Environ Health Perspect

DOI: 10.1289/EHP8949

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Long-Term Exposure to Transportation Noise and Risk of Incident Stroke: A Pooled Study of Nine Scandinavian Cohorts

Nina Roswall, Andrei Pyko, Mikael Ögren, Anna Oudin, Annika Rosengren, Anton Lager, Aslak H. Poulsen, Charlotta Eriksson, David Segersson, Debora Rizzuto, Eva M. Andersson, Gunn Marit Aasvang, Gunnar Engström, Jeanette T. Jørgensen, Jenny Selander, Jesper H. Christensen, Jesse Thacher, Karin Leander, Kim Overvad, Kristina Eneroth, Kristoffer Mattisson, Lars Barregård, Leo Stockfelt, Maria Albin, Matthias Ketzel, Mette K. Simonsen, Mårten Spanne, Ole Raaschou-Nielsen, Patrik K.E. Magnusson, Pekka Tiittanen, Peter Molnar, Petter Ljungman, Timo Lanki, Youn-Hee Lim, Zorana J. Andersen, Göran Pershagen, and Mette Sørensen

Table of Contents

Table S1. Detailed information on the cohorts included in the present study.

Table S2. Detailed information on estimation of road traffic noise for all participating cohorts.

Table S3. Detailed information on estimation of air pollution for all participating cohorts.

Table S4. Results from testing the proportional hazard assumption by a correlation test between scaled Schoenfeld residuals and the rank order of event time.

Table S5. Correlation matrix between traffic noise exposures and air pollution. Pearson correlation coefficients.

Table S6. Categorical association between 5-year road and railway noise exposure and stroke incidence.

Table S7. Association between 5-year exposure to traffic noise (per 10 dB) and stroke incidence.

Table S8. Association between 5-year time-weighted traffic noise (per 10 dB) and stroke incidence, per cohort.

Table S9. Association between 5-year exposure to road traffic noise (per 10 dB) and stroke incidence after one-by-one exclusion of each cohort.

Table S10. Interactions between 5-year road traffic noise exposure (per 10 dB) and demographic and lifestyle-factors in relation to stroke incidence.

Figure S1. Association between 5-year road traffic and railway noise exposure and risk for incident stroke in models adjusted for age, sex, calendar-year, educational level, marital status, area-income, and other noise sources. The curves were calculated using smoothed splines with four degrees of freedom including 95% confidence intervals (dotted curves).

Figure S2. Association between BMI and smoking intensity and risk for incident stroke in models adjusted for age, sex, calendar-year, educational level, marital status, area-income, and other noise sources. The curves were calculated using smoothed splines with four degrees of freedom including 95% confidence intervals (dotted curves).

Figure S3. Distribution of exposure to road traffic noise among all (exposures <40 dB set to 40 dB) (a), railway noise among people exposed (i.e. with exposure >40 dB) (b), and aircraft noise among people exposed (i.e. with an exposure >40 dB) (c) 5 years preceding baseline. For railway noise 76% of the population were exposed to <40 dB and for aircraft noise 95% of the population were exposed to \leq 40 dB.

