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Crystalline size of samples A and B using Scherrer equation 

The crystalline sizes of samples A and B have been calculated by the deconvolution of the (311) 

diffraction peak of magnetite, using the Scherrer equation (S1): 

                           (S1) 
 

 

Where K is the shape factor (0.9-0.95), Bstructure = Bobserved-Binstrumental  is the full width at half 

maximum, is the X-ray wavelength(in our case = (Kα1+Kα2)/2=1.5418Å), and θ is the peak 

position. 

Table S1. Parameters obtained from the deconvolution of (311) of magnetite and crystalline size 

using Scherrer equation. 

Sample Diffraction 

peak 

B obs.  

[°2θ] 

B inst.  

[°2θ] 

Peak pos. 

[°2θ] 

B struct. 

[°2θ] 

Crystalline 

size [nm]* 

A 311 0.486 

 

0.120 

 

35.598 

 

0.366 

 

23(1) 

 

B 311 0.419 0.12 35,584 0.299 28(1) 

*Uncertainty of the calculated sizes is on the last significant digit. 

Hydrodynamic-Size and Zeta-Potential  

While sample A@PMAO, coated just by PMAO, has a high Z Potential value, samples with 

PMAO-PEG have a larger hydrodynamic diameter and a reduced surface charge due to the use of 

COOH groups in the grafting process of PEG molecules to the PMAO backbone (see Table S2). 

In the case of 23 nm nanoparticles (sample A), the values obtained by the optimized protocol with 

PEG 5 kDa, PEG 10 kDa and 10 kDa are similar, both in charge and in size. However, for 29 nm 

nanoparticles (sample B) is necessary a coating with large PEG molecules (PEG 20 kDa) in order 

to keep the colloid stability. Therefore, only B@PEG20k leads to a successful result. 
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Table S2. Polydispersity index (PDI), mean hydrodynamic diameter (given in Intensity (DhI), 

Volume (DhV) and Number (DhN) and Z potential (Pz) for samples A and B with PMAO and 

PMAO-PEG coatings (PEG 5 kDa, PEG 10 kDa and PEG 20 kDa) using the two different 

procedures: standard (ST) and optimized (OPT). 

SAMPLE COATING PDI 
DhI (σ)(nm) 

[H2O] 

DhV 

(σ)(nm) 

[H2O] 

DhN (σ)(nm) 

[H2O] 

Pz (σ) 

(mV) 

[H2O] 

A  PMAO 0.20 131(7) 90(9) 54(13) -37(1.9) 

A 
PMAO-

PEG-10k-

ST_ 

0.13 193(10) 140(3) 111(8) -2(0.6) 

A 
PMAO-

PEG-5k-

OPT 

0.20 153(3) 79(9) 55(4) -12(0.6) 

A 
PMAO-

PEG-10k-

OPT 

0.19 175(4) 110(4) 78(5) -8(0.4) 

A 
PMAO-

PEG-20k-

OPT 

0.19 166(9) 104(2) 74(1) -7(0.6) 

 

B  
PMAO-

PEG-5k-

OPT 

 

0.65 

 

476(7) 

 

466(7) 

 

68(2) 

 

-31(0.6) 

B PMAO-

PEG-10k-

OPT 

 

0.46 

 

548(53) 

 

134(38) 

 

82(10) 

 

-27(0.2) 

B PMAO-

PEG-20k-

OPT 

 

0.30 

 

280(7) 

 

158(9) 

 

81(1) 

 

-8(0.6) 
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Refinement of the PMAO-PEG coating protocol.  

In order to attain individually or quasi-individually coated FM-NP formulations, an optimization 

of the coating protocol was carried out. Table S3 and Figure S1 summarize representative sample 

A@PEG10k preparations, in which one coating parameter at a time was modified. The 

agglomeration degree of the FMNPs in these preparations can be deduced from the dynamical 

hysteresis loops shape and the corresponding SAR vs H curves. The effect that the coating 

conditions (Table S3) have on the SAR are visible in the Figure S1. 

Table S3. Summary of the parameters used in the coating procedure of some representative 

preparations: PMAO monomers added per nm2 of NP surface, concentration of the PMAO-PEG 

copolymer, solvent of the PMAO-PEG stock solution, strategy used to mix the FM-NPs with the 

PMAO-PEG and the corresponding SAR value obtained in the final A@PEG aqueous colloid. 

