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Abstract  

Background: Data anonymization is an important building block for ensuring privacy and fosters the 

re-use of data. However, transforming the data in a way it preserves the privacy of subjects while 

maintaining a high degree of data quality is challenging and particularly difficult when processing 

complex datasets that contain a high number of attributes. In this paper we present how we extended 

the open source software ARX to improve its support for high-dimensional, biomedical datasets. 

Findings: For improving ARX’s capability to find optimal transformations when processing high-

dimensional data, we implement two novel search algorithms. The first one is a greedy top-down 

approach and is oriented on a formally implemented bottom-up search. The second is based on a 

genetic algorithm. We evaluated the algorithms with different datasets, transformation methods and 

privacy models. The novel algorithms mostly outperformed the previously implemented bottom-up 

search. Additionally, we extended the graphical user interface to provide a high degree auf usability 

and performance when working with high-dimensional datasets. 

Conclusion: With our additions we have significantly enhanced ARX’s ability to handle high-

dimensional data in terms of processing performance as well as usability and thus can further facilitate 

data sharing. 

Keywords 

data privacy, anonymization, de-identification, heuristics, genetic algorithm, software tool, privacy 

preserving data publishing, biomedical data, data protection 

1 Introduction 

Big data technologies and latest data science methods promise to be valuable tools for providing new 

insights into the development and course of diseases. These insights can be used to derive new 

preventive, diagnostic and therapeutic measures [1]. Implementing these methods in practice requires 
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access to comprehensive, multi-level datasets of high quality. At a large scale, this can only be achieved 

by fostering the reuse of data from different contexts and the sharing of data across institutional 

boundaries. The reuse of data is also in line with the FAIR (Findable, Accessible, Interoperable, 

Reusable) data principles and supports the reproducibility of research. However, in the context of 

biomedical research, sharing data is challenging as it is important to account for ethical aspects [2], 

privacy concerns as well as data protection laws like for example the US Health Insurance Portability 

and Accountability Act (HIPAA) [3] or the European General Data Protection Regulation (GDPR) [4]. 

One important building block for ensuring privacy is to provide safe data that minimizes disclosure 

risks [5]. This can be achieved by employing data anonymization techniques, that transform the data 

to mitigate privacy risks [6], [7]. Typically, the anonymization process is not limited to the removal of 

directly identifying attributes such as the name, telephone number or insurance id number. Instead, it 

must also account for attributes like the postal code, age and gender that could be combined to re-

identify individuals or derive sensitive personal information [8]–[10]. However, transforming the data 

will also have an impact on its usefulness and striking the right balance between privacy and data 

quality is challenging. The complexity of this task is also demonstrated by several re-identification 

attacks [11], [12]. As most anonymization approaches are based on the idea of reducing the uniqueness 

of attribute combinations, preserving a reasonable amount of information becomes particularly 

difficult when working with high-dimensional datasets that contain a high number of attributes [13]. 

Furthermore, the number of possible transformations of a dataset usually grows exponentially with 

the number of its attributes, leading to computational challenges [14]. Thus, the literature mostly 

addresses the anonymization of low-dimensional datasets featuring up to 10 or 15 attributes [15]–

[18].To put anonymization of high-dimensional datasets into practice, tools that support a variety of 

mathematical and statistical privacy models and allow for their combination must feature scalable 

algorithms capable of approximating suitable solutions. An example of such a tool is the open source 

software ARX [6], [19]. It is focused on biomedical data and has been mentioned in several official 
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policies and guidelines [20], [21], used in research projects [22]–[24], and enabled several data 

publishing activities [25]–[27]. 

Versions of ARX up to 3.8.0 were only able to process datasets with a limited number of attributes that 

could be considered during anonymization (up to about 15). The reason for this were twofold: (1) the 

software only had limited support for anonymization algorithms able to process high-dimensional 

data, (2) the graphical user interface was not designed to work with datasets containing a high number 

of attributes. 

In this Technical Note, we describe our efforts to overcome these limitations by (1) extending ARX’s 

user interface with additional views that simplify the management of high-dimensional data, (2) 

implementing two novel heuristic anonymization algorithms and (3) evaluating the novel algorithms 

regarding their performance for anonymizing low-dimensional and high-dimensional datasets. 

2 Materials and Methods 

In this section, we will first provide some fundamental details about data anonymization. Second, we 

will present important properties of the ARX Anonymization Tool that had an influence on our design 

decisions. Third, we will present the extensions implemented into ARX. Finally, we will provide insights 

into our experimental setup. 