Supplementary files

Supplementary tables

Table S1 Detailed information on the cohorts included in the present study

DCHThe inclusion criteria for the Danish Diet Cancer and Health (DCH) cohort were age between 50 and 64 y, residing in the greaterTjonneland A, Olsen A, Boll K, et al. Study design, exposure variables, and socioeconomic determinants of participation in Diet, Cancer and Health: a population-based prospective cohort study of 57,053 enrolment and trained staff members measured height, weight, and waist circumference. End of follow-up for stroke was 31 Dec 2016Tjonneland A, Olsen A, Boll K, et al. Study design, exposure variables, and socioeconomic determinants of participation in Diet, Cancer and Health: a population-based prospective cohort study of 57,053 men and women in Denmark. ScandThe Danish Cancer Society	
cohort were age between 50 and 64 y, residing in the greater Copenhagen or Aarhus area and without a cancer diagnosis. From 1993 to 1997, 160,725 Danes were invited to participate of whom 57,053 participants accepted the invitation and were enrolled in the study. All participants completed detailed questionnaires at enrolment and trained staff members measured height, weight, and waist circumference. End of follow-up for stroke was 31 Dec 2016Study design, exposure variables, and socioeconomic determinants of participation in Diet, Cancer and Health: a population-based prospective cohort study of 57,053	
Copenhagen or Aarhus area and without a cancer diagnosis. From 1993 to 1997, 160,725 Danes were invited to participate of whom 57,053 participants accepted the invitation and were enrolled in the study. All participants completed detailed questionnaires at enrolment and trained staff members measured height, weight, and waist circumference. End of follow-up for stroke was 31 Dec 2016socioeconomic determinants of participation in Diet, Cancer and Health: a population-based prospective cohort study of 57,053 men and women in Denmark. Scand	
1993 to 1997, 160,725 Danes were invited to participate of whom 57,053 participants accepted the invitation and were enrolled in the study. All participants completed detailed questionnaires at enrolment and trained staff members measured height, weight, and waist circumference. End of follow-up for stroke was 31 Dec 2016participation in Diet, Cancer and Health: a population-based prospective cohort study of 57,053 men and women in Denmark. Scand	
57,053 participants accepted the invitation and were enrolled in the study. All participants completed detailed questionnaires at enrolment and trained staff members measured height, weight, and waist circumference. End of follow-up for stroke was 31 Dec 2016	
study. All participants completed detailed questionnaires at enrolment and trained staff members measured height, weight, and waist circumference. End of follow-up for stroke was 31 Dec 2016	
enrolment and trained staff members measured height, weight, and men and women in Denmark. Scand	
waist circumference. End of follow-up for stroke was 31 Dec 2016 I Publ Health 2007:35:432-41	
waist cheannetenee. End of follow-up for subre was 51 Dec 2010. J 1 uoi freatul 2007,55.452-41	
DNC The Danish Nurse Cohort (DNC) was initiated by sendingHundrup, Yrsa A., et al. CohortThe Danish Council for Independent	ıt
questionnaires to the members of the Danish Nurse Organization in profile: the Danish nurse cohort. Int J Research (DFF-4183-00353).	
1993 and 1999. Among 33,704 eligible female nurses aged 44-93 Epidemiol 2012; 41:1241-47.	
years who either worked or were retired in 1993 or 1999, 28,731	
participants (85.2%) were included in the DNC. Upon enrolment,	
participants answered a comprehensive questionnaire on body mass	
index (BMI), lifestyle factors (smoking, alcohol consumption,	
physical activity, and dietary habits), self-reported diseases and	
reproductive health, and working conditions. End of follow-up for	
Stroke was 51 Dec 2014.	
SDFF The Stockholm Diabetes Preventive Program (SDFF) is a Effksson AK, Ekbolin A, Granaul F, Swedish Environmental	
population-based prospective study anned at investigating the et al. Esychological distress and fish Frotection Agency, the Swedish	
It includes 7.040 subjects aged 35.54 years at recruitment 1002	ah
1008 Study subjects resided in five municipalities in Stockholm middle aged mon and women Diabet Heart Lung Foundation. The SDPP	511 ,
County and were followed up 2002 2007 as well as 2014 2017 At Med 2008:25:834 42	
the health exeminations, extensive questionnaires were completed	
on lifestyle factors, health status, socioeconomic characteristics and	
new chosocial conditions. In addition, measurements were	
performed of weight height hin and waist circumference as well as	

	of blood pressure and oral glucose tolerance. End of follow-up for		
SIXTY ^a	The SIXTY cohort is based on a random sample of every third man and woman living in Stockholm County, who were born in 1937 and 1938. A total of 4,232 subjects were recruited 1997-1999 to investigate risk factors for cardiovascular disease. People were 59- 61 years at enrolment. Measurements of anthropometric indices and blood pressure were made at recruitment and fasting blood samples were collected. In addition, a comprehensive questionnaire was completed, including information on socioeconomic, medical and life-style factors. End of follow-up for stroke was 31 Dec 2016.	Wändell PE, Wajngot A, de Faire U, et al. Increased prevalence of diabetes among immigrants from non-European countries in 60-year- old men and women in Sweden. Diabetes Metab 2007;33:30–6.	Swedish Environmental Protection Agency, the Swedish Council for Health, Working Life and Social Research and the Swedish Heart- Lung Foundation. The SIXTY cohort was additionally funded by the Stockholm County Council and the Swedish Research Council.
SALT ^a	The Screening Across the Lifespan Twin Study (SALT) included a total of about 45 000 twins born 1958 and earlier from the Swedish Twin Registry who were interviewed 1998-2002. Those 7,043 who resided in Stockholm County at recruitment are included in the present project. People were 42-97 years at enrolment. The interview collected data on zygosity, diseases, use of medication, occupation, education and lifestyle habits. In a subgroup of around 2,500 subjects, a clinical examination was made, including blood sampling and anthropometrics as well as blood pressure measurements. End of follow-up for stroke was 31 Dec 2017.	Lichtenstein P, Sullivan PF, Cnattingius S, et al. The Swedish Twin Registry in the third millennium: an update. Twin Res Hum Genet 2006;9:875–82.	Swedish Environmental Protection Agency, the Swedish Council for Health, Working Life and Social Research and the Swedish Heart- Lung Foundation. The SALT cohort was additionally supported by NIH grant 575 AG-08724. The Swedish Twin Registry is managed by Karolinska Institutet and receives funding through the Swedish Research Council under the grant no 2017-00641.
SNAC-K ^a	The Swedish National Study of Aging and Care in Kungsholmen (SNAC-K) was established 2001-2004 and included 3,363 residents aged 60-104 years in Kungsholmen, Stockholm. The aim was to investigate the ageing process and identify possible preventive strategies to improve health and care in elderly adults. Information was collected through social interviews and clinical examinations, including assessment of physical and cognitive functioning. Follow-up investigations are performed at intervals of three to six years depending on age. End of follow-up for stroke was 31 Dec 2016.	Lagergren M, Fratiglioni L, Hallberg IR, et al. A longitudinal study integrating population, care and social services data. The Swedish National study on Aging and Care (SNAC). Aging Clin Exp Res 2004;16:158–68.	Swedish Environmental Protection Agency, the Swedish Council for Health, Working Life, the Swedish Research Council and Social Research and the Swedish Heart- Lung Foundation. SNAC-K was additionally funded by the Ministry of Health and Social Affairs, Sweden, Stockholm County Council and the participating Municipalities and University Departments.