Preparation Monomers/nm2 [PMAO-PEG] 

(mgPMAO/ml) 

Solvent of the 

PMAO-PEG  

stock 

Mixing Strategy 

(FMNPs + 

PMAO-PEG) 

SAR (W/g) 

at 38 mT and 

300 kHz 

1 100 0.5 CHCl3 pouring 280 

2 50 0.5 CHCl3 pouring 490 

3 25 0.5 CHCl3 pouring 270 

4 50 0.5 CHCl3:EtOH * pouring 405 

5 50 0.5 CHCl3:Hexane * pouring 365 

6 50 0.5 CHCl3 dropwise 570 

7 50 5 CHCl3 dropwise 670 

* The solvent mixture is in 1:1 relation 

 

 

 

 

 

Preparation 1 
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Preparation 2 

 
Preparation 3 

 
Preparation 4 
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Preparation 5 

 
Preparation 6 

 
Preparation 7 

 

Figure S1. AC hysteresis loops and the corresponding experimental SAR vs field curves of 

representative sampleA@PEG preparations. Preparations 1-7: a)-g) 
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Analysis over the coating thickness 

 

Figure S2. Analysis of the PMAO-PEG copolymer thickness in sampleA@PEG with PEG 5 kDa, 

PEG 10 kDa and PEG 20 kDa . 

The bar plot of Figure S3 compares the coating thickness of the three PMAO-PEG copolymers 

used (PEG= 5 kDa, 10 kDa and 20 kDa). The mean value and standard deviation in each case have 

been obtained from the negative staining TEM micrographs. The determine polymeric thickness 

of sampleA@PEG (5,10 and 20 kDa) turned out to be analogous. Taking into account that the 

percentage of PEG molecules grafted into the PMAO backbone is the same in the three cases (75% 

of the total monomers), this effect seems to be due to a greater folding of longer PEG chains around 

the particles. Thus, it can be concluded that PMAO-PEG20k coating presents higher density than 

PMAO-PEG with 5 and 10 kDa. 
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Model S1: Theoretical Modeling of colloidal stability 

The interaction energy between two Fe3O4 NPs coated by PEG in an aqueous suspension has been 

calculated using a modified DLVO model, as presented by O. T. Mefford el. al. [Chem. Mater., 

2008, 20, 2184]. In this model, the potential energy (𝑉𝑡𝑜𝑡𝑎𝑙), resulting from the superposition of 

attractive and repulsive forces, is given by the Equation S2: 

𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑣𝑑𝑊 + 𝑉𝑚𝑎𝑔 + 𝑉𝐸𝑆 + 𝑉𝑆𝑡𝑒𝑟𝑖𝑐                                                                             (S2) 

where 𝑉𝑣𝑑𝑊 comes from the van der Waals attractive forces, 𝑉𝑚𝑎𝑔 is the attractive magnetic dipolar 

interaction energy between point magnetic dipoles, 𝑉𝐸𝑆 is the electrostatic repulsive potential 

energy between charges of the same sign and 𝑉𝑆𝑡𝑒𝑟𝑖𝑐 is the steric repulsive potential energy. 

In the present case, van der Waals interaction takes the following form: 

𝑉𝑣𝑑𝑊 = −
1

6
𝐴𝑒𝑓𝑓 (

2𝑟𝑐
2

𝑟2 − 4𝑟𝑐
2

+
2𝑟𝑐

2

𝑟2
+ ln (

𝑟2 − 4𝑟𝑐
2

𝑟2
))                                               (𝑆3) 

where 𝐴𝑒𝑓𝑓 is the so-called retarded Hamaker constant (5.47 × 10−19 𝐽), 𝑟𝑐 is the magnetic 

nanoparticle (core) radius and 𝑟 is the center to center distance of the two colloidal particles. 