2.1 Fundamentals of Data Anonymization 

When anonymizing a dataset the first step is to remove all attributes that directly identify the 

individuals. Thereafter, the dataset is modified or noise is introduced so that the risk of identified or 

identifiable individuals of being linked to one or multiple records of the dataset or to sensitive 

information in general is lowered [7]. This step involves the usage of mathematical or statistical 

privacy models used to quantify the risk of privacy breaches as well as quality models that measure 

the usefulness of the output data. For (1) measuring privacy risks, (2) measuring data quality and (3) 

transforming the data a variety of models can be employed and combined. 
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< Figure 1 > 

Figure 1: Exemplary anonymization process. 

Figure 1 shows a simplified example of an anonymization process. The transformation involves 

different procedures such as (1) randomly sampling the records, (2) aggregating values by replacing 

them with their mean, (3) suppressing values, (4) masking trailing characters of strings, (5) categorizing 

numerical values and (6) generalizing categorical attributes. These transformations may reduce the 

fidelity of the data but also reduce the risk of linkage attacks and the attacker’s accuracy when linking 

records. Furthermore, an additional uncertainty could be created by introducing noise. The 

transformed output data of the example fulfills two frequently used privacy models: 𝑘-Anonymity with 

𝑘 =  3 [28] and (𝜀, 𝛿)-Differential Privacy with 𝜀 ≈  0.92 and 𝛿 ≈  0.22 [29]. 

The simple example demonstrates the variety of possibilities available for transforming data. 

Furthermore, it also suggests why it is often not feasible to search the entire solution space of all 

potential output datasets when processing more complex data. For this kind of tasks, solutions that 

try to determine a good transformation scheme on a best-effort basis, e.g. based on heuristic strategies 

[15], [30], [31] or clustering algorithms [16], [17], [32], have been developed. An overview of common 

types of approaches is provided by Fung et al. [7]. 

2.2 The ARX Anonymization Tool 

ARX supports a variety of privacy models, quality models and data transformation schemes and allows 

for their arbitrary combination [6]. For transforming the data, it relies on domain generalization 

hierarchies which describe how values can be transformed to make them less unique. For each 

hierarchy it is possible to define multiple levels of generalization that cover an increasing range of the 

attribute’s domain. The basic solution space that is utilized by ARX is given by all possible combinations 

of generalization levels defined by the hierarchies. These combinations are referred to as 

generalization schemes.  

< Figure 2 > 
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Figure 2: Generalization hierarchies (a) and the structure of the corresponding solution space together with 

examples of how data is transformed when applying different generalization schemes using global 

generalization(b). 

Figure 2(a) shows exemplary generalization hierarchies for the attributes BMI, Sex and ICD. Figure 2(b) 

illustrates how the solution space resulting from these hierarchies is structured and how applying 

different generalization schemes would alter an exemplary dataset. 

Mathematically, the solution space is a lattice [33], [34], which grows exponentially in size regarding 

the number of attributes that need to be protected [31]. As ARX is also able to apply different 

generalization schemes automatically to different parts of the input dataset the size of the solution 

space may grow further by a multiplicative factor representing the number of rows [6]. ARX supports 

different algorithms for finding optimal solutions within solution spaces of tractable size [35] as well 

as a heuristic algorithm for larger search spaces that tries to determine a good transformation scheme 

on a best-effort basis [31]. 

In addition to its anonymization engine, ARX also features a cross-platform graphical user interface. An 

overview of the different perspectives provided by the platform is shown in Figure 3. 

< Figure 3 > 

Figure 3: Basic perspectives of the graphical interface of the ARX Data Anonymization Tool. 

In the configuration perspective it is possible to define risk thresholds for different types of attacks, to 

prioritize attributes by importance, to model the background knowledge of possible attackers and to 

define transformation methods and rules. In the exploration perspective, relevant anonymization 

strategies are visualized for the input data and a categorization according to output data quality is 

supported. A further perspective supports the manual quality analysis of the output data. Different 

methods for measuring the information content of the output data, descriptive statistics and methods 

for comparing the usefulness of the input and output data for different application scenarios are 

provided. In a risk analysis perspective, it is possible to visually compare input and output data using 
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different risk models. However, in the user interface it is challenging to support high-dimensional 

datasets. For example, several perspectives and views of the software display lists of all attributes of 

the dataset loaded, which can become confusing and lead to performance problems on some 

platforms with an increasing number of attributes. 