PPS	The Primary Prevention Study cohort (PPS) consists of a random	Wilhelmsen L, Tibblin G, Werkö L.	The Bank of Sweden Tercentenary
	third of all men in the city of Gothenburg born 1915–1925,	A primary preventive study in	Fund and the Swedish Medical
	recruited in 1970–1973 (n=7,494, participation rate 75%) to study	Gothenburg, Sweden. Preventive	Research Council.
	predictors of cardiovascular disease. People were 46-55 years at	Med. 1972;1:153-60.	
	enrolment. Participants were examined by health care professionals	Wilhelmsen L, Berglund G, Elmfeldt	
	(e.g. height, weight, systolic and diastolic blood pressures and	D et al. The multifactor primary	
	cholesterol levels) and filled out questionnaires on background data	prevention trial in Göteborg, Sweden.	
	(e.g. occupation, smoking habits, physical activity, antihypertensive	Eur Heart J. 1986;7:279-88.	
	medication, psychological stress, prevalent diabetes mellitus and		
	family history of coronary events). End of follow-up for stroke was		
	31 Dec 2011.		
GOT-	The GOT-MONICA cohort is part of the "Multinational	Wilhelmsen L, Johansson	The Swedish Medical Research
MONICA	Monitoring of Trends and Determinants in Cardiovascular	S, Rosengren S et al. Risk factors for	Council, the Swedish Heart and Lung
	Diseases" (MONICA) project. A random selection of residents in	cardiovascular disease during the	Foundation, the Ingabritt and Arne
	Gothenburg aged 25–64 years at the time of inclusion were	period 1985–1995 in Goteborg,	Lundberg Research Fund, the
	recruited in the years 1985, 1990, and 1995 (participation rates:	Sweden. The GOT-MONICA	Göteborg Medical Society and the
	63%, 69%, and 72%). The participants filled out questionnaires on	Project. J. Intern Med, 1997;242:199-	Sahlgrenska University Hospital
	e.g. smoking habits, physical activity, hypertensive medication,	211.	Funds
	psychological stress, marital status, and were examined by health		
	care professionals (e.g. blood pressures, height and weight). End of		
	follow-up for stroke was 31 Dec 2011.		
MDC	The Malmö Diet and Cancer (MDC) study is a population based	Berglund G, Elmstahl S, Janzon L et	Swedish Research Council (VR)
	prospective cohort study. People were enrolled into the cohort	al. The Malmö Diet and Cancer	Infrastructure grant, Heart-Lung
	between 1991 and 1996, and eligible participants were men born	study. Design and feasibility. J Intern	Foundation.
	between 1923 and 1945 and women born between 1923 and 1950,	Med 1993;233:45–51.	
	living in the city of Malmö. Swedish reading and writing skills	Manjer J, Carlsson S, Elmstahl S et	
	were required. People were 44-73 years at enrolment. The data	al. The Malmö Diet and Cancer	
	collection was done both using questionnaires and interviews,	Study: representativity, cancer	
	including data on dietary habits, socio-economics, medical history	incidence and mortality in	
	and lifestyle factors. The total number of study subjects were	participants and non-participants. Eur	
	28,098. End of follow-up for stroke was 31 Dec 2016.	J Cancer Prev, 2001, 10:489–499	

^aThis cohort is part of The Swedish Cardiovascular Effects of Air Pollution and Noise in Stockholm (CEANS) cohort, which consists of four sub-cohorts of persons residing in Stockholm County, Sweden. Harmonisation of covariates has been conducted across the cohorts.

