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Orchestrating and sharing large multimodal data for 
transparent and reproducible research  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Supplementary Methods 
 
All analyses can be reproduced through our custom Code Ocean compute capsule: 
https://codeocean.com/capsule/9215268/tree 
 
Pharmacogenomics 
 
In order to identify an association between ERBB2 gene expression and lapatinib drug 
response across pharmacogenomic datasets (predictive biomarker) 1 , log2 normalized 
gene expression data computed by Kallisto was obtained from the following data 
objects: GRAY (https://orcestra.ca/pset/10.5281/zenodo.4557735), UHNBreast 
(https://orcestra.ca/pset/10.5281/zenodo.3905460), CCLE 
(https://orcestra.ca/pset/10.5281/zenodo.3905462), and GDSC2  
(https://orcestra.ca/pset/10.5281/zenodo.3905481). Drug response data was also 
obtained from the same data objects, in the form of AAC (Area-above the drug dose 
response curve). The concordance index was then computed between gene expression 
and lapatinib drug response for each dataset using the survcomp Bioconductor package 
(v.1.42.0), as well as in the form of a meta-analysis (N=1,281) to identify ERBB2’s 
predictive value across all datasets. In order to identify the consistency of lapatinib drug 
response (AAC) across pharmacogenomic datasets the Pearson correlation coefficient 
was computed between CTRPv2/GDSC 1 (N=511) and CTRPv2/GDSC2 (N=587). 
GDSC1 and GDSC2 utilize varying pharmacological assays for their drug response 
data, impacting the correlation with CTRPv2 and use of the data for biomarker 
discovery. 
 
Toxicogenomics 
 
To highlight the top differentially expressed genes for "most drug induced liver injury" 
(DILI) drug acetaminophen and "no DILI'' drug chloramphenicol in Open TG-GATEs 
Human data (https://orcestra.ca/toxicoset/10.5281/zenodo.4302218), the data object was 
downloaded from ORCESTRA 2. Differential gene expression for both drugs were 
analyzed using limma pipeline in the computeLimmaDiffExpr function from ToxicoGx 
Bioconductor package (v.1.2.1). Differentially expressed genes for dose "High" at 24 
hours were filtered. 6575 genes examined for acetaminophen, while 895 genes were 
examined for chloramphenicol. To rank genes in the order of evidence for differential 
expression analyses, an empirical Bayes moderated t-statistics was used for each 
individual contrast equal to zero. Then, the two-sided p-values corresponding to the t-
statistics were corrected for multiple comparisons using Benjamini & Hochberg method 
to control false discovery rate (FDR).  
 
Xenographic Pharmacogenomics 
 
To investigate the correlation between ERBB2 expression and trastuzumab drug 
response across breast cancer patient-derived xenograft models (N=37) 3, the PDXE 
data object was utilized (https://orcestra.ca/xevaset/10.5281/zenodo.4302463), which 
was generated with the Xeva Bioconductor package (v.1.8.0). ERBB2 log2 normalized 



 

gene expression data computed by Kallisto 0.46.1 was obtained from the data object, 
along with trastuzumab drug response in the form of AAC (area-above the tumour 
growth curve). The Pearson correlation coefficient was computed between gene 
expression and drug response, in order to identify the potential correlation. 
 
Clinical Genomics 
 
Patient risk across pancreatic cancer patients (N=1102) was investigated through 
identifying the prognostic value of a Pancreatic Cancer Overall Survival Predictor 
(PCOSP) model, which implements an novel ensemble of gene expression binary k-top 
scoring pair classifiers (kTSP). The MetaGxPancreas data object was utilized on 
ORCESTRA (https://orcestra.ca/clinicalgenomics/10.5281/zenodo.4312144). The model 
produces a PCOSP score, allowing for the estimation of patient risk. To benchmark this 
method, we have compared prediction performance against a standard linear model of 
clinical parameters sex, age, and TNM status using concordance index. The cohort was 
split into training and testing sets, where the PCOSP model was fit using the PCOSP 
function in the PDATK R Bioconductor Package, while comparing with an ensemble of 
kTSP classifiers were then trained, in order to predict patient risk. A generalized linear 
model (GLM) was fit based on clinical parameters to benchmark PCOSP model, where 
the ClinicalModel vs PCOSP model performance was compared using the 
compareModels function in PDATK.  
 