The magnetic dipolar energy cannot be expressed, in principle, as a simple function of inter-

particle distance (it is not a central potential energy) as can be done for the rest of terms in Equation 

(S7). This interaction is essentially anisotropic because depends on the relative orientation of the 

two particle dipoles. Given that here we are making an estimation of the total energy (𝑉𝑡𝑜𝑡𝑎𝑙), for 

simplicity one can use the following “central” approximation for the magnetic dipolar energy: 

𝑉𝑚𝑎𝑔 ≈ −
4𝜋𝜇0𝑟𝑐

6𝑀2

9𝑟3
                                                                                                                 (𝑆4) 
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where 𝑀 is the particle Magnetization.  

The electrostatic potential energy is the corresponding one to two identical spheres of radius 𝑟ℎ 

(radius of the colloidal particle or hydrodynamic radius) located at a distance of 𝑟: 

𝑉𝐸𝑆 ≈
4𝜋𝜀0𝑟ℎ

2𝑉𝑧
2

𝑟
                                                                                                                      (𝑆5) 

where 𝑉𝑧 is the surface charge or Zeta potential. Since the Zeta potential of our FM-NPs@PEG 

systems is low (see Table S2) and in physiological solutions the salt ions screen the surface charges 

of the particles, the electrostatic repulsion can be neglected.  

The last term in Equation (S2) (𝑉𝑆𝑡𝑒𝑟𝑖𝑐) corresponds to the steric repulsion, which according to that 

proposed by C. N. Likos et. al. [Phys. Rev. Lett., 1998, 80 (20), 4450] is given by: 

𝑉𝑠𝑡𝑒𝑟𝑖𝑐 =
5

18
𝑘𝐵𝑇𝑓3/2 {

− ln(𝑟 𝜎⁄ ) + (1 + √𝑓 2⁄ )
−1

                                    𝑟 ≤ 𝜎

(1 + √𝑓 2⁄ )
−1

(𝑟 𝜎⁄ ) exp(−√𝑓 (𝑟 − 𝜎) 2𝜎⁄ )      𝑟 > 𝜎 
    (𝑆6) 

where 𝑓 is the number of polymeric chains per particle and 𝜎 is 1.3 times the radius of gyration 

(𝑅𝑔). Since the colloidal particles are compose of pseudo-spherical magnetite core and polymeric 

spherical shell, the radius of gyration of this core-shell structure is given by Equation S7: 

𝑅𝑔 = (
𝐼𝑐−𝑠

𝑀𝑐 + 𝑀𝑠
)

1/2

= {(
1

𝑀𝑐 + 𝑀𝑠
) (

2

5
𝑀𝑐𝑟𝑐

2 +
2

5
𝑀𝑠 [

𝑟ℎ
5 − 𝑟𝑐

5

𝑟ℎ
3 − 𝑟𝑐

3])}

1/2

                        (𝑆7) 

 

where 𝑀𝑐 and 𝑀𝑠 are the mass of the core and shell respectively. The mass of the core 𝑀𝑐 is simply 

the density of magnetite (5200 𝑘𝑔 𝑚3⁄ ) times the particle volume (𝑀𝑐 = 𝜌𝐹𝑒3𝑂4 × (4 3⁄ )𝜋𝑟𝑐
3), 

and the mass of the shell 𝑀𝑠 is the number of polymeric chains per particle (𝑓) multiplied by the 

molecular weight of each molecule (1𝑘𝐷𝑎 = 1.66 × 10−24 𝑘𝑔). Note that once the number of 
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PEG molecules per surface unit of the core surface (#𝑃𝐸𝐺/𝑛𝑚2) is known, the number of 

polymeric chains 𝑓 is given by: 𝑓 = #𝑃𝐸𝐺/𝑛𝑚2 × 4𝜋𝑟𝑐
2.  

The parameters and values used for the calculation of 𝑉𝑡𝑜𝑡𝑎𝑙 in samples A@PEG and B@PEG 

are summarized in Table S4 and detailed below:  

o Diameter of the inorganic core (Dc): 

These values have been taken from TEM measurements (Table 1 in the manuscript).  