Cohort	Road traffic noise estimation	Key references
DCH	Calculations were conducted for the years 1995, 2000, 2005, 2010, and 2015 using the Nordic	Thacher JD, Poulsen AH, Raaschou-Nielsen
	prediction method implemented in SoundPLAN (version 8.0). Various input variables were used in the	O, et al. High-resolution assessment of road
	model, most importantly geocode and height (floor) for each address; information on travel speed,	traffic noise exposure in Denmark. Environ
	light/heavy vehicle distributions, road type, annual average daily traffic for all Danish road links	Res 2019; 182:109051
	(Jensen et al 2019) and 3D information on all Danish buildings. Screening effects from buildings,	Jensen SS, Plejdrup MS, Hillig K. GIS-based
	terrain, and noise barriers were included. All road traffic sources within 1500 m from the receivers	National Road and Traffic Database 1960-
	were included. The parameter setting were set to allow 2 reflections.	2020. Aarhus University, Danish Centre for
		Environment and Energy 2019; Report 151
DNC	Same method as for DCH.	
CEANS	To assess long-term individual transportation noise exposure a noise database for Stockholm County	Ögren M, Barregard L. Road traffic noise
(SDPP,	was developed representing the period from 1990 and onwards, with detailed estimation every fifth	exposure in Gothenburg1975-2010. PLoS
SIXTY,	year. The database includes 3D terrain data as well as information on ground surface, road net, daily	One. 2016;11:e015532.
SALT,	traffic flows, speed limits and percentage of heavy vehicles. To calculate noise levels for road traffic a	
SNAC-K)	modification of the Nordic prediction method was used, where possible reflection and shielding were	
	taken into account by a Ground Space Index based on building density. The methodology has been	
	developed from the one described by Ögren and Barregard (2016), which was validated against the full	
	Nordic prediction method modelled with SoundPlan and showed coherent estimates.	
PPS,	Yearly average road traffic flows, speed and percentage of heavy vehicles were obtained from the	Ögren M, Barregard L. Road traffic noise
GOT-	environmental office of the municipality of Gothenburg and the traffic office of the municipality of	exposure in Gothenburg1975-2010. PLoS
MONICA	Mölndal. The traffic flow estimations were based on measurements for all major and medium links but	One. 2016;11:e015532.
	used a standard default flow for very small streets. Terrain data and building footprints were obtained	
	from Lantmäteriet and road links from the Swedish National Traffic Administration. Noise barriers of	
	at least 2 m height and 100 m length were also included, and earth berms were included in the terrain	
	model. To save calculation time and reduce demands on detailed input data a simplified methodology	
	was used for multiple reflections in dense urban areas.	
MDC	Estimated for the years 1990, 2000 and 2010, using the Nordic Prediction Method implemented in	Rittner R, Gustafsson S, Spanne M,
	SoundPLAN (version 8.0, SoundPLAN Nord ApS). Input variables included geocode, information on	Malmqvist E. Particle concentrations,
	annual average daily traffic for all road links in Malmö municipality, distribution of light/heavy traffic,	dispersion modelling and evaluation in
	signposted travel speed and road type and polygons for all buildings in Malmö. All road traffic sources	southern Sweden, SN Applied Sciences
	within 1000m from the receivers were included. Traffic data were retrieved from a regional emission	2020;2:1013.
	database (Rittner et al. 2020). The screening effects from buildings were included and ground softness	
	considered. The parameter setting in the models were set to allow 2 reflections and receivers placed at	
	2m height.	

Table S2 Detailed information on estimation of road traffic noise for all participating cohorts

