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Supplementary Note 1. POSITIONAL ORDER

For a family of length L, there are L! possible permutations of the sites and therefore L! possible orders. The
parameterization of the conditional probabilities of the arDCA model is not invariant under a change of order, thus
different orders may give different results. However, an optimization over all the different orders is not computationally
feasible. We compared some particular orders: the direct order along the protein chain, the entropic order where
the sites are ordered in ascending order according to their local entropy si = −

∑q
a=1 fi(a) log fi(a), and the inverse

entropic order where si is used in descending order. A comparison with 100 random orders was also made. The quality
of the generative properties was found to be highly correlated with the log-likelihood of the optimized model, which
can be computed exactly after the parameters are inferred, see Section Methods of the main text. Supplementary
Figure 1 shows a comparison of the likelihood and the Pearson’s correlation of the two-point statistics for the different
orders. The values reported for the random order is an average over the 100 different realizations, with one standard
deviation given by the vertical bar. While the direct order is compatible with a random order, for all but one family
the entropic order has the highest value of the likelihood and maximizes the Pearson correlation.

In order to check that the entropic order is a good heuristic choice between all possible orders, we designed a greedy
procedure to increase the likelihood by doing some permutations between the sites. This procedure tries to find a
locally optimal order. The different steps of the procedure are:

• Choose a site randomly

• Permute this site with all the other sites and compute the likelihood of the new model each time

• Choose the permutation that increases the most the likelihood and iterate the procedure

Supplementary Figure 2a shows the evolution of the log-likelihood of the entropic and direct orders of the family
PF00014 under permutations. The permuted entropic order saturates quickly to a value of the log-likelihood relatively
close to the initial one, indicating that the entropic order is not far from a locally optimal one. The direct order
saturates to the same value of the log-likelihood. The plot also shows the evolution of the Kendall-Tau distance
between the two orders, defined as the number of pairs in a different order, i.e. for two lists l1 and l2,

K(l1, l2) = |{(i, j) : i < j, (l1(i) < l1(j) ∩ l2(i) > l2(j)) ∪ (l1(i) > l1(j) ∩ l2(i) < l2(j))}| . (S1)

The Kendall-Tau distance gives a measure of the dissimilarity between two lists. Supplementary Figure 2a shows
that the distance between the two orders decreases with increasing permutations. Supplementary Figures 2b and 2c
show the value of the local entropy for each site in both orders before (b) and after (c) 60 permutations. After 60
permutations, it is clear that the sites with a low local entropy are typically at the beginning, which is coherent with
the explanation given in the main text.

Finally, Supplementary Figure 3 shows the Pearson correlation of two-point connected correlations for the 33
families used for mutational effects with the entropic and the direct order. Coherently with the previous discussion,
the entropic order gives a better result for 30 over 33 families.
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Supplementary Figure 1. Comparison of the Pearson correlation of two-point connected correlations and the
log-likelihood between different orders. The value of the random order is the mean of 100 random orders with one
standard deviation given as a vertical bar. Results are for Pfam families PF00014 (a), PF00072 (b), PF00076 (c),

PF0595 (d), and PF13354 (e).
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Supplementary Figure 2. a: Evolution of the log-likelihood and the Kendall-Tau distance of the direct and entropic
orders under permutations. b and c: Values of the entropy of each site in the direct and entropic orders with no

permutations (b) and after 60 permutations (c).

Supplementary Figure 3. Pearson correlation of the two-point connected correlations for all the 33 families used for
mutational effects, for the direct and entropic orders.
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Supplementary Figure 4. Averaged Hamming distance between a sequence and its time evolution after MCMC
sweeps, in bmDCA and in arDCA. The average is made with respect to 100 (panel a, PF13354 family) or 5 (panel b,
PF18589 family) initially equilibrated sequences. The horizontal line is the average Hamming distance between two

independent equilibrium sequences, which by the direct arDCA-sampling procedure can be achieved in the
equivalent of a single sweep (each positions sampled once).

Supplementary Note 2. SAMPLING FROM THE MODEL

To emphasize the advantages of the direct sampling protocol of arDCA, we report here a comparison with sampling
from the bmDCA model. In this case, sequences must be obtained via MCMC sampling, but a lot of moves have to be
made in order to achieve a proper equilibration in some families [1, 4, 5]. Furthermore, several hyperparameters have
to be set, such as the number of MCMC independent chains, the total length and the number of samples produced
by each chain, etc. As discussed in detail in [4], these hyperparameters heavily affect the quality of the training
and sampling in bmDCA. If the mixing time of MCMC is short enough, then it is possible to train and sample the
bmDCA model in equilibrium, which leads to stable and reproducible results. If the mixing time is too long, however,
this becomes impossible and one is forced to train the machine out-of-equilibrium (e.g. via CD or PCD), which leads
to an unstable resampling displaying a maximal quality at some given sampling time that depends on the training
history [4].