2.3 Integrating Anonymization Algorithms for High-Dimensional Data 

As mentioned before, the anonymization procedures supported by ARX are built around a basic 

operator that searches through the generalization lattice. In prior work we have already integrated a 

greedy best-first bottom-up search algorithm into the software [31]. This algorithm starts at the 

bottom generalization scheme, which applies no generalization to the data. It then “expands” this 

generalization scheme, by applying all generalization schemes to the input dataset that can be derived 

by increasing one of the generalization levels. The quality of the resulting output dataset is computed 

for all these schemes, and the process is repeated by expanding the generalization resulting in the 

dataset with highest quality. This process is then repeated until a user-specified period of time has 

passed. During the execution of the algorithm, a list of all generalization schemes that have been 

evaluated is stored and, in each iteration, the scheme with the highest output data quality that has not 

yet been expanded is expanded. For further details we refer interesting readers to the original 

publication [31]. 

It must be noted that this process is only suitable for processing dataset of medium dimensionality 

(about 15 attributes) for several reasons. First, the search process may become trapped in local 

minima, as there is no significant diversification of the solutions considered. Second, the process 

naturally favors transformation schemes located in the lower part of the search space (i.e. schemes 

that apply a low degree of generalization). While this makes sense for anonymization processes that 

only apply generalization, the method reaches its limits with the complex transformation operations 

supported in newer versions of ARX in which different transformation schemas are used to transform 

different parts of a dataset. In this case, a better overall solution can sometimes be determined if 
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outliers are transformed more strongly. To further improve this process, we have integrated two new 

algorithms for processing high-dimensional data into the software.  

The first algorithm closely resembles the bottom-up greedy best-first search but performs this process 

top-down. We will not describe it in further detail, as this is a straight-forward extension of the process 

described in the previous paragraphs. 

The second algorithm applies a genetic optimization process to the anonymization problem. Genetic 

algorithms search for solutions in a heuristic manner that is oriented on the process of natural selection 

[36]. During the search, the solutions are considered individuals that carry the solution’s properties 

encoded as a list of genes (in our application, the individuals carry generalization schemes and genes 

correspond to the generalization level of specific attributes). The set of candidate solutions/individuals 

is called population. Mostly, the initial population is created by randomly generating individuals. 

Thereafter, the algorithm works iteratively. By crossing (i.e. randomly combining the properties of two 

individuals) and mutating (i.e. randomly altering the properties of individuals) selected individuals 

contained in the population, each iteration will result in a new, so-called, generation. Whether and 

how an individual is altered is determined by its fitness which usually is calculated using the cost 

function of the investigated optimization problem. Once reaching a predefined limit of iterations the 

fittest individual is considered the optimal solution. However, there is no guarantee that a globally 

optimal solution can always be found. 

We opted for the genetic algorithm as it is one of the most well-known population-based meta-

heuristics. In comparison to single-solution based algorithms (e.g. simulated annealing or the greedy 

heuristics described above) population-based approaches maintain multiple candidate solutions which 

potentially results in a high degree of diversification and a decreased risk of getting stuck in local 

optima [37]. Moreover, genetic algorithms have already been successfully applied for anonymizing 

data in previous work. However, prior approaches were often limited to a specific kind of data or 

privacy model (see Section 4.3 “Comparison with Prior Work”). The genetic algorithm implemented 
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into ARX is based on the work by Wan et al. [38]. Wan et al. employed the algorithm for anonymization 

genomic data using a game-theoretic privacy model, which was already successfully adapted and 

integrated into ARX in prior work [39]. 

Figure 4 illustrates how the algorithms search through the solution space to find a good generalization 

scheme, based on the example presented in Figure 2. Although the process shown in the figure is 

simplified, it illustrates that both approaches follow completely different concepts. 

 

< Figure 4 > 

Figure 4: Illustration of (a) the top-down approach and (b) the genetic algorithm searching the solution space. 

Generalization schemes visited that were not on the path to the best solution are colored grey. The best 

scheme found is marked by a double border. 

To make the genetic algorithm compatible with the types of solution spaces used by ARX and to 

integrate it with the privacy and quality models supported by the software every individual carries a 

list of numerical values representing a generalization scheme. The list’s length (i.e. the number of 

genes) equals the number of attributes that need to be transformed and the 𝑖-th value of the list 

represents the generalization level of the 𝑖-th attribute. The range of each value is given by the lowest 

and highest generalization level available for the corresponding attribute. Applied to the example 

illustrated in Figure 4, this results in individuals carrying three genes with values between 0 and 2. 

Implementation-wise the populations are maintained in a matrix like structure with the rows of this 

matrix representing individuals (generalization scheme) and columns their genes (generalization level 

of an attribute). ARX’s privacy and quality models have been integrated via the fitness function. ARX 

always automatically alters the output of any given transformation in such a way that the required 

privacy guarantees are provided. This is achieved by suppressing records [40]. The suppression of 

records is captured by a decrease in data quality. Hence, we defined the fitness of a transformation to 
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equal output data quality, which not only measures the transformation’s direct impact on data quality 

but also implicitly captures how well the required privacy guarantees are achieved. 