Therefore, 𝑟𝑐 from Equations S8, S9 and S12 is: 𝑟𝑐 =
𝐷𝑐

2
 

o Magnetic moment of the FM-NPs (M) 

The saturation magnetization of the samples at RT has been used (Table 1 in the manuscript). 

o Hydrodinamic diameter (Dh) 

The negative staining analysis of the three polymeric coatings (5, 10 and 20kDa) in TEM 

displays similar thickness. However, this thickness value cannot be used as Dh because it 

corresponds to dry samples where the polymeric shells most likely have got shrunk. Data from 

DLS analysis also show similar sizes for the three PEG coatings. In order to employ values 

closer to individual coatings and avoid overestimation of larger aggregates DhN (Table S2)  

parameter has been chosen for the calculations. Thus, 𝑟ℎ =
𝐷ℎ

2
 in Equations S5 and S7. 

o PEG amount per surface unit (#PEG/nm2) 

TG measurements (Figure S8) of Sample A and B, prior to coating, give rise to 3-5 oleic acid 

(OA) molecules per nm2 of NP surface, which is in agreement with previous results [I. 

Castellanos-Rubio et. al., Nanoscale 2014, 12, 7542]. Since it is expected 0.75 PEG molecules 

to be incorporated for each OA on the surface (OA:PMAOmonomer ratio on the NP should be 

1:1 [J. L. Chen et. al., Small 2008, 4 (3), 334] and 75% of PMAO monomers are grafted with 

PEG, see Experimental Section), between 2-4 PEG molecules per nm2 are estimated.  



S-12 
 

2 PEG /nm2 have been used for the calculation based on previous experimental data [S. Saville 

et. al., Nanoscale 2013, 5 (5), 2152]. 

o Density of the inorganic core and of the polymeric shell (ρcore, ρshell) 

𝜌𝑐𝑜𝑟𝑒 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐹𝑒3𝑂4 = 5200 𝑘𝑔 𝑚3⁄  

𝜌𝑠ℎ𝑒𝑙𝑙 =
2𝑃𝐸𝐺/𝑛𝑚2 × 4𝜋𝑟𝑐

2 × 𝑀𝑤𝑃𝐸𝐺

(4𝜋𝑟ℎ
3 − 4𝜋𝑟𝑐

3)
 

Table S4. Summary of the parameters and values used in the calculation of VTotal for samples A@PEG and 

B@PEG. Diameter of the inorganic core (Dcore), Magnetic moment of the inorganic core (M), Molecular 

Weight of the PEG (MwPEG), Hidrodynamic diameter (Dh), Radius of gyration (Rg), Number of PEG 

molecules per nm2 of NP surface (#PEG/nm2), Density of the inorganic core (ρcore), Density of the polymeric 

shell (ρshell), Equilibrium distance (re) and Energy barrier of the potential well (E). 

Sample Dc 

(nm) 

M 
(Am2/kg) 

MwPEG 

(kDa) 

Dh 

(nm) 

Rg 

(nm) 

#PEG 

/nm2 

ρcore 

(kg/m3) 

ρshell 

(kg/m3) 

re 

(nm) 
E 

(ev) 

E 

(KBT) 

A@PEG5k 23 85 5 74 16.9 2 5200 134.1 27.1 0.4 14 

A@PEG10k 23 85 10 74 19.3 2 5200 268.1 32.3 0.2 6 

A@PEG20k 23 85 20 74 21.1 2 5200 536.2 35.8 0.1 3 

B@PEG5k* 29 90 5 81 17.96 2 5200 165.2 -- -- -- 

B@PEG10k* 29 90 10 81 20.6 2 5200 330.4 -- -- -- 

B@PEG20k 29 90 20 81 22.8 2 5200 660.8 35.9 0.5 19 

* There is no potential well, VTotal is almost purely attractive for samples B@PEG (5 and 10 kDa) 

 

Figure S3 shows the results of applying the DLVO model (described by the Equations S2-S7) to 

samples A@PEG and B@PEG. Specifically, Figure S3-a displays the estimated potential energy 

as a function of center to center distance of A (23 nm) particles coated with different PEGs (5, 10 

and 20 kDa), the three cases present asymmetrical potential wells with moderate depth (E < 0.5 

eV). The minima of potential energy become less deep and shifted towards larger center-center 

distances when the Mw of the PEG is higher, meaning a better long-term colloidal stability. 

Experimentally it was observed that sample A formed stable colloids in the short to medium term 

(≤96 h, confirmed during cytotoxicity assay) and presented similar hydrodynamic diameter and 

heating efficiencies with the three PEGs. 
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Figure S3. Particle to particle potential energy as a function of center to center distance using 

DLVO model for a) Sample A@PEG (5, 10  and 20 kDa) and b) Sample B@PEG (5, 10  and 20 

kDa. The data for the calculation have been taken from Table S4. 

