox reference genome (VulVul2.2). The D-statistics 

were computed using all transversions from the largest 95 contigs (4,930,239 SNPs in total). 

Besides for a few minor differences (see below) the best models identified were the same 

between the two assemblies (see Fig. S6b; Fig. S6c). The exceptions were:

i) Nenets1: The red fox based analysis revealed a stronger affinity to European dogs.

ii) Bolgar1: The fit of models involving Near East admixture in this sample is reduced using the 

redfox assembly.

iii) Steppe dogs (Ishkinino and Samara1): we observed a general increase in the number of 

outliers in all models tested, with no models leaving no outliers when using alignment to the red 

fox assembly. In the case of Ishkinino the same models were preferred in both analyses while in 

the case of Samara1 the model involving admixture between Arctic and Near East was slightly 

preferred using the red fox assembly as reference.
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Assessing Reference Bias in f4-ratio tests

We  observed  almost  no  differences  when  estimating  the  Near  East  ancestry  component  of

Steppe dogs with f4-ratio.

f4(Levant, Out; Steppe, Arctic) : f4(Levant, Out; Iran, Arctic) = 0.594±0.030 

f4(Iran, Out: Steppe, Arctic) : f4(Iran, Out; Levant, Arctic) = 0.70±0.023 

Where:  Iran  =  TepeGhela;  Levant  =  ASHQ08 and  ASHQ01;  Out  =  C.mesomelas;  Steppe =

Ishkinino and Samara1; Arctic = Zhokhov.

The estimated Arctic ancestry component of Ancient European dogs is slightly higher and seems

much closer to the Zhokhov lineage.

f4(Zhokhov, Out; Ancient EU, Levant) : f4(Zhokhov, Out; Baikal, Levant) = 0.358±0.015

f4(Baikal, Out; Ancient EU, Levant) : f4(Baikal, Out; Zhokhov, Levant) = 0.463±0.015

Where: Ancient EU = HXH, Newgrange, and Parknabinnia; Levant = ASHQ01, ASHQ06, and

ASHQ08; Baikal = Baikal1, Baikal2, and Baikal3; Out = C.mesomelas.

The  European/Near  Eastern  ancestry  component  in  the  two  oldest  Baikal  dogs  is  still  not

significantly different  from zero while in the case of Baikal1,  the estimated admixture fraction

increased substantially.

f4(Newgrange, Out; Baikal1,Zhokhov) : f4(Newgrange, Out; HXH, Zhokhov) = 0.33±0.016

f4(Newgrange, Out; Baikal2, Zhokhov) : f4(Newgrange, Out; HXH, Zhokhov) = -0.033±0.023

f4(Newgrange, Out; Baikal3, Zhokhov) : f4(Newgrange, Out; HXH, Zhokhov) = -0.026±0.021

f4(ASHQ01, Out; Baikal1, Zhokhov) : f4(ASHQ01, Out; TepeGhela, Zhokhov) = 0.198±0.034

f4(ASHQ01, Out; Baikal2, Zhokhov) : f4(ASHQ01, Out; TepeGhela, Zhokhov) = -0.021±0.050

f4(ASHQ01, Out; Baikal3, Zhokhov) : f4(ASHQ01, Out; TepeGhela, Zhokhov) = -0.077±0.054

Assessing Reference Bias from Pleistocene wolves

Reference bias also affected our power to detect gene flow from Pleistocene wolf into the 

Zhokhov dog as reported in a previous study (42). Here we show that using the red fox reference 

genome dramatically increases our power to detect gene flow from Pleistocene wolves into the 

Zhokhov lineage (Fig. S10b).
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Limited Gene Flow from Wolves into other Siberian Dogs

Aside from the clear admixture signal from Pleistocene wolves into the Zhokhov lineage (see 

above), we found very limited evidence for introgression from both modern or Pleistocene wolves 

into Siberian. Several Siberian dogs gave statistically significant signals of Pleistocene wolf 

ancestry in their D-statistics when compared to village dogs from across India, East Asia, and 

Southeast Asia. The strongest signal for gene flow from Pleistocene wolves can be seen in the 

low coverage Veretye dog, while three historical dogs from the Amur Delta, Sakha Republic, and 

Chukchi show low but significant signals of Pleistocene wolf ancestry. Of the modern Arctic dogs, 

the Greenland Sled Dogs show the strongest signal that appears with both of the Pleistocene wolf

sources tested (Fig. S13a), based on the Eurasian distribution and the seemingly universal signal

for Pleistocene wolf ancestry in Greenland Sled dogs in the D-statistics this must have happened 

in Siberia before the ancestors of the Greenland Sled Dog departed for North America. These 

results corroborate previous analyses (42). When modern wolves from Chukotka and China are 

tested as sources the Z score is again significant (Fig. S13b).