The algorithm itself works as follows: 

- Initialization: During the initialization two equally sized subpopulations are created. Following the 

approach of Wan et al., the first individuals of the first subpopulation are generated in the form of 

a “triangle pattern” using the lowest and highest generalization levels. An example is provided in 

Figure 5. The remaining individuals of the first subpopulation as well as the entire second 

subpopulation is filled by randomly creating individuals. The motivation behind this approach is 

based on properties of genetic data [41]. To determine whether the initialization procedure is also 

favorable in our case, we performed experiments in which we compared the initialization strategy 

proposed by Wan et al. with a completely random initialization in a single- as well as a dual-

population setting (see Supplementary Table S1). The experiments showed that using the “triangle 

pattern” performs well when processing low-dimensional data and significantly outperforms other 

approaches when processing high-dimensional datasets. This can be explained by the fact that the 

pattern creates populations that cover a larger part of the solution space in the beginning. 

< Figure 5 > 

Figure 5: Initialization of the first subpopulation for a solution space with the highest generalization levels 

of [3,1,5,3,1]. 

- Iteration: After initializing the subpopulations the algorithm’s main loop is started. The algorithm 

stops after reaching a pre-defined number of iterations or time limit. Within the loop the following 

steps are executed: 

Step 1: Sorting: The individuals contained in the subpopulations are sorted by their fitness in 

descending order. 

Step 2: Selection: The fittest individuals of the current population will simply be copied to the 

next generation without being modified. We refer to this fraction of individuals as elite 
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fraction. In Figure 4(b), this mechanism is indicated by an arrow, with which an individual 

points to itself since it remains unchanged. 

Step 3: Crossover: Next, the so-called crossover fraction of the new generation is populated. 

For this purpose, two parent-individuals from the production fraction of the current population 

are crossed to generate a new child-individual. The probability of being chosen as a parent 

increases with the fitness. The crossover is performed in a randomized fashion. For every gene 

it is decided randomly from which of the two parents it is inherited. Figure 4(b) illustrated how 

a child-individual inherits the genes of its ancestors. Which gene was inherited from which 

parent can be distinguished by the color coding. 

Step 4: Mutation: The rest of the new generation is populated by randomly choosing 

individuals of the current generation and mutating them by altering their genes. The number 

of changed genes is randomly chosen between 1 and an upper bound which is calculated by 

multiplying the mutation probability with the number of available genes. Figure 4(b) depicts 

an individual which is being mutated at one of its genes while leaving the remaining genes 

unchanged. The mutated gene is indicated by a change in color. 

Step 5: Swapping: Additionally, it is possible that the fittest individuals are swapped between 

the two subpopulations. How often they are changed depends on the immigration interval 

which refers to the number of iterations between the swaps. The number of exchanged 

individuals can be controlled by the immigration fraction. 

2.4 Extending the User-Interface for High-Dimensional Data 

ARX is implemented as a cross-platform program using Java and executed on the Java Virtual Machine. 

The Graphical User Interface (GUI) is implemented using the Standard Widget Toolkit (SWT), which 

enables implementing native GUIs on three supported platforms: Windows, Linux and MacOS. 

For improving the GUI’s usability when working with high-dimensional datasets we made use of two 

SWT-based components provided by the Eclipse Nebula Project [42]. The first is NatTable. Based on 
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the idea of virtual tables it ensures that the GUI remains responsive and provides a high rendering 

performance when displaying large datasets. The second is Pagination Control. This component is used 

to display a navigation page when working with tables used to configure a potentially large number of 

attributes. 

Additionally, ARX features a mechanism that automatically detects the type of an attribute to ease the 

initial import of data as well as the ability to configure multiple attributes at once. These last two 

features are also available for smaller dataset but are especially helpful when working with high-

dimensional datasets. 

2.5 Experimental Design 

2.5.1 Experiments 

With the extensions described in this article, ARX now supports three algorithms for anonymizing high-

dimensional data: (1) the initial bottom-up search, (2) the new top-down search and (3) the new 

genetic search algorithm. We performed a series of experiments, to study how well these algorithms 

work for different types of data to provide users with insights into which algorithm should be used in 

which context. For the experiments we used low-dimensional datasets with less than 10 attributes and 

high-dimensional datasets containing up to 30 attributes (more details about the datasets are provided 

in Section 2.5.3). Depending on the dimensionality of the datasets we conducted two types of 

experiments: 

(1) Experiments with low-dimensional data: We compared the algorithms to the optimal 

algorithm already supported by ARX [35] in the low-dimensional setting. We did this for two 

reasons. First, heuristic algorithms might also be relevant when anonymizing low-dimensional 

data if they significantly outperform optimal algorithms in terms of the time needed to find 

the optimal solution. Second, experiments with low-dimensional data might provide insights 

into basic strengths and weaknesses of the approaches. To this end, we compared the overall 
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execution time of ARX’s optimal algorithm with the time needed by the heuristic algorithms 

to find the optimal solution. 