Cohort	Air pollution estimation	Key references
DCH	In the DCH cohort, we used the DEHM-UBM-AirGIS modelling system to calculate	Khan J, Kakosimos K, Raaschou-Nielsen O, et al.
	PM _{2.5} and NO ₂ at all Danish addresses for the years 2000, 2010 and 2015, which was	Development and performance evaluation of new AirGIS - A
	then extrapolated to yearly means for each address, based on changes in yearly urban	GIS based air pollution and human exposure modelling
	background levels. This multi-scale dispersion modelling system calculates air	system. Atmos Environ 2019;198:102-121.
	pollutants at each address as the sum of: a) PM _{2.5} /NO ₂ from the nearest street,	Ketzel M, Berkowicz R, Hvidberg M, Jensen SS and
	calculated based on traffic, car fleet emission factors, streets and building geometry,	Raaschou-Nielsen O. Evaluation of AirGIS - a GIS-based air
	and meteorology; b) urban background, calculated based on city dimensions, emission	pollution and human exposure modelling system. Int J
	density, and heights of buildings; and c) regional background, calculated based on all	Environ Pollution 2011;47:226–238.
	emissions in the northern hemisphere.	www.au.dk/AirGIS
DNC	Same method as for DCH.	
CEANS	In the Stockholm County cohorts, a high-resolution Gaussian dispersion model was	Segersson D, Eneroth K, Gidhagen L, et al. Health impact of
(SDPP,	used to estimate individual residential levels of PM _{2.5} and NO _x /NO ₂ using local	PM ₁₀ , PM _{2.5} and black carbon exposure due to different
SIXTY,	emission inventories every fifth year from 1990 and onwards. The emission inventory	source sectors in Stockholm, Gothenburg and Umea, Sweden.
SALT,	contains detailed information on local emissions from road and ferry traffic, industrial	Int J Environ Res Public Health 2017;14:E742.
SNAC-K)	areas and households. Meteorological input to the modelling includes measurements of	Ljungman PLS, Andersson N, Stockfelt L, et al. Long-Term
	wind velocity and direction, solar radiation and temperature. Further, a street canyon	Exposure to Particulate Air Pollution, Black Carbon, and
	contribution is added for addresses in the most polluted street segments of the inner	Their Source Components in Relation to Ischemic Heart
	city of Stockholm with multi-storey houses on both sides. Annual averaged long-range	Disease and Stroke. Environ Health Perspect
	contributions were added to the locally modelled concentrations based on continuous	2019;127:107012
DDC	measurements at regional background monitoring stations.	
PPS	The exposure assessment was performed similarly for Gothenburg and Stockholm as	Segersson D, Eneroth K, Gidhagen L et al. Health impact of
	part of the Swedish Clean air and Climate Research program (SCAC). For	PM_{10} , $PM_{2.5}$ and black carbon exposure due to different
	Gothenburg, high-resolution dispersion modeling of source-specific particulate matter	source sectors in Stockholm, Gothenburg and Umea, Sweden.
	$<2.5 \ \mu\text{m}$ (PM _{2.5}), and mitrogen oxides (NO _X – converted to NO ₂) was performed over	Int J Environ Res Public Health, 2017;14:E/42.
	an area of 95 × 112 km for the years 1990, 2000 and 2011. Emission inventories were	Stockfell L, Andersson EW, Moniar P, et al. Long-term
	complete using local and regional boltom-up inventories provided by the municipality,	incident condicionación discosso in Cothenburg
	interpolated so that each participant could be assigned appual residential air pollutent	Sweden Environ Dog. 2017:158:61-71
	avposures. For NO, additional data were available from dispersion modelling for the	Sweden: Environ Res. 2017,138.01-71.
	period before 1900 as described in Stockfelt et al. 2015	
GOT.	Same method as for PPS	
MONICA		

Table S3 Detailed information on estimation of air pollution for all participating cohorts

MDC	Air pollutants (PM _{2.5} , and nitrogen oxides (NO _X) – converted to NO ₂) were modelled	Hasslöf H, Molnár P, Andersson EM, et al. Long-term
	using EnviMan (Opsis AB, Sweden) by the Environmental Department, City of	exposure to air pollution and atherosclerosis in the carotid
	Malmö, using a Gaussian dispersion model (AERMOD) combined with an emission	arteries in the Malmö Diet and Cancer Cohort. Environ Res
	database for the county of Scania in Sweden. The 18×18 km modelling area covered	2020:110095
	the city of Malmö and the closest surroundings. Separate emission databases were	
	compiled for 1992, 2000 and 2011 using existing local and regional bottom-up	
	inventories provided by the municipality, and then supplemented to be consistent for	
	the whole area and time-period. Yearly mean concentrations were stored as grids with	
	a spatial resolution of 50 m \times 50 m. The years in between the modelled years were	
	interpolated linearly with adjustment for year-to-year variations in the local	
	meteorology using a ventilation factor estimated from calculations over the whole	
	time-period, and exposure for the years 1990 and 1991 extrapolated. Exposure data	
	was combined with geocoded addresses to assign each participant annual residential	
	exposures.	

Table S4 Results from testing the proportional hazard assumption by a correlation test between
scaled Schoenfeld residuals and the rank order of event time

Variable	Chi ²	p-value
Road traffic noise, 5-year	6.33	0.012
Railway noise, 5-year	0.66	0.42
Aircraft noise, 5-year	0.53	0.77
Sex	61.4	< 0.0001
Calendar-year	16.5	0.036
Education	17.6	0.0002
Marital status	3.69	0.054
Area-level income	1.44	0.70
Smoking status	82.6	< 0.0001
Physical activity	28.1	< 0.0001
$BMI < 22 \text{ kg/m}^2$	1.94	0.16
BMI $\geq 22 \text{ kg/m}^2$	12.4	0.0004

