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Extended materials and methods 

Plant material and sequence availability 

A. nova subsp. iberica was provided by Santiago Martin Bravo, University of Sevilla, 

Spain, while Arabis auriculata (B‐2006‐0564) and A. nordmanniana (RK219) were 

provided by MA Koch (1). In addition, five other accessions of A. alpina collected across 

a wide geographical range were used: two from Scandinavia (S4a and S4b), two from 

France (Pic and Gal) and A. alpina from Tanzania (accession number 109656, provided 

by Heidelberg University Botanical Garden). 

The A. alpina reference genome used in this manuscript was version 

5.1(http://www.arabis-alpina.org/refseq.html). The genomes of A. nova subsp. iberica , A. 

auriculata and the five A. alpina accessions described below were de novo assembled 

from PacBio reads using Canu (2). The available A. nordmanniana genome partially 

assembled under BioProject PRJNA258061 was used. 

The A. montbretiana genome sequence (LNCH02000000; BioSample SAMN02983095) 

was assembled using ALLPATHS-LG with default parameters using Illumina sequencing 

reads (3). The assembled scaffolds were blasted against the A. thaliana mitochondrial 

(The Arabidopsis Genome Initiative 2000), the A. alpina chloroplast (4) and the NCBI 

bacterial nucleotide genome sequences, to identify scaffolds assembled from the 

organelle genome sequences and to remove contaminant scaffolds. Scaffolds were 

anchored to chromosomes using A. alpina reference sequence version (5). Gene 

annotation was performed by integrating evidence from ab initio prediction, RNA-seq 

paired-end reads and homologous protein sequence alignments. 

MAR sequences on chromosome 2 and MAF cluster sequences on chromosome 8 used 

in this study have been deposited on NCBI under accession numbers MZ736051 to 

MZ736067. 

Plasmid construction and plant transformation 

To generate pAmMAR1::gAmMAR1 and pAmMAR2::gAmMAR2 transgenic lines, 

sequences upstream from the translational start site and downstream to the next 

annotated gene for both genes were amplified by PCR  from genomic DNA and ligated to 

the linear vector pSTB205 vector by PIPE cloning (6). The sequences of the primers used 

to generate cloned fragments of both genes are provided in Dataset S1. The DNA 

http://www.arabis-alpina.org/refseq.html
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constructs were then recombined using GATEWAY into the pEarleyGate301 (7) binary 

vector and transformed into pep1-1 using the Agrobacterium-mediated method  (8). 
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Figure S1. (A) plants grown for 10 weeks illustrate different flowering times. (B) Plants of pAmMAR1::gAmMAR1 (left) 
and pep1-1 (right) grown for 14 weeks in long days, showing the flowering behavior of the main and lateral shoots. 
pAmMAR1::gAmMAR1 plant (left) flowers from the secondary shoots, whereas flowering in the main shoot is 
repressed. pep1-1 (right) flowers from primary and secondary shoots. (C)  Boxplots showing plant height and leaf 
number 6 and 14 weeks after germination in long days. Height, but not leaf number, of late-flowering pAmMAR1::g-
MAR1 plants and the reference accession, A. alpina Pajares, is reduced compared to pep1-1.
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Figure S2. Phylogenetic tree used for dN/dS analysis. Maximum 
likelihood tree used for the dN/dS analysis using PAML. Node 
values indicate bootstrap support. Colored triangles denote the 
branches that were targeted in the branch- and branch-site tests for 
positive selection.   
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Figure S3. Scores along the alignment used for dN/dS. Alignment of the protein sequences of the MAR group 
including A. nordmanniana, and AtFLC as the outgroup used by PAML as the reference for alignment. The bar 
represented at the bottom indicates the sites with probability scores 0.7 and above.
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Dataset S1 (separate file). A list of primers used in this study. 

Dataset S2 (separate file). Whole-genome sequencing results of introgression lines (IL). Coordinates 

of introgressions of A. montbretiana (Am) in A. alpina (Aa) are given, as well as the number of genes 

present in each fragment. The fpkm were calculated against the genome and are indicated in column 

D, as well as the genotype inferred from this mapping (K and L). NA, not applicable: No orthologue of 

the gene is present in the other species. 

Dataset S3 (separate file). PAML results for the branch model. Model 1 is the model for which two 

separate dN/dS ratios were sought: One for the target branch (test) and the other for the rest of the tree 

(background). Model 2 is the model in which a single ratio was calculated for the whole tree. The table 

also provides the likelihoods (lnL), number of parameters (np) for both models, the values for the 

likelihood ratio test (2*(lnL1 - lnL2), degrees of freedom: np1 - np2) and the resulting p-value. * Model 2 

also has two ratios, but the target branch ratio is fixed at 1. 

Dataset S4 (separate file). PAML results for the branch-site model test of positive selection (Model1) 

and neutrality (Model2). The for - and background dn/ds for four site classes are provided, including the 

likelihoods (lnL) for each model, the number of parameters (np) and the values used for the likelihood 

ratio test (2*(lnL1 - lnL2), degrees of freedom: np1 - np2). 

Dataset S5 (separate file). Transcripts identified as being differentially expressed between 

pAmMAR1::gMAR1 or pAmMAR2::gMAR2 and pep1-1. 

Dataset S6 (separate file). DESeq2 analysis for MAF genes during a vernalization time course in A. 

thaliana, A. montbretiana, A. alpina Pajares and pep1-1. Log2 fold change was calculated with reference 

to expression at the first time point, before plants were vernalized. 
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