(2) Experiments with high-dimensional data: Here, we use the three heuristic algorithms to 

anonymize high-dimensional datasets. This experiment was performed to determine whether 

the novel approaches (genetic and top-down) offer an advantage over the bottom-up 

algorithm. To this end, we executed the algorithms with different time limits and compared 

the quality of their results.  

2.5.2 Privacy, quality and transformation model 

To investigate a broad spectrum of anonymization problems, we decided to utilize different privacy 

and data transformation models.  

For measuring and managing privacy risks, we used two models: 

(1) Distinguishability: To implement restrictions on the distinguishability of data, we utilized the 

well-known and relatively strict 𝑘-anonymity model. A dataset is 𝑘-anonymous if every record 

cannot be distinguished from at least 𝑘 − 1 other records in respect to attributes that may be 

used to de-anonymize the data [43]. As a parameter we used 𝑘 = 5 which is a common 

recommendation [44]. 

(2) Population uniqueness: ARX also supports statistical models that estimate disclosure risks by 

estimating the fraction of records in a dataset that are expected to be unique in the overall 

population. Compared to 𝑘-anonymity, this is a relatively weak privacy model. For our 

experiments we enforced a uniqueness of 1 % within the US population and relied on the 

model introduced by Pitman to estimate population characteristics [45], [46]. 

For transforming data, we also used two common models: 

(1) Global generalization: With this model, the values in a dataset are generalized based on user-

defined hierarchies. In this process, it is guaranteed that all values of an attribute are 
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generalization to the same level of the associated hierarchy. To prevent overgeneralization, 

records can also be removed from the dataset. 

(2) Local generalization: With this model, data is also transformed by generalization, but values 

of the same attribute in different records can be transformed differently. Records may also 

be removed, but this is typically not required due to the flexibility of the transformation 

model. 

In ARX, local transformations are implemented by using an iterative process in which the dataset is 

automatically partitioned and different transformation schemes are applied to different partitions [6]. 

In our experiments with local generalization, we used 100 iterations and different time limits for 

individual iterations. 

To quantify data quality, we decided to use the intuitive “Granularity” model [47], which measures the 

value-level precision of the output data. The measurements are normalized with 0 % representing a 

dataset from which all information has been removed and 100 % corresponding to a completely 

unmodified dataset [6]. 

2.5.3 Datasets 

For evaluating the performance of the heuristic algorithms, we used six different real-world datasets. 

An overview of the properties of the datasets is shown in Table 1.  

Table 1: Overview of the datasets used for comparing the algorithms. 

Name #Attributes #Records Solution space size Category 

Census income [48] 9 30,162 12,960 Low dimensional 

Time use [49] 9 539,254 34,992 Low dimensional 

Health interviews [50] 9 1,185,424 25,920 Low dimensional 

Census community [51] 30 68,725 203,843,174,400 High dimensional 
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Credit card [52] 24 30,000 49,478,023,249,920 High dimensional 

Psychology test [53] 16 73,489 85,030,560 High dimensional 

 

Most of the datasets have already been utilized in previous evaluations of data anonymization 

algorithms. As low-dimensional datasets we choose (1) an excerpt of the 1994 US census dataset 

(Census income) which can be considered the de-facto standard for evaluating anonymization 

algorithms, (2) data from a nationally representative U.S. time diary survey and (3) results from the 

integrated health interview series collecting data on the health of the U.S. population. 

As high-dimensional datasets we included (1) data from the responses to the American Community 

Survey (ACS) which captures demographic, social and economic characteristics of people living in the 

U.S., (2) a credit card client dataset from Taiwan used to estimate costumers default payments and (3) 

answers to a psychological test designed to measure someone’s Machiavellianism from the open-

source psychometrics project. As attributes that needed to be transformed, we selected variables that 

are typically associated with a high risk of re-identification. These included demographic data, 

timestamps, spatial information, medical attributes and payment histories. 

2.5.4 Parameterization 

While the top-down and bottom-up search algorithms do not require any additional parameterization, 

the genetic search algorithm features multiple configuration parameters, which are shown in Table 2. 

In ARX, these parameters are presented as configuration options to the users. 

Table 2: Parameters of the genetic algorithm and the values employed in the experiments. 