Previous analyses of modern and ancient genomes, using f4 and D-statistics showed that most 

wolves are  symmetrically related to all possible pairs of modern and ancient dogs, which 

indicates that gene flow mostly took place from dogs into wolf populations (43). Our results 

corroborate this finding, as with the exception of a few cases, we found that most wolves were 

symmetrically related to various dog combinations (Fig. S13b). By and large the historical 

samples from across Siberia do not show signs of modern wolf ancestry, an exception is a dog 

from the Amur Basin (AmurDelta1) that has comparatively more alleles shared with modern 

wolves than dogs from the same region, some African village dogs, Asian village dogs, and some

breed dogs.

Gene Flow between Siberian and East Asian Dogs

A recent study of ancient Eurasian dogs revealed that East Asian dogs, as represented by the 

New Guinea Singing Dog, are the result of an ancient admixture event between an Ancient Arctic 

dog and an undefined ancient lineage (3). Overall, our results corroborate this finding. In fact, 

several qpBrute models computed for this study include admixture event(s) between ancient 

Arctic dog lineage, represented by the Zhokhov dog, and an unidentified ancient lineage that 

gave rise to modern East Asian dogs (Fig. S7c). Furthermore, several of our TreeMix analyses 

show migration edges between the ancient Zhokhov and Lake Baikal dog lineages and modern 

East Asian dogs (Fig. S3b). These signals for ancient admixture from the Arctic lineage into the 

ancestor of East Asian dogs likely resulted in issues resolving the root between Western 

Eurasian, Arctic and East Asian dog lineages (44) as seen in the neighbour joining tree (Fig. S2).

D-statistics of the form D(outgroup, East Asia; Zhokhov, Siberian dog), computed based on 

alignment to the dog reference (CanFam3.1) indicated that several ancient and historical Siberian

dogs (Baikal1, Sakhalin1, AmurDelta1) had statistically significant signals (Z<-3.3) for gene flow 

from East Asian dogs when a village dog from Borneo (VillageDog_Borneo1) and/or a New 
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Guinea Singing dog (NewGuineaSingingDog1) were used as sources (Dataset S3). This signal, 

however, disappeared when D-statistics were computed from the dataset using the fox reference 

(VulVul2.2)(Dataset S4), indicating a potential reference bias issue. Most D-statistics, of the form 

D(outgroup, East Asia; Zhokhov, Siberian dog), in both alignments, resulted in significant values 

(Z>3.3) that instead suggest that the East Asian dogs are closer to the ancient Zhokhov dogs 

than to later Siberian dogs (Dataset S3; Dataset S4). This could be driven by either or both of 

these scenarios: gene flow from Western dogs into Siberian dogs since their TMRCA with 

Zhokhov, and/or early gene flow from a dog lineage, best represented by the Zhokhov genome, 

into the ancestor of East Asian dog. Together these results indicate that Siberian dogs did not 

receive extensive gene flow from East Asian dogs.

Mitochondrial DNA

Previous studies have found that most Arctic and Siberian mitochondrial genomes from dogs are 

related to the A-clade (44–47). The mitochondrial genomes from the Siberian dogs sequenced in 

this study generally fell into the A-clade in the maximum likelihood tree constructed with 1,000 

bootstrap replicates. Only the two dogs from Veretye in Karelia (Veretye1, Veretye2) were found 

together with the ancient Arctic dogs from Zhokhov (Fig. S14). The other four of the five 

mitochondrial genomes sequenced from dogs of the Ust'-Polui site on the Iamal Peninsula carry 

A-clade mitochondrial haplotypes, specifically with A1a clade haplotypes, which are typical for 

Siberia and the Arctic as well as other regions of Eurasia (Fig. S14). However, one of the Iron 

