
Parameter Optimization

Variants of the genetic algorithm

Table S1: Results of the benchmark performed to compare variants of the genetic algorithm

Variant
Low-dimensional data

(avg. execution time (s))
High-dimensional data

(avg. utility (%))

Dual-Population + Triangle Pattern*† 16.7 75.3
Dual-Population 14.5 71.1
Single-Population 17.5 72.8

* Variant used in the final experiments
† Variant suggested by Wan et al.

Table S1 contains the results of the benchmark performed to compare different implementations
of the genetic algorithm. We investigated three variants: approach 1 used a dual-population
algorithm with “triangle pattern” (as proposed by Wan et al. [35]), approach 2 used a dual-
population algorithm without “triangle pattern” and approach 3 used a single-population algorithm
without “triangle pattern”. For each variant we ran our set of experiments with low-dimensional
data using global-generalization and our set of experiments with high-dimensional data using local-
generalization (see Section 2.5 for a detailed description). We ran the experiments five times and
reported the average time required to find an optimal solution, or, respectively, the average utility
obtained.
Based on the experiments we opted for approach 1 (dual-population with “triangle pattern”).
This variant performs well when processing low-dimensional data and significantly outperforms
the other variants when processing high-dimensional datasets.
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Parametrization of the genetic algorithm

Table S2: Results of the benchmark performed to optimize the parametrization of the
genetic algorithm

Parameter Value
Low-dimensional data

(avg. execution time (s))
High-dimensional data

(avg. utility (%))

eliteFraction 0.2*† 16.7 75.3
0.4 19.0 75.5

crossoverFraction 0.2 18.6 75.4
0.4*† 16.7 75.3
0.6 17.7 75.3

productionFraction 0.2* 11.0 76.2
0.4 10.9 76.1
0.6 16.2 75.7
0.8† 16.7 75.3

mutationProbability 0.025 16.3 75.3
0.05*† 16.7 75.3
0.1 16.6 75.4

immigrationFraction 0.2*† 16.7 75.3
0.4 19.7 75.5
0.6 20.6 75.3
0.8 18.6 75.5

immigrationInterval 5 19.9 75.6
10*† 16.7 75.3
20 19.3 75.4

subpopulationSize 50* 14.0 75.9
100‡ 16.7 75.3
200 27.3 74.3

* Configuration used in the final experiments
† Configuration suggested by Wan et al. and used as default
‡ Configuration used as default

Table S2 contains the results of the benchmark performed to optimize the parametrization of
the genetic algorithm. Evaluating the parametrization was done as follows: (1) we started with the
recommendations made by Wan et al. [35], and, (2) performed a systematic analysis of the influence
of parameters by individually altering them and running the experiments. For each parametriza-
tion we ran our set of experiments with low-dimensional data using global-generalization and our
set of experiments with high-dimensional data using local-generalization (see Section 2.5 for a de-
tailed description). We ran the experiments five times and reported the average time required to
find an optimal solution, or, respectively, the average utility obtained.
For parameters representing a fraction we evaluated the values {0.2, 0.4, 0.6, 0.8}. For the remain-
ing parameters we evaluated values that correspond either to the half or to the double of the
value suggested by Wan et al. The only exception was the subpopulationSize. The approach of
Wan et al. of determining the size of the population is specifically tailored towards genetic data
and is derived from the number of single-nucleotide polymorphisms (SNPs) available for sharing.
Therefore, we decided to choose a default of 100 as population size, as this value is often used in
literature [33] and is also suggested by Solans et al. [52].
Based on the preliminary experiments we set the productionFraction to 0.2 (instead to 0.8 as sug-
gested by Wan et al.) and opted for a subpopulationSize of 50 individuals. Using these parameters
led to good performance when processing low- as well as high-dimensional data in our experiments.

Note: The genetic algorithm populates each new generation with individuals using three differ-
ent mechanisms: selection, crossover and mutation. The fraction of individuals resulting from selec-
tion and crossover can explicitly be adjusted using the eliteFraction and the corssoverFraction;
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The fraction of mutated individuals is implicitly derived from the remainder of these parameters
(mutationFraction = 1 – (eliteFraction + crossoverFraction)). For this reason, we made sure
that the eliteFraction and the crossoverFraction did not add up to a value ≥ 1 as this would
mean that no mutation would be performed.
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