Parameter Description Value 

Elite fraction Fraction of individuals that is directly copied to the next 
generation. 

0.2 
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Crossover fraction Fraction of individuals that is replaced by new individuals that 
are generated by crossing two parents from the production 
fraction.  

0.4 

Production fraction Fraction of individuals used as parents when generating 
crossover individuals. 

0.2 

Mutation probability Used to calculate the upper bound of changed genes when 
mutating individuals. 

0.05 

Immigration fraction The fraction of individuals that is swapped between the 
subpopulation. 

0.2 

Immigration Interval Number of iterations between swaps. 10 

Iterations Number of iterations performed by the GA 50 

Subpopulation size Number of individuals contained in each of the 
subpopulations. 

50 

 

Table 2 also shows the parameters used in our evaluation. Regarding all but one parameter we 

followed the suggested configuration by Wan et al. [38] for all parameters that are applicable to our 

setting. We made this decision based on a set of experiments performed in preparation of our 

evaluation in which we individually altered all parameters and examined their effect on the 

performance of the algorithm (see Supplementary Table S2). This process showed that setting the 

production fraction to 0.2 (instead of 0.8 as suggested by Wan et al.) improves execution times when 

processing low-dimensional datasets and data utility when processing high-dimensional datasets. The 

fact that almost the same parameters work well in our setting as well as in the experiments by Wan et 

al., although very different anonymization procedures are being investigated, can be seen as an 

indicator of the robustness and generality of this parameterization. 

2.5.5 Technical Setup 

We repeated each experiment five times and report the average for two reasons: first, it is well known 

that execution times of JVM-based programs vary slightly due to effects from functionalities, such as 

just-in-time compilation. Second, the genetic algorithm is randomized and hence may perform slightly 

different in each execution. 

The experiments were performed on a desktop computer with an AMD Ryzen 2700X processor (8 

cores, 3.7-4.3 GHz) running 64-bit Windows 10 (version 1909) and a 64-bit Oracle JVM (version 1.8.0). 



17 
 

3 Results 

3.1 Experimental results 

3.1.1 Low-dimensional data 

The results of the first set of experiments are displayed in Figure 6. For each heuristic algorithm, it 

shows the time in seconds needed to determine the optimal solution (and the overall execution time 

for the optimal algorithm) using the global transformation model. We did not use the local 

transformation model in this experiment, as the underlying algorithm is heuristic in nature 

(independently of the actual search strategy used) and can therefore not be used to compare the time 

needed to achieve a specific result in terms of output data quality [6]. 

< Figure 6> 

Figure 6: Time required for finding an optimal solution for different low-dimensional datasets and privacy 

models in dependence to the used algorithm. 

As can be seen, heuristic approaches provided a valuable alternative to the optimal approach even in 

low-dimensional settings. When aiming for a threshold on distinguishability, the bottom-up and top-

down search algorithms almost always outperformed the optimal algorithm. On average, the genetic 

algorithm was slower than the other heuristic approaches, because it aims at diversifying the solutions 

considered, which is not a desirable feature in low-dimensional settings. Whether the top-down 

approach or the bottom-up approach performed better was associated with the degree of 

generalization required and hence with the fact whether the optimal solution is located more closely 

to the top or to the bottom of the lattice.  

When optimizing for a threshold on population uniqueness the optimal algorithm outperformed the 

heuristic approaches in two out of three cases. This can be explained by the fact that calculating 

population uniqueness is much more computationally complex than checking for 𝑘-anonymity, as 

bivariate non-linear equation systems need to be solved. As a consequence, execution times are not 

dominated by the time needed to transform the dataset but by the time needed to evaluate the privacy 
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model. The optimal approach implements a wide variety of pruning strategies that reduce the number 

of transformations that need to be checked [40], which cannot be implemented by the heuristic 

algorithms. The genetic algorithm provided the worst overall performance, as it tries to look at a 

diverse set of potential solutions.  

3.1.2 High-dimensional data 

The results of the experiments with high-dimensional data are displayed in Figure 7 and Figure 8. We 

compared the development of output data quality for the different algorithms over time and present 

two different types of results. For global transformation we continuously measured the development 

of output data quality over time. For local transformation we present the output data quality achieved 

with different time limits as the heuristic nature of the local transformation algorithm implemented in 

ARX makes it difficult to directly track the progress [6]. 

< Figure 7> 

Figure 7: Global generalization: Quality improvement over time for different high-dimensional datasets and 

privacy models in dependence to the used algorithm. 