Table S5 Correlation matrix between traffic noise exposures and air pollution. Pearson correlation coefficients								
	1-year road	5-year road	1-year	5-year	1-year	5-year	1-year	5-year
	traffic noise	traffic noise	railway noise	railway noise	PM _{2.5}	PM _{2.5}	NO ₂	NO ₂
	exposure	exposure	exposure ^a	exposure ^a				
1-year road noise exposure	-							
5-year road noise exposure	0.96	-						
1-year railway noise exposure ^a	0.11	0.11	-					
5-year railway noise exposure ^a	0.11	0.12	0.95	-				
1-y PM _{2.5}	0.38	0.37	0.05	0.05	-			
5-y PM _{2.5}	0.39	0.39	0.04	0.05	0.98	-		
1-y NO ₂	0.64	0.63	0.10	0.11	0.46	0.43	-	
5-y NO ₂	0.63	0.65	0.10	0.11	0.40	0.39	0.98	-
^a Among all participants, including	those exposed to	\leq 40 dB			•	•	•	•

Table S6 Categorical association between 5-year road and railway noise exposure and stroke									
incidence.									
	N cases	Model 1 ^a	Model 2 ^b	Model 3 ^c	Model 4 ^d				
		HR (95% CI)	HR (95% CI)	HR (95% CI)	HR (95% CI)				
Road traffic r	noise, L _{den}								
40-<45 dB	1,042	1.00 (ref.)	1.00 (ref.)	1.00 (ref.)	1.00 (ref.)				
45-<50 dB	1,476	1.06	1.06	1.05	1.07				
		(0.98-1.15)	(0.98-1.15)	(0.97-1.14)	(0.99-1.17)				
50-<55 dB	2,347	1.06	1.05	1.05	1.06				
		(0.98-1.14)	(0.97-1.13)	(0.97-1.13)	(0.97-1.14)				
55-<60 dB	2,483	1.09	1.07	1.06	1.07				
		(1.01-1.17)	(0.99-1.15)	(0.98-1.15)	(0.98-1.16)				
60-<65 dB	2,127	1.15	1.12	1.10	1.13				
		(1.06-1.24)	(1.03-1.21)	(1.02-1.19)	(1.04-1.23)				
65+ dB	1,581	1.21	1.17	1.14	1.19				
		(1.11-1.31)	(1.07-1.27)	(1.05-1.24)	(1.08-1.30)				
Railway noise	e, L _{den}								
40-<45 dB	8,842	1.00 (ref.)	1.00 (ref.)	1.00 (ref.)	1.00 (ref.)				
45-<50 dB	811	1.05	1.03	1.02	1.04				
		(0.98-1.13)	(0.96-1.11)	(0.95-1.10)	(0.96-1.12)				
50-<55 dB	661	1.03	1.00	0.99	1.01				
		(0.95-1.12)	(0.92-1.08)	(0.91-1.07)	(0.93-1.09)				
55-<60 dB	399	0.98	0.96	0.95	0.98				
		(0.89-1.08)	(0.86-1.06)	(0.85-1.05)	(0.88-1.09)				
60-<65 dB	205	1.08	1.05	1.04	1.04				
		(0.95-1.24)	(0.91-1.21)	(0.90-1.20)	(0.90-1.20)				
65+dB	138	1.00	0.96	0.95	0.97				
		(0.85-1.18)	(0.81-1.14)	(0.81-1.13)	(0.81-1.15)				

HR: Hazard Ratio; 95% CI: 95% Confidence Interval

^aAdjusted for age (by design), cohort (strata), sex (strata) and calendar year (in 5-year periods)

^bModel 1 plus adjustment for educational level (strata, low, medium, high), marital status (married/cohabiting, single), area-income (quartiles), other noise sources (road/rail, continuous), railway noise (yes/no) (in models on road traffic noise only), aircraft noise (≤40 dB; 40-50 dB, >50 dB; for the 3 cohorts without aircraft noise, noise information all cohort members were assigned to the $\leq 40 \text{ dB group}$)

^cModel 2 plus adjustment for smoking status (strata, never, former, current), leisure-time physical activity (strata, low, medium, high), BMI (kg/m², continuous)

^dModel 2 plus adjustment for time-weighted PM_{2.5} exposure (in the same time-window as noise). Due to holes in the PM_{2.5} exposure history this analysis is based on the following number of cases in each of the exposure categories: road traffic noise 40-45 dB: 985 cases, 45-50 dB: 1,385 cases, 50-55 dB: 2,200 cases, 55-60 dB: 2,307 cases, 60-65 dB: 1,995 cases, >65: 1,477 cases; and railway noise 40-45 dB: 8,256 cases, 45-50 dB: 762, 50-55 dB: 625 cases, 55-60 dB: 384 cases, 60-65 dB: 192 cases, >65: 130 cases.