Age dogs from Ust'-Polui (Ust’-Polui3) possesses a mitochondrial genome with a C-clade 

haplotype that is typically associated with Europe before the Neolithic. The C-clade haplotype 

was likely introduced to the region when gene flow occurred between the ancestors of the Iron 

Age dogs of the Iamal Peninsula and dogs from the further south. All three medieval Iamal dogs 

possessed A-clade mitochondrial genomes that cluster closely with several of the earlier Iamal 

dogs from Ust'-Polui. Mitochondrial genomes from historical dogs associated with Nenets and 

Khanty groups in western Russia from the early twentieth century also cluster closely with the 

Iron Age and Medieval Iamal dogs. Falling basal to the Iamal dogs was the Bronze Age Steppe 

dog from Ishkinino. A historical dog Sakhalin1, collected 1892 CE from Sakhalin Island, also 

possesses a C-clade mitochondrial genome. 

Supplementary Information Figure Captions

Fig. S1 PCA:

Principal component analyses (PCAs) of modern dogs/wolves with ancient individuals projected 
onto the PCA. PCA were computed with smartPCA using 4,177,994 SNPs, up to 25% 
missingness was allowed per site. The geographical origin of the individual is indicated by the 
colour and the age of the individual is indicated by the shape. A) PCA plotting PC1-4 of dogs and 
wolves. B) PCA with PC1-4 plotting only dogs..

Fig. S2 Neighbour Joining Tree with >0.5x coverage samples:
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Neighbour joining tree built from identity-by-state matrix of samples with >0.5x mean coverage of 
the nuclear genome, rooted with the black-backed jackal as the outgroup. The outgroup and 
wolves present during the construction of the tree are not shown in the figure. Branch colour 
reflects the region and/or time point at which the dog was living.

Fig. S3 TreeMix Models:

TreeMix analyses run with up to four migration edges. All sites with missing data have been 
removed from the analysis and low coverage individuals have been included, each population 
contains between one and three individuals. Models testing for each number of edges were run in
50 replicates. A) i-v: TreeMix tree with edges 0-4, respectively showing most frequent topology 
and edges. B)  i-v: TreeMix tree with edges 5-8, respectively showing most frequent topology and
edges.

Fig. S4 Pairwise Distances for Siberian dogs:

A-C) Identity-by-state (IBS) pairwise distances plotted on maps showing the  approximate 
geographical origin of samples and their pairwise distance. The shape of the icon on the map 
denotes the age of the sample while the colour reflects IBS with the darkest colours showing the 
greatest affinity and lightest colours showing the smallest affinity. The black icon on the map 
shows where the individual being tested as the target in each test originates from. For sites with 
more than one individual intra-site IBS values have been excluded from the plot to highlight 
relationships outside of the site. A) Maps of IBS for samples from ancient Siberian dogs from 
11,000 to 800 years ago. B) Maps of IBS for Siberian dogs from 150 to 50 years ago. C) Maps of 
IBS for modern Arctic dogs from 50 years ago to present. D-F) Identity-by-state (IBS) pairwise 
distances for Siberian dogs compared to other ancient dogs. The individual with the greatest 
affinity is plotted in red and all other comparisons are plotted in ascending order.  D) IBS plotted 
in ascending order for each ancient Siberian dog compared to ancient Siberian, Near East, and 
European dogs with >0.5X coverage. E) IBS plotted in ascending order for historical Siberian 
dogs compared to ancient Siberian, Near East, and European dogs with >0.5X coverage. F) IBS 
plotted in ascending order for historical Siberian dogs compared to ancient Siberian, Near East, 
and European dogs as well as historical Siberian dogs with >0.5X coverage.

Fig. S5 D-Statistics for Gene Flow into Steppe Dogs:

D-statistics calculated with the qpDstat utility in AdmixTools where the black-backed jackal is 
used as the outgroup, D(Jackal, Source; Ishkinino, Samara). The z-score was plotted and 
statistical significance for admixture occurs above 3.3 or below -3.3. Positive scores reflect gene 
flow between the jackal and the target population or the Eurasian dog and the sister population. 
Negative scores reflect gene flow between the jackal and the sister population or the Eurasian 
dog and the target. Six populations were tested as a sources for gene flow into the Bronze Age 
and Medieval Steppe dog: ancient Iran (TepeGhela), ancient Israel (ASHQ01, ASHQ06, 
ASHQ08), New Guinea Singing Dogs (NewGuineaSingingDog1, NewGuineaSingingDog2, 
NewGuineaSingingDog3), ancient Europe (Newgrange, Dog1_PU, HXH), modern Europe 
(VillageDog_Portugal1, VillageDog_Portugal2), and ancient Siberia (Zhokhov, Baikal1).