Figure 7 shows the development of output data quality over time when using the global transformation 

model until the results of all three algorithms stabilized. As can be seen, all algorithms almost always 

eventually found a solution with comparable quality. However, when enforcing a threshold on 

population uniqueness on the credit card dataset, the bottom-up algorithm exhibited sub-optimal 

performance. Moreover, in most cases the genetic and top-down approach found better solutions 

much quicker than the bottom-up algorithm. When comparing the different algorithms to each other 

it can be seen that the genetic algorithm was generally good at quickly determining a relatively good 

solution while the top-down algorithm provided a good balance of optimization speed and quality of 

its overall output. It can also be seen that output data quality was higher when reducing population 

uniqueness compared to reducing distinguishability, as the former model is weaker than the latter (see 

Section 2.5.2). 

Figure 8 provides additional insights by presenting the results for the local transformation model. 
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< Figure 8> 

Figure 8: Local generalization: Achieved quality for different high-dimensional datasets depending on the 

privacy models and used algorithm. 

Again, the time axis covers the time that was needed for the solutions of the different algorithms to 

stabilize. As can be seen, the results are quite similar to the results obtained using the global 

transformation model, apart from the fact that the overall output data quality is higher with this 

transformation method. The genetic algorithm is good at very quickly finding a relatively good 

transformation and in most cases all algorithms finally found a comparable solution. The credit card 

dataset is a notable exception. In this case, the bottom-up algorithm provided the best result when 

reducing population uniqueness and the top-down approach provided the best result when reducing 

distinguishability. It is notable that the genetic algorithm performed best for short time limits in the 

former case, as the credit card dataset results in the largest solution space and the evaluation of 

individual solution candidates is expensive for population uniqueness. Moreover, good solutions were 

not located close to the top or bottom of the search space. This is exactly the scenario in which one 

would expect good performance from a genetic search process. 

3.2 Extended User-Interface 

In the updated version of the ARX GUI, seven views of the software distributed over all four 

perspectives have been extended using the pagination feature. We note that this extension is graceful, 

meaning that it is only activated when a high-dimensional dataset is loaded into the software (an 

according threshold can be specified in the tool’s settings). As an example, the pagination feature of a 

view in ARX’s quality analysis perspective is shown in Figure 9. 

 < Figure 9> 

Figure 9: Screenshots from the “Classification model” tab before (left) and after (right) adding the pagination 

feature. 
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Further features that are important for managing high-dimensional data with ARX, such as auto-detection of 

data types and options to configure multiple attributes at once, are located in different parts of the GUI, such 

as data import and hierarchy creation wizards as well as the software’s main toolbar. 

4 Discussion  

4.1 Principal results 

In this paper we presented the results of our efforts to improve the ability of the ARX Anonymization 

Tool to handle high-dimensional data. For this purpose, we extended the graphical user interface and 

introduced and evaluated two new heuristic anonymization algorithms. One of the algorithms, top-

down search, complements the existing greedy bottom-up search algorithm. The other approach is 

based on a genetic algorithm and aims at diversifying the potential solutions considered using the 

process of natural selection. 

Evaluating the newly implemented algorithms showed that they are particularly useful in scenarios 

where high-dimensional data needs to be anonymized. Using global generalization, they clearly 

outperformed the previously implemented bottom-up search (i.e. better performance in 5 of the 6 

experiments). A similar result was observed when using local generalization. Averaged over all 

experiments, the new algorithms achieved a utility of 76.5 % (genetic algorithm) and 75.1 % (top-down 

algorithm), which is significantly higher than that provided by the bottom-up approach (60.2 %). 

Especially when anonymizing the dataset with the largest solution space (credit card), the new 

algorithms often performed significantly better, both in terms of scalability and utility. Additionally, 

the results obtained when processing low-dimensional data showed that heuristic algorithms can be 

helpful to improve computational efficiency even in scenarios where optimal algorithms could be used. 

The top-down approach required the least amount of time on average to find an optimal solution (4.0 

s), followed by the bottom-up approach (6.3 s), the genetic algorithm (9.9 s) and the optimal search 

strategy (14.1 s).  
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Making a general recommendation for one of the algorithms is difficult based on the results of our 

experiments. For helping users to decide on an algorithm, ARX automatically determines whether it is 

feasible to calculate an optimal solution or whether a heuristic algorithm should be used. Also, ARX 

provides means to easily try out different algorithms and compare their results to enable users to 

determine which approach works best in which specific context.  

 4.2 Limitations 

Our result show that the performance of the algorithms studied strongly depends on the dataset 

anonymized and the configuration utilized. While the new heuristic algorithms typically exhibited 

significantly improved performance in comparison to the methods previously implemented in ARX, this 

is not guaranteed to always be the case. 