Table S7 Association between 5-year exposure to traffic noise (per 10 dB) and stroke incidence.								
	Persons with inform	mation on smoking	Persons with info	ormation on 5-year	Persons with information on 5-year			
	intensity and alcohol information		mean expo	osure to NO ₂	mean exposure to $PM_{2.5}$			
	Model 3 ^a Model 3 ^a		Model 2 ^c	Model 2 ^c	Model 2 ^c	Model 4 ^d		
		plus adjustment for		plus adjustment		plus adjustment		
		smoking intensity		for NO ₂		for PM _{2.5}		
		and alcohol ^b						
	HR (95 % CI) HR (95 % CI)		HR (95 % CI)	HR (95 % CI)	HR (95 % CI)	HR (95 % CI)		
Road traffic noise, L _{den}			•					
N, cases	9,493	9,493	10,558	10,558	10,349	10,349		
5-year exposure, per 10 dB	1.04 (1.01-1.07)	1.04 (1.01-1.07)	1.06 (1.03-1.09)	1.04 (1.00-1.07)	1.06 (1.03-1.08)	1.06 (1.03-1.09)		
Railway noise, L _{den}	Railway noise, L _{den}							
N, cases	9,493	9,493	10,558	10,558	10,349	10,349		
5-year exposure, per 10 dB 0.95 (0.91-1.00) 0.95 (0.91-1.00)			0.97 (0.91-1.02)	0.97 (0.91-1.01)	0.96 (0.91-1.01)	0.96 (0.91-1.01)		
HR: Hazard Ratio: 95% CI: 95%	6 Confidence Interval							

^aModel 3: adjusted for age, cohort (strata), sex (strata), calendar year (in 5-year periods), educational level (strata, low, medium, high), marital status (married/cohabiting, single), area-income (quartiles), other noise sources (road/rail, continuous), railway noise (yes/no), aircraft noise (≤40 dB; 40-50 dB, >50 dB; for the 3 cohorts without aircraft noise information all cohort members were assigned to the <40 dB group), smoking status (strata, never, former, current), physical activity (strata, low, medium, high), and BMI (kg/m², continuous)

^bModel 3 plus adjustment for smoking intensity (g/day, continuous) and alcohol consumption (daily, weekly, seldom, never).

^cModel 2: adjusted for age, cohort (strata), sex (strata), calendar year (5-year periods), educational level (strata, low, medium, high), marital status (married/cohabiting, single), area-income (quartiles), and other noise source (road, railway and aircraft noise)

^dModel 4: Model 2 plus adjustment for 5-year time-weighted PM_{2.5} exposure (same HRs as shown in Table 3)

Table S8 Association between 5-year time-weighted traffic noise (per 10 dB) and stroke incidence, per cohort.										
	DCH	DNC	SDPP	Sixty	SNAC-K	SALT	MDC	PPS	GOT-	
									MONICA	
All strokes										
Road traffic nois	Road traffic noise, L _{den} Model 2 ^a									
N cases	5,048	1,381	157	344	384	587	2,045	1,012	98	
HR (95% CI),	1.07	1.06	1.10	1.11	0.97	0.95	1.01	1.07	0.94	
per 10 dB	(1.03-1.11)	(0.99-1.13)	(0.84-1.45)	(0.96-1.28)	(0.83-1.13)	(0.85-1.06)	(0.95-1.07)	(0.98-1.18)	(0.71-1.24)	
Railway noise, I	L _{den} Model 2 ^a									
HR (95% CI),	0.99	0.99	0.68	0.79	1.00	1.01	0.94	0.88	0.75	
per 10 dB	(0.92-1.07)	(0.84-1.16)	(0.38-1.21)	(0.60-1.04)	(0.76-1.31)	(0.85-1.19)	(0.86-1.02)	(0.67-1.16)	(0.26-2.17)	
Aircraft noise, H	IR (95% CI), L	Lden Model 2 ^a								
\leq 40 dB	1	1	1	1	1	1	NA	NA	NA	
40.1-50 dB	0.96	1.04	0.85	1.06	1.19	1.16	NA	NA	NA	
	(0.66-1.41)	(0.39-2.76)	(0.51-1.43)	(0.76-1.48)	(0.90-1.58)	(0.92-1.48)				
\geq 50 dB	1.02	1.30	0.92	1.47	0.85	0.88	NA	NA	NA	
	(0.72-1.43)	(0.75-2.24)	(0.46-1.84)	(0.86-2.53)	(0.60-1.20)	(0.54-1.41)				

HR: Hazard Ratio; 95% CI: 95% Confidence Interval

^aAdjusted for age (by design), sex (strata), calendar year (in 5-year periods), educational level (strata, low, medium, high), marital status (married/cohabiting, single), areaincome (quartiles), other noise sources (road/rail, continuous), railway noise (yes/no); aircraft noise (\leq 40 dB; 40-50 dB, >50 dB; for the 3 cohorts without aircraft noise information all cohort members were assigned to the \leq 40 dB group).

