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Supplementary Methods 

Experimental-level accuracy 
To estimate the experimental-level accuracy of gene expression measurements, we used 
204/638 CAGE samples that had multiple replicate experiments (589 experiments in total). For 
each CAGE sample, we divided the replicate experiments into two groups such that the total 
number of reads was roughly equal in each group (Supplementary Table 1). For each group, we 
summed the reads for all replicates to generate a pseudo-replicate. Replicate level accuracy was 
computed by treating data from pseudo-replicate 1 as predictions and data from pseudo-replicate 
2 as targets. 
 
Since only 204/638 CAGE samples had multiple replicates, we developed a computational 
approach to estimate the replicate level accuracy of all 638 CAGE samples. Since many CAGE 
tracks are highly correlated, a linear combination of other tracks can be used to estimate the 
replicate experiment of a particular CAGE track. For each track t, we trained a linear model on 
the same training set as the Enformer model using batch-normalized input values of all other 
tracks !"#! and their log(1+x) transformed version, followed by softplus activation. Performance of 
this model was evaluated on the same test set as the Enformer model. 

Comparison to ExPecto 
We obtained the gene expression matrix used by ExPecto from 
https://github.com/FunctionLab/ExPecto/tree/master/resources. We observed similar test-set 
median Spearman correlation performance across genes with the pre-trained ExPecto model as 
reported in the paper (0.812 vs 0.819). We re-trained the Enformer model only on the human 
genome, holding out chromosome 8, which was used as a test set by ExPecto. We then made 
predictions with Enformer for all genes, using the sequence centered at the major TSS of the 
gene as defined by ExPecto. We extracted the relevant CAGE predictions for each gene in two 
ways: a) by extracting the predictions from the 128 bp bin overlapping the major TSS, b) by 
averaging the CAGE predictions from all bins overlapping any TSS of the gene as defined by 
GENCODE v19 annotation. This gave us 638 features for each gene. We quantile normalized 
these features and trained L2-regularized linear regression on log(1+x) transformed gene 
expression data from ExPecto training set for all 218 different RNA-seq samples. 

TAD boundary attention 
We obtained a list of topologically associating domain (TAD) boundaries measured in IMR90 cells 
following the analysis of Krietenstein et al1  from 
https://console.cloud.google.com/storage/browser/basenji_hic/insulation. We randomly selected 
1,500 TAD boundaries, extracted the reference genome sequence centered at these positions, 
made predictions with Enformer, and obtained the transformer attention matrices. We averaged 
the attention matrices across all sequences, layers, and transformer heads (yielding a 



1,536x1,536 matrix). We did the same for 1,500 sequences from our validation set; these 
sequences do not contain any specific alignment to a particular regulatory element and can hence 
be considered as ‘background’. We then computed the difference between the two attention 
matrices (attention_tad_boundary - attention_other) and visualized it as a heatmap. “Query” 
denotes the position from which we are attending to all other positions in the sequence called 
“keys”. To compute the statistical significance of the patterns observed in the heatmap, we 
incrementally partitioned the attention matrix into the following segments: 

● Query at insulator: |key| < 6 kb (6kb corresponds to 48 bins of 128 bp) 
● Key at insulator: |query| < 6 kb 
● Diagonal: |query - key| < 6 kb 
● Within TAD: sign(query*key) = 1 
● Across TAD: sign(query*key) = -1 

Each segment also excludes segments from previous segments thereby making sure that none 
of the segments overlap (for example “Diagonal” segment will not contain regions overlapping 
“Key at insulator” and “Query at insulator”). For the attention matrix of each sequence (averaged 
across layers and heads), we computed the average attention value in the segment of interest. 

TAD boundary motif discovery 
We computed input*gradient contribution scores for 1,500 sequences centered at TAD 
boundaries. Gradients were computed with respect to CAGE or DNase targets averaged across 
all positions and output samples. We ran TF-MoDISco2 (v0.5.14.0) with default parameters on the 
obtained CAGE and DNase contribution scores from TAD boundaries. We searched for the 
closest known motif match in the HOCOMOCO3 v11 (full) database using Tomtom4 v4.11.2. 
 

GTEx SLDP detailed description 

Signed linkage disequilibrium profile (SLDP) regression is a technique for measuring the statistical 
concordance between a signed variant annotation v and a genome-wide association study’s 

marginal correlations between variants and a phenotype5. The functional correlation between v 
and the true variant effects on the phenotype describes how relevant the annotation is for the 
phenotype’s heritability. Our model produces these signed variant annotations. SLDP estimates 
this functional correlation using a generalized least-squares regression, accounting for the 
population linkage disequilibrium structure. It performs a statistical test for significance by 
randomly flipping the signs of entries in v in large consecutive blocks to obtain a null distribution. 
We follow previous work in conditioning on background annotations describing minor allele 
frequency and binary variables for variant overlap with coding sequence (and 500 bp extension), 
5′ UTR (and 500 bp extension), 3′ UTR (and 500 bp extension), and introns. 

We used GTEx v7a summary statistics for 48 tissues that had been preprocessed for SLDP6. In 
these statistics, each SNP’s effect is summarized over all cis-genes using the following 

transformation  where Gm is the set of all genes for which a cis-eQTL test was 



performed for variant m and is the marginal correlation of SNP m and gene k expression5. 
We passed  to SLDP for analysis of variant predictions. 

Dimensionality reduction of variant effect scores 
We used principal component analysis (PCA) to reduce 5,313 variant effect features from 
Enformer to 20 principle components. We used variant effect scores from 1000 Genomes SNPs 
on chromosome 9 and performed the following steps: (1) subtracted the median and divided by 
standard deviation estimated from the interquartile range as implemented in RobustScaler in 
scikit-learn (v0.23.2); (2) reduced the dimensionality to 20 principle components using 
TruncatedSVD from scikit-learn; and (3) normalized the resulting principal component features 
using RobustScaler to obtain z-scores.  



Supplementary Figures 

Supplementary Fig. 1: Attention patterns at the HNRNPA1 locus 

 
a) Attention matrices for all layers (columns) and heads (rows) for the HNRNPA1 locus shown in 
Fig. 2a. Most of the attention is placed on the diagonal, meaning that the model is gathering local 



information. For some heads, clear vertical lines can be seen (e.g. H: 1, L: 7 or L: 6) meaning that 
multiple query positions are looking at the same key (such as a  gene TSS or enhancer). For 
some heads, the queries are looking at a specific distance away from the TSS (e.g. H: 6, L: 2). b) 
Attention matrix row from a) where the query position overlaps the TSS of the HNRNPA1 major 
TSS stacked for all layers and heads. The average attention across all layers and heads is shown 
at top and is the same as shown in Fig. 2a and used for enhancer prioritization. Enformer is mostly 
looking at positions around the TSS in the initial layers (first few rows), with distinct heads looking 
at positions upstream or downstream of the TSS. In later layers, it starts to look for more distal 
positions, both using very localized and broad attention. 



Supplementary Fig. 2: Example loci from Fulco et al 2019 

 
Other example loci from Fulco et al 2019 as shown in Fig. 2. 



Supplementary Fig. 3: Example loci from Gasperini et al 2019. 

 
Other example loci from Gasperini et al 2019 as shown in Fig. 2. 
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