The exact operations of the genetic algorithm can be optimized by adjusting its parameterization. In 

our experiments, we used the parameterization by Wan et al. and additionally tuned the parameters 

for optimal average performance. Therefore, we chose a single parameterization in all our 

experiments. Optimizing the parameters for specific use cases could therefore lead to further 

improvements. For this reason, the GUI and API of ARX allow the user to easily change the 

parameterization of the genetic algorithm. 

4.3 Comparison with Prior Work 

It has been demonstrated multiple times that genetic algorithms can be used for anonymizing data. 

However, previously described solutions were mostly tailored towards specific types of data or privacy 

and transformation models.  

Examples of approaches which focus on a specific type of data include the algorithm by Wan et al. [38], 

which targets genomic data and which we have adopted to general tabular data in this work, and the 

approach for anonymizing graphs presented by Casas-Roma et al. [54]. 

Regarding specific privacy and transformation models, genetic algorithms have also been used in 

clustering-based anonymization processes. To reduce distinguishability, such algorithms partition the 
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records of a dataset into several groups with each of the groups containing at least 𝑘 members, hence 

implementing the 𝑘-anonymity model. Solanas et al. [55] demonstrated how the computationally 

challenging partition step which aims at maximizing homogeneity within the groups can be performed 

using a genetic algorithm. In their approach, the number of genes equals the number of records in the 

dataset with the 𝑖-th gene representing the group of the 𝑖-th record. The groups are encoded as an 

alphabet with a fixed size as the maximal number of different groups can be derived from 𝑘 and the 

number of records in the dataset. Lin et al. [32] described how the scalability of the clustering process 

can be improved for large datasets by encoding the solution using the entire population instead of a 

single individual. Finally, focusing on data transformations, Iyengar [47] has demonstrated how a 

genetic algorithm can be used to determine intervals for generalizing values. In simplified terms each 

individual is a binary string with a length derived from the number of processed attributes and the 

number of their distinct values. A value of 1 in the string implies that a value is used as an interval 

boundary. 

Our work is different from these approaches, because it integrates a genetic algorithm into ARX in such 

a way that it can be used to anonymize datasets using a variety of privacy models, quality models and 

data transformation schemes.  

Heuristics anonymization algorithms comparable to the bottom-up approach evaluated in our paper 

include DataFly [30] and iGreedy [15]. Both use global generalization and are focused on 𝑘-anonymity 

only. They are based on a bottom-up search and follow the concept of minimal anonymization meaning 

they terminate as soon as they find a transformation that fulfills the requested privacy properties. In 

previous work we have already shown that the bottom-up algorithm implemented by ARX outperforms 

these approaches [31]. Furthermore, other researchers have focused on top-down search strategies. 

Important examples include the work of He et al. [56] who proposed a greedy top-down algorithm to 

partition a dataset and apply local generalization as well as the Top-Down Specialization method 

described by Fung et al. that iteratively specializes attributes until violating the anonymity 

requirements [57]. 
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5 Conclusion and future work 

With the work presented in this article we have significantly enhanced ARX’s ability to handle high-

dimensional data, both in the GUI and the Application Programming Interface (API). All features 

described in this article are available as open source software and are included in the latest release of 

the software [19]. 

In future work, we plan to add additional features to improve ARX’s performance for high-dimensional 

data. While ARX already supports a wide range of data transformation models, we believe that the 

addition of further transformation methods would have the largest impact. One important example is 

sub-tree generalization, which provides a good balance between improved output data quality and 

interpretability of output datasets [58]. Moreover, we plan to add further methods from the area of 

statistical disclosure control, such as Post-Randomization (PRAM), that can be used to inject 

uncertainty into data with little impact on its usefulness [59]. 

Availability of supporting source code and requirements 

Project name: ARX Anonymization Tool 

Project home page: https://arx.deidentifier.org/ 

GitHub repository: https://github.com/arx-deidentifier/arx 

Operating system(s): Platform independent 

Programming language: Java 8 

Other requirements: None 

License: Apache License 2.0 

RRID: SCR_021189 

bio.tools ID: arx 

 

Project name: Benchmark of ARX's Heuristic Algorithms 

GitHub repository: https://github.com/arx-deidentifier/genetic-benchmark 
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Operating system(s): Platform independent 

Programming language: Java 8, Python 3 

Other requirements: None 

License: Apache License 2.0 

Data Availability  

The datasets used to benchmark the algorithms are publicly available. The corresponding download 

URLs are referenced in Table 1 in Section 2.5.3. Additionally, the datasets are part of a GitHub 

repository containing our benchmarking code [60]. The repository also contains the generalization 

hierarchies used for anonymizing the data and the raw benchmark results as .csv files. A snapshot of 

the code and the supporting data is available in the GigaScience GigaDB repository [61]. 
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