Table S9 Association between 5-year exposure to road traffic noise (per				
10 dB) and stroke incidence after one-by-one exclusion of each cohort				
Cohort excluded	N cases	Model 2 ^a		
		HR (95% CI), per 10 dB		
DCH	6,008	1.03 (1.00-1.07)		
МКС	9,011	1.06 (1.03-1.09)		
DNC	9,675	1.05 (1.03-1.08)		
SDPP	10,899	1.05 (1.03-1.08)		
SALT	10,469	1.06 (1.03-1.09)		
SIXTY	10,712	1.05 (1.03-1.08)		
SNAC-K	10,672	1.06 (1.03-1.09)		
GOT-MONICA	10,958	1.06 (1.03-1.08)		
PPS	10,044	1.05 (1.02-1.08)		
^a Adjusted for age, cohort (strata), sex (strata), calendar-year (in 5-year periods),				
educational level (strata, low, medium, high), marital status (married/cohabiting,				
single), area-income (quartiles), railway noise (continuous), railway noise				
(yes/no), aircraft noise (≤40 dB; 40-50 dB, >50 dB; for the 3 cohorts without				
aircraft noise information all cohort members were assigned to the ≤ 40 dB group)				

Table S10 Interactions	between 5-yea	ar road traffic noise exposi	ure (per 10 dB)
and demographic and li	festyle-factors	in relation to stroke incid	ence
	Road traffic noise		
	N cases	Model 2 ^{a,b}	P for
		HR (95% CI)	interaction ^c
Sex			
Male	5,647	1.050 (1.014-1.087)	0.69
Female	5,409	1.060 (1.024-1.097)	
BMI			
< 25	4,924	1.057 (1.023-1.093)	0.76
>= 25	6,132	1.050 (1.012-1.089)	
Physical activity			
Low	5,454	1.068 (1.031-1.106)	0.30
Medium	3,188	1.054 (1.008-1.102)	
High	2,414	1.017 (0.964-1.072)	
Smoking status			
Never	3,571	1.034 (0.990-1.079)	0.21
Former	3,304	1.029 (0.985-1.075)	
Current	4,181	1.078 (1.036-1.121)	
Educational level			
Low	4,317	1.049 (1.009-1.091)	0.59
Medium	5,023	1.049 (1.012-1.088)	
High	1,716	1.085 (1.022-1.153)	
Calendar year			
Before 2005	4,410	1.065 (1.024-1.107)	0.58
2005 or after	6,646	1.050 (1.017-1.084)	
PM _{2.5} (5-year)			
Low (<12.5 µg/m ³)	5,226	1.035 (0.996-1.075)	0.11
High (>=12.5 μ g/m ³)	5,123	1.080 (1.041-1.120)	
^a Adjusted for age, cohort (s	trata), sex (strata)) and calendar year (in 5-year p	eriods),

educational level (strata; low, medium, high), marital status (married/cohabiting, single), areaincome (quartiles), and other noise sources (road and rail (continuous), railway noise (yes/no), aircraft noise (\leq 40 dB; 40-50 dB, >50 dB, for the 3 cohorts without aircraft noise information all cohort members were assigned to the \leq 40 dB group)

^b All analyses included an interaction term between the potential effect modifiers and the 5-

year mean noise exposure

^c Interaction tested by Wald test

Supplementary figures

Figure S1 Association between 5-year road traffic and railway noise exposure and risk for incident stroke in models adjusted for age, sex, calendar-year, educational level, marital status, area-income, and other noise sources. The curves were calculated using smoothed splines with four degrees of freedom including 95% confidence intervals (dotted curves).

Railway noise, Lden (5-year, dB)

Figure S2 Association between BMI and smoking intensity and risk for incident stroke in models adjusted for age, sex, calendar-year, educational level, marital status, area-income, and other noise sources. The curves were calculated using smoothed splines with four degrees of freedom including 95% confidence intervals (dotted curves).

Figure S3 Distribution of exposure to road traffic noise among all (exposures <40 dB set to 40 dB) (a), railway noise among people exposed (i.e. with exposure >40 dB) (b), and aircraft noise among people exposed (i.e. with an exposure >40 dB) (c) 5 years preceding baseline. For railway noise 76% of the population were exposed to <40 dB and for aircraft noise 95% of the population were exposed to \leq 40 dB.