Fig. S6a Admixture graphs tested

Schematic representation of the admixture graphs fitted to the data
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Fig. S6b Outliers Full Heat Map (samples aligned to the dog reference genome, Canfam3.1)

Heat map based on the number of D-stats outliers under each model (see Fig. S6a). The value 
are averaged across 4 different backbones each including an C.mesomelas (Outgroup), the 
Zhokhov dog (Ancient Arctic), an ancient European lineage (either HXH or Newgrange) and an 
ancient Near Eastern lineage (TepeGhela or ASHQ01)

Fig. S6c Outliers Full Heat Map (samples aligned to the fox reference genome, VulVul2.2)

Heat map based on the number of D-stats outliers under each model (see (see Fig. S6a). The 
value are averaged across 4 different backbones each including an C.mesomelas (Outgroup), 
the Zhokhov dog (Ancient Arctic), an ancient European lineage (either HXH or Newgrange) and 
an ancient Near Eastern lineage (TepeGhela or ASHQ01)

Fig. S7 qpBrute Model with East Asian Dogs:

Four representative graph that describes the relationship between ancient European dogs (HXH 
or Prknabinna and Newgrange), Steppe dogs (Samara1 and Ishkinino), Levant dogs (ASHQ01, 
ASHQ06, ASHQ08), Ancient Arctic dogs (Zhokhov, or Zhokhov, Baikal2 and Baikal3), three 
modern Husky dogs and three East Asian dog (New Guinea Singing dogs or Village dog from 
Borneo).

Fig. S8 D−statistics (qpDstat) Gene Flow into Iamal dogs:

Boxplots of z score for qpDstat D-statistics for allele sharing between Iamal dogs and other dog 
populations. A.) Aggregated z scores for all Iron Age Iamal (Ust-Polui) dogs compared to the 
Early Holocene Zhokhov dog and Medieval Iamal dogs: Iarte6, Ust-Voikar, and Tiutei-Sale1. 
Comparisons show that the Ust-Polui dogs have greater allele sharing with non-Arctic dogs than 
the Zhokhov dog, the Ust-Polui dogs also have more allele sharing with Ancient Arctic dogs 
(Zhokhov & Baikal) than the three Medieval Iamal dogs. B.) Intersite comparisons of allele 
sharing to non-Iamal dogs for Medieval Iamal dogs. There is no statistically significant signal for 
additional allele sharing from outside of the Iamal region for any of the Medieval dogs.

Fig. S9 qpBrute Model for Baikal dogs:

Three representative graph that describes the relationship between the Arctic lineage (Zhokhov 
dog), the three samples from Baikal, ancient European dogs (A_EU), Steppe dogs (Samara and 
Ishkinino) and Levant dogs (ASHQ01, ASHQ06, ASHQ08) treated as separate populations. The 
models are topologically similar and show that models without admixture from non-Artic lineage 
into Baikal are sufficient to explain their ancestry.

Fig. S10 D−statistics (ANGSD) Gene Flow Reference Bias

D-statistics calculated by ANGSD comparing alignment of samples to the dog reference genome 
(CanFam3.1) and the red fox genome (VulVul2.2) A. D-stat results testing for additional gene 
flow into Baikal1 compared to Zhokhov. B.) D-stats calculated for gene flow from Pleistocene 
wolves into the Zhokhov dog.

Fig. S11 qpBrute Model for Iamal dogs:

Four representative graph (one for each qpbrute run) that describes the relationship between 
ancient European dogs (A_EU), Steppe dogs (Samara and Ishkinino), Levant dogs (ASHQ01, 
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ASHQ06, ASHQ08) and Ancient Arctic dogs, Iamal Iron Age dogs (Ust'-Polui2, Ust'-Polui3, Ust'-
Polui4), and Iamal Medieval dogs (Tiutei-Sale1, Ust’-Voikar) are treated as separate populations. 
All models show different gene flow events experienced by the Iron Age and Medieval dogs of 
the Iamal region.