 

However, the colloidal stability of sample B (29 nm) dramatically decreased when the Mw of the 

PEG used in the coating was lower than 20 kDa, so B@PEG (5 and 10 kDa) gave rise to larger 

aggregates (see Dh in  Table S2) and lower SAR values. Figure S3-b illustrates the critical 

transformation of the potential curve when the polymeric coating of sample B is formed by 20 kDa 

PEG. In fact, B@PEG (5 and 10 kDa) systems produce almost purely attractive potential energies 

where the steric contribution is negligible; and on the contrary, the potential energy becomes 

basically repulsive for B@PEG20k system with an equilibrium distance and a well depth 

comparable to A@PEG5k system (see Table S4). Thus, the numerical output extracted from this 

model supports that the increase of the polymeric shell density in the case of PEG-20kDa is able 

to enlarge the steric repulsion of B particles enough to confer them satisfactory colloidal stability.  

In addition, these calculations can be extended to different MNPs to predict suitable PEG coatings. 

As the density of PEG (1-10 kDa) in aqueous solution is around 1050 (kg/m3) at RT [P. González-

Tello et. al., J. Chem. Eng. Data 1994, 39 (3), 611], it seems fair to keep ρshell below that value. 

Table S5 and Figure S4 show some examples of Fe3O4 NPs of 35 nm coated with PEGs of 
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different molecular weight. It can be inferred from the VTotal calculation that this NP system would 

need a PEG of 30 or 40 kDa (keeping ρshell at a reasonable value) to reach enough colloidal stability. 

Table S5. Summary of the parameters and values used in the calculation of VTotal for Fe3O4 NPs of 35 nm 

with PEG coating of 20, 30 and 40 kDa. Diameter of the inorganic core (Dcore), Magnetic moment of the 

inorganic core (M), Molecular Weight of the PEG (MwPEG), Hidrodynamic diameter (Dh), Radius of 

gyration (Rg), Number of PEG molecules per nm2 of NP surface (#PEG/nm2), Density of the inorganic 

core (ρcore), Density of the polymeric shell (ρshell), Equilibrium distance (re) and Energy barrier of the 

potential well (E). 

Example Dcore 
(nm) 

M 
(Am2/kg) 

MwPEG 

(kDa) 
Dh 

(nm) 
Rg 

(nm) 
#PEG 
/nm2 

ρcore 

(kg/m3) 
ρshell 

(kg/m3) 
re 
(nm) 

E 

(ev) 
E 

(KBT) 
X@PEG20k 35 90 20 92 25.5 2 5200 660.8 37.8 1.6 62 

X@PEG30k 35 90 30 92 26.7 2 5200 990.8 40.5 1.1 42 

X@PEG30k 35 90 30 105 30.0 2 5200 660.8 46.4 0.6 24 

X@PEG40k 35 90 40 115 33.6 2 5200 660.8 52.5 0.4 15 

 

 

 
 

Figure S4. Particle to particle potential energy as a function of center to center distance using 

DLVO model for Fe3O4 nanoparticles of 35 nm in diameter coated by PEGs of different molecular 

weight. The data for the calculation have been taken from Table S5. 
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To sum up, this semi-quantitative model allows for a better understanding on how the density of 

the polymeric coating affects the steric repulsive force, providing a plausible explanation for the 

different colloidal stabilities produced by polymeric coatings of similar thicknesses.  

 

 

AC loops of optimized A sample@PEG (5kDa and 10kDa) in Agar and physiological media 

 

Figure S5. AC hysteresis loops (a,b,d,e) and the corresponding experimental SAR vs field curves 

(c,f) of sampleA@PEG5k-OP and sampleA@PEG10k-OP on Agar and PBS. 
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Model S2: Hysteresis loops simulation of DC and AC loops. 