Radiogenomics  
 
To investigate the association between pathway-level features and radiosensitivity, we 
used the ORCESTRA Radiogenomics data object 
(https://orcestra.ca/radioset/10.5281/zenodo.4313029), which contains a panel of 540 
cancer cell lines treated with gamma radiation from 137Cs at eight doses, up to 10 Gy. 
To summarize the sensitivity of the cell lines to radiation, we fit a linear-quadratic curve 
to the dose response data, and computed the area under the fitted radiation survival 
curve (AUC). Large values of AUC indicate resistance to radiation, while small values 
indicate sensitivity. Next, we extracted the RNA-Seq gene expression data from the 
RadioSet, which were quantified with Kallisto 0.46.1 and calculated as log2 of TPM. To 
identify genes relevant to radiosensitivity, we computed the Pearson correlation 
between gene expression and AUC controlling for tissue in both the expression and 
radiosensitivity values. 
 
 
 
 
 
 
 
 
 



Category Dataset name No. of samples No. of perturbations Release date/version

Pharmacogenomics (in vitro) GRAY4 73 89 2013
GRAY5 74 107 2017
FIMM6 50 52 2016
GDSC17 1104 343 2020(v1-8.2)
GDSC28 1104 190 2020(v2-8.2)
gCSI9 747 16 2017
UHNBreast10 84 8 2019
CTRPv211 887 544 2015
CCLE12 1094 24 2015
GDSC113 1104 303 2019(v1-8.0)
GDSC214 1104 169 2019(v2-8.0)

Pharmacogenomics (in vivo) PDXE15 277 62 2015

Radiogenomics Cleveland16 540 1 2016

Toxicogenomics DrugMatrix17 1 126 2019
EMEXP245818 2 6 2010
Open TG-GATEs19 2 152 2015

Clinical Genomics MetaGxPancreas20 1792 NA 2019

https://orcestra.ca/pset/10.5281/zenodo.3905454
https://orcestra.ca/pset/10.5281/zenodo.4557735
https://orcestra.ca/pset/10.5281/zenodo.3905448
https://orcestra.ca/pset/10.5281/zenodo.3905485
https://orcestra.ca/pset/10.5281/zenodo.3905481
https://orcestra.ca/pset/10.5281/zenodo.4742696
https://orcestra.ca/pset/10.5281/zenodo.3905460
https://orcestra.ca/pset/10.5281/zenodo.3905470
https://orcestra.ca/pset/10.5281/zenodo.3905462
https://orcestra.ca/pset/10.5281/zenodo.3905505
https://orcestra.ca/pset/10.5281/zenodo.4012486
https://orcestra.ca/xevaset/10.5281/zenodo.4302463
https://orcestra.ca/radioset/10.5281/zenodo.4313029
https://orcestra.ca/toxicoset/10.5281/zenodo.4302202
https://orcestra.ca/toxicoset/10.5281/zenodo.4302212
https://orcestra.ca/toxicoset/10.5281/zenodo.4302218
https://orcestra.ca/clinicalgenomics/10.5281/zenodo.4312144
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Data Portal Notable Functionalities Expected Functionalities

SYNAPSE21
Wiki integration
Data provenance tracker
Dataset discussion board

Track updates to a dataset at the file level

Broad Institute (CCLE)22
Easy access of current, previous, and legacy data versions
Display of data by data-type
(e.g. pharmacological profiling, mRNA expression)

Display of data processing tools, and their versions,
with all accompanying files (e.g. transcriptome)

DRYAD23
Simplistic navigation
Dataset metrics

Direct access to all processing pipelines utilizedRespective publication download