Fig. S12 Vulpes Neighbour Joining Tree

Neighbour joining tree built from identity-by-state matrix of samples with >0.75x mean coverage 
of the nuclear genome aligned to the red fox (VulVul2.2), rooted with the black-backed jackal as 
the outgroup. The outgroup and wolves present during the construction of the tree are not shown 
in the figure. Branch colour reflects the region and/or time point at which the dog was living.

Fig. S13 D−statistics (qpDstat) Gene Flow from Wolves into Siberian/Arctic Dogs

D-statistics as calculated by qpDstat to test for gene flow from A.) Pleistocene wolves (n=2) and 
B.) modern wolves (n=4) into Siberian and Arctic dogs. The plotted results testing four different 
wolves as source populations are coloured by the dog sample being tested. The red dashed line 
marks -3.3 and +3.3 corresponding to the statistically significant Z-score. The sister population, 
Y, was tested as modern village and breed dogs, ancient West Eurasian dogs, and all Siberian 
dogs in the dataset, in D(Jackal, wolf; X, Y).

Fig. S14 Phylogeny of mitochondrial genomes

A) Maximum likelihood tree of mitochondrial genomes built consensus tree from 500 bootstraps 
replicates from RaxML not showing the outgroup, Canis latrans. Identified dog clades are colour 
coded, mitochondrial genomes from samples generated in this study are labelled in red. B) 
Larger visualization of wolves and dog clades B-E. C) Larger visualization of dog clade A and 
related canids. 

Supplementary Information Dataset Captions

Dataset S1, Siberian dog samples:

Dataset of dog genomes generated for this study with information about age, location, and 
coverage.

Dataset S2, Panel of dog and wolf genomes:

Dataset of publically available genomes used in this study with sample metadata, such as age 
and location of origin.

Dataset S3, D-statistics for non-Arctic ancestry in Siberian dogs:

Table of D-statistics as calculated by qpDstat to test for ancestry in Arctic Eurasian dogs from 
other Eurasian dog populations with data aligned to the CanFam3.1 reference genome. Ten 
Eurasian dogs were tested to represent potential admixture source populations. The D-stat 
results highlighted in green indicate where the Z-score shows statistically significance with a Z-
score for the corresponding D above 3.3 or below -3.3. The table also lists the name of the site 
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the sample was recovered from, the region where the site is located, the age of the sample in 
years before present, and the mean nuclear coverage of the genome.

Dataset S4, D-statistics for non-Arctic ancestry in Siberian dogs:

A table of D-statistics, from dataset aligned to the VulVul2.2 reference genome, calculated by 
qpDstat to test for ancestry in Arctic Eurasian dogs from other Eurasian dog populations. Eight 
Eurasian dogs were tested to represent potential admixture source populations. The D-stat 
results highlighted in green indicate where the Z-score shows statistically significance with a Z-
score for the corresponding D below -3.3 that were significant for both the data aligned to the 
CanFam3.1 and VulVul2.2 references. Results highlighted in yellow indicate instances where 
results were significant when aligned to CanFam3.1 but not for VulVul2.2 and results highlighted 
in blue indicate results that were not significant when aligned to CanFam3.1 but are significant 
when aligned to VulVul2.2. The table also lists the name of the site the sample was recovered 
from, the region where the site is located, the age of the sample in years before present, and the 
mean nuclear coverage of the genome.
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SIFig 4b: Identity−by−state Pairwise Distances (150 − 50 BP) 
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SIFig. 4c: Identity−by−state Pairwise Distances (50 − 0 BP)
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SIFig. 4d: Identity−by−state Pairwise Distances (11,000 − 150 BP)
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SIFig. 4e: Identity−by−state Pairwise Distances (150 − 50 BP)
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SIFig. 4f: Identity−by−state Pairwise Distances (50 − 0 BP)
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Fig. S6b Outliers Heat Map (samples aligned to the dog reference genome, Canfam3.1)
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Fig. S6c Outliers Heat Map (samples aligned to the fox reference genome, VulVul2.2)
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Fig. S14c Maximum Likelihood Phylogeny of Mitochondrial Genomes