The high energy barrier approach, as followed in this work, is a Stoner-Wohlfarth based 

model (SWBM). In this, magnetization is able to take only discrete orientations because 

it is assumed that thermal energy 𝑘𝐵𝑇, is much smaller than the anisotropy energy 𝐾𝑒𝑓𝑓𝑣, 

where 𝐾𝑒𝑓𝑓 the anisotropy energy density and 𝑣, the particle volume. The dynamical 

problem is therefore reduced to the calculation of the probabilities 𝑝𝑖(𝑡) of finding the 

magnetization in any of the minimum energy states i at a given time t, as determined from 

the energy landscape of the system, 𝐸(𝜃, 𝜑, 𝑡). This method was developed explicitly by 

Carrey et al (J. Carrey, B. Mehhaoui and M. Respuad, J. Appl. Phys, 109 083921 (2011)) 

for the case of uniaxial single domain magnetic particles, where magnetization depends 

only on the polar angle (a one dimensional problem). The approach can be generalized 

for more complex 2-dimensional problems (magnetization depending on both polar and 

azimuthal angles), as those involving the cubic, mixed or multiaxial anisotropies (C. J. 

Geoghegan, W. T. Coffey and B. Mulligan, Advances in Chemical Physics, Vol 100, Ed: 

I. Prigogine and S. A. Rice, Wiley&Sons, 1997). 

The instantaneous magnetization of each particle is given by:  

𝑀𝐻(𝑡) = 𝑀 ∑ 𝑝𝑖(𝑡)�̂�𝑖(𝑡) ∙ �̂�𝐻(𝑡)

𝑖

                   (S8) 

In equation (S2) the unit vectors �̂�𝑖(𝑡) define the directions of the minima states that, in 

general, depend on the sinusoidal magnetic field given by 𝐻(𝑡) = 𝐻0𝑠𝑖𝑛𝜔𝑡 �̂�𝐻, being 

𝑓 = 2𝜋/𝜔 the frequency of AC field and �̂�𝐻 the magnetic field unit vector. The time 

evolution of the probabilities 𝑝𝑖(𝑡) can be calculated by solving a set of ordinary 

differential equations as: 
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𝜕𝑝𝑖

𝜕𝑡
= ∑ 𝑤𝑗𝑖𝑝𝑗 − (∑ 𝑤𝑖𝑗

𝑗≠𝑖

)

𝑗≠𝑖

𝑝𝑖        (S9) 

where index i runs through the total number of minima. This equation is a way of saying 

that the change of the population in minimum i is the result of all the incoming jumps 

(first term) from the available neighbor states minus those departing from i (second 

term), with the condition ∑ 𝑝𝑖 = 1, which states that magnetization M is constant. The 

coefficients 𝑤𝑖𝑗 denote the rate of jumps (in units of frequency) from state 𝑖 to state 𝑗, 

which depend on the instantaneous energy barrier 𝐸𝑖𝑗, as 𝑤𝑖𝑗(𝑡) = 𝑐𝑖𝑗exp (−𝑣𝐸𝑖𝑗/𝑘𝐵𝑇), 

being 𝑣 the volume of the single domain and pre-factor 𝑐𝑖𝑗 being the maximum jumps 

rate related to the natural precession frequency of the particle magnetization, which has 

been considered a constant equal to 10 -10 s. 

The case of an effective uniaxial anisotropy. 

If dipolar interactions can be neglected, the energy landscape of the magnetic single 

domain is in general function of two space variables, for instance the polar 𝜃 and 

azimuthal 𝜑 angles of spherical coordinates, and the time 𝑡 (or the external magnetic 

field which in turn is a function of time): 𝐸(𝜃, 𝜑, 𝑡). For uniaxial magnetic anisotropy, the 

energy landscape does not depend on the azimuthal angle and therefore becomes a function of 𝜃 

and 𝑡: 

𝐸(𝜃, 𝑡) = 𝐾𝑢𝑠𝑖𝑛2𝜃 − 𝜇0𝑀𝐻0𝑠𝑖𝑛𝜔𝑡𝑐𝑜𝑠(𝜃 − 𝜙)                  (𝑆10) 

where 𝜃 is the angle between the single domain magnetic moment and the magnetic easy 

axis and 𝜙 is the angle between the external magnetic vector field and the easy axis. In 

these conditions the energy has two minima in general and equation (S9) reduces to: 
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𝜕𝑝1(2)