NCBI24
SRA sequencing information with
additional sample metadata

Option of downloading processed data through
multiple methods/pipelines

CancerRxGene (GDSC)25
Direct integration of cell line and drug metadata
Direct links to raw data hosted on other portals
Description of changes to each drug sensitivity data release

https://www.synapse.org/
https://portals.broadinstitute.org/ccle/data
https://datadryad.org/stash
https://www.ncbi.nlm.nih.gov/
https://www.cancerrxgene.org/
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Supplementary Figures 
 
 
 
 

 
Supplementary Fig. 1. Concordance of ERBB2 expression and Lapatinib drug 
response across GRAY, UHNBreast, CCLE, GDSC2, and gCSI2 data objects 
generated by ORCESTRA. PSet: PharmacoSet; C-index: concordance-index; N: 
number of cell lines. Meta analysis represents combined concordance index and p-
value across PSets. n=1281 cancer cell lines. 95% confidence interval displayed for 
each PSet and meta analysis. A two-sided alternative hypothesis was selected when 
computing the concordance index. 
 
 
 



 

 
 
 
 

       
Supplementary Fig. 2. Pearson correlation between GDSC1/2 and CTRPv2 Lapatinib 
drug response. a. GDSC1 vs CTRPv2. b. GDSC2 vs CTRPv2. N=587 cell lines 
intersected between GDSC1 and CTRPv2, while 511 cell lines intersected between 
GDSC2 and CTRPv2. The error bands represent a 95% confidence interval. A two-
sided Pearson correlation test was performed. 
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Supplementary Fig. 3. Differential gene expression analysis of acetaminophen and 
chloramphenicol. Genes with log2 fold change > 1 and p value < 0.05 are highlighted as 
Up-regulated genes (red) and genes with log2 fold change < -1 and p value < 0.05 are 
highlighted as Down-regulated genes (blue) for acetaminophen (a) and chloramphenicol 
(b). The genes excluded from the above filter are shown in grey. 6575 genes examined 
for acetaminophen, while 895 genes were examined for chloramphenicol. To rank 
genes in the order of evidence for differential expression analyses, an empirical Bayes 
moderated t-statistics was used. Two-sided p-values corresponding to the t-statistics 
were corrected for multiple comparisons using Benjamini & Hochberg method to control 
false discovery rate (FDR). 

a. 

b. 



 

 

 
Supplementary Fig. 4. Correlation of ERBB2 expression and trastuzumab drug 
response. The x-axis represents the best average response of trastuzumab breast 
cancer patient derived xenograft models. The y-axis displays ERBB2 gene expression. 
N=37 samples. The error band represents a 95% confidence interval. A two-sided 
Pearson correlation test was performed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 
Supplementary Fig. 5. Comparison of concordance index of patient prognosis 
classification between PCOSP and clinical models. The Pancreatic Cancer Overall 
Survival Predictor (PCOSP) model implements a novel ensemble of gene expression 
binary k-top scoring pair classifiers to produce a PCOSP score estimating patient risk. 
PCOSP score is defined as the proportion of classifiers which predict prognosis as 
good, with a score of less than 0.5 indicating poor prognosis. To benchmark this 
method, prediction performance is compared against a standard linear model of clinical 
parameters sex, age, and TNM status using concordance index. 95% confidence 
interval displayed for each cohort. N=1102 patient samples. The measure of centre for 
the error bars is the mean, computed through the survcomp::combine.est function via 
the survcomp Bioconductor package. 



 

 
 
 
 
 

 
 

Supplementary Fig. 6. The waterfall plot depicts the Pearson correlation (x-axis) 
between individual genes and radiosensitivity (AUC). Each point represents one gene, 
and each color is a different set of cell lines, grouped by tissue. The -log10 FDR-
adjusted p-values from the two-tailed Pearson correlation test are displayed on the y-
axis. RNA-sequencing gene expression data are log2 of TPM, while radiosensitivity is 
the area under the fitted radiation survival curve (AUC). N=540 cancer cell lines. 
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