𝜕𝑡
= 𝑤21(12)𝑝2(1) − 𝑤12(21)𝑝1(2)                                    (S11) 

When the easy axis is oriented at random respect to the external applied field, the magnetization 

should be averaged over all the possible orientations between the easy axes and the external 

magnetic field 𝜙, as: 

𝑀𝑟𝑎𝑛𝑑𝑜𝑚 =
∫ 𝑀𝐻(𝑡)𝑠𝑖𝑛𝜙𝑑𝜙

𝜙=𝜋/2

𝜙=0

∫ 𝑠𝑖𝑛𝜙𝑑𝜙𝑑𝜙
                            (𝑆12) 

DC hysteresis loops, as those obtained in a SQUID magnetometer at 5 K, can be simulated in this 

framework by using a low frequency excitation (1 Hz), while AC loops can be obviously 

calculated following the experimental frequencies of hyperthermia. 

Effective anisotropy constant distribution 

The existence of distributions of sizes and/or shapes/morphologies is inherent to real 

nanoparticles fabrication. At best, given a certain synthesis protocol, morphology is broadly 

determined (for instance, strongly faceted cube-octahedral) but fine details of individual particles 

reveal the onset of different elongations, face extrusions or irregularities in general as well as 

certain distribution of sizes. All these features introduce uncertainties that must affect 

significantly important properties as the magnetic anisotropy constant or the rate of jumps 

between energy minima in 𝑤𝑖𝑗(𝑡). At very low temperatures, the influence of size 

dispersity is expected to be negligible (ratio 𝑣𝐸𝑖𝑗/𝑘𝐵𝑇 is very large in any case) so the 

influence of anisotropy constant dispersion should be dominant. For this reason, 

simulations performed according to the previously described model have been obtained 

by averaging loops over a normal distribution of anisotropy constants, even the AC loops 

calculated at room temperature. However, it should be kept in mind that size distribution 
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and even dipolar inter-particle interactions should play a role that has been implicitly 

included in the anisotropy distribution. Probably, the large dispersion of anisotropies  

needed to fit the experimental AC loops at room temperature (around 5 kJ/m 3, relative 

to an average of 〈𝐾𝑢〉 =13.5 kJ/m3) reflects in fact the underlying impact of these 

additional effects. 

Figure S6 shows the hysteresis loops calculated for sample A and B at a frequency of 300 kHz 

with increasing external field amplitude. Each loop, as shown in Figure S6, results from 

averaging around 800 single simulations, each one corresponding to an angle 𝜙 and anisotropy 

constant 𝐾𝑢. 

 

Figure S6. (a) Calculated hysteresis loops under an AC excitation at 300 KHz for sample A with 

an average anisotropy constant of 13.5 kJ/m3.(b) Calculated hysteresis loops calculated under an 

AC excitation at 300 KHz for sample B with an average anisotropy constant of 11 kJ/m3. 
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Frequency dependency of SAR in sample A. 

The higher or lower influence of the excitation frequency on the hysteresis Area is expected to 

depend on the particle size. This influence takes place through thermal fluctuations, in other words, 

due to the different ratio of the thermal energy 𝑘𝐵𝑇 to the anisotropy energy 𝐾𝑒𝑓𝑓𝑣. Stoner-

Wohlfarth-Based Models are able to predict that particles of 23 nm display this feature, as 

observed in Figure S7. Simulations performed under the same parameters but at different 

frequencies fit well to the experimental observation. 

 

Figure S7. Solid circles correspond to experimental SAR obtained at 670 kHz (blue colored), 

200 kHz (green colored) and 150 kHz (red colored). Solid lines correspond to the calculated 

SAR versus H curve obtained from simulations by taking = 13.5 kJ/m3 , standard deviation 

of K distribution of 5 kJ/m3 and magnetization M = 85 Am2/kg. 
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Thermogravimetric measurements 

The thermogravimetric measurements of samples A and B prior to the polymeric coating are 

displayed in Figure S8. The organic matter percentage determined by thermogravimetry is 8.1 %  

and 5.7 % respectively, which corresponds to ≈ 4 oleic acid molecules per nm2 of FM-NP surface. 

 

Figure S8. Thermogravimetric measurement of samples A and B prior to polymeric coating. 

 

 

 

 

 

 