As an illustration of these effects, we consider a beta-lactamase family (Pfam family PF13354), which is particularly
hard to sample via MCMC; bmDCA models have then been trained via PCD [1]. In order to directly compare with
MCMC sampling of bmDCA, we sampled sequences from our arDCA model, using a Metropolis-Hasting procedure.
We propose a random change of a residue, and we accept the move with a probability that depends on the ratio
of the probabilities of the new and old sequences. This is of course a very inefficient way of sampling from the
arDCA model, but it allows for a direct comparison with the MCMC dynamics of a bmDCA. The Hamming distance
between an initial equilibrium sequence (obtained via the sequential procedure described above, which thus guarantees
equilibration) and its time evolution after MCMC sweeps was computed. This time-dependent Hamming distance,
averaged over 100 initial sequences, is reported in Supplementary Figure 4a. Its shape is very similar to that obtained
by MCMC sampling of bmDCA [1], also reported in the same figure (note that in this case the initial sequence is
not fully equilibrated). It grows very slowly with time, and only at very long times it saturates to the equilibrium
Hamming distance between two independently sampled sequences. The time it takes to reach this plateau gives an
estimation of the number of MCMC sweeps needed to obtain an equilibrium sample. Supplementary Figure 4a shows
that the equilibration takes at least 104 MCMC sweeps. On the other hand, the sequential procedure described above,
which is only possible for arDCA models, allows one to sample almost instantaneously, thus completely bypassing the
long time scale associated to MCMC.

We repeated the same study for the obesity receptor family (ObR IG, Pfam family PF18589) and for the Leptin
family (Pfam family PF02024), where the number of available sequences is more limited and bmDCA has shown
some convergence problems. We find that the mixing time of MCMC is even larger in that case, see Supplementary
Figure 4b for PF18589. As a result, the bmDCA training is strongly out-of-equilibrium. While the Pearson coefficient
of the Cij reaches 0.99 during training, a resampling of the same model leads to very poor results (∼ 0.62 for PF18589
and ∼ 0.43 for PF02024). We conclude that bmDCA, at least in our simplest scheme, is not reliable. On the contrary,
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arDCA provides reliable results for both families.
We note that these observations have interesting implication for the problem of sampling in disordered systems

with slow dynamics, as already noted in [9].

Supplementary Note 3. RESULTS FOR OTHER FAMILIES

A. Pfam Datasets

1. Description

We describe the properties of the five Pfam families used to test the generative properties and structure pre-
diction of the arDCA model: PF00014, PF00072, PF00076, PF00595, PF13354. MSA are downloaded from Pfam
(http://pfam.xfam.org/) and sequences with more than 6 consecutive gaps are removed. The value of Meff defined in
Section Methods of the main text gives the effective number of sequences, obtained by a proper reweighing of very
similar sequences.

Pfam identifier PF00014 PF00072 PF00076 PF00595 PF13354
Protein domain Kunitz domain Response regulator RNA recognition PDZ domain Beta-lactamase

receiver domain motif
L 53 112 70 82 202
M 13600 823798 137605 36690 7515
Meff 4364 229585 27785 3961 7454

Supplementary Table 1. Properties of the Pfam families

2. Principal component analysis

Supplementary Figure 5 shows the projection of natural sequences (first column), sequences sampled from arDCA
(second column), bmDCA (third column) and the profile model (last column) in a two-dimensional space, constructed
by performing principal component analysis on the natural sequences. Each bin in the figure has a color related to
its total weight, defined by resampled the sequences using the weights defined in Section Methods of the main text.

3. Frequencies

Supplementary Figure 6 shows how well the model is able to reproduce the empirical frequencies obtained from the
data. The one-point frequencies (left), two-point (center) and three-point (right) connected correlations are shown,
both from the arDCA model (blue) and the bmDCA (red). Note that for the three-point connected correlations, the
correlations that have an empirical value smaller than 0.003 are removed, because they are not meaningful given the
limited number of sequences in the dataset.

B. Families used for mutational effects

We show in Supplementary Table 2 the generative properties of the arDCA model for the 33 families that are used
for mutational effect predictions [6, 7]. The computational time of parameter learning on a standard laptop is also
included.

C. Comparison of mutational predictions of DeepSequence and arDCA
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Supplementary Figure 5. Projections of sequences on the principal components obtained from natural sequences, for
the Pfam families PF00014 (a), PF00072 (b), PF00076 (c), PF0595 (d), and PF13354 (e).
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Supplementary Figure 6. One-point frequencies and two- and three-point connected correlations, obtained from
resampling the models (vertical axis) and from empirical data (horizontal axis) for the Pfam families PF00014 (a),

PF00072 (b), PF00076 (c), PF0595 (d), and PF13354 (e).
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Family L M Meff Time (min)
Pearson’s correlation
of Cij

YAP1 (WW domain) 30 85299 5822 4 0.99
GAL1 (DNA-binding
domain) 62 20688 6435 5 0.98
Translation initiation factor
IF1 69 9090 1310 2 0.98
RAL1 71 33026 6435 9 0.97
BRCA1 (RING domain) 75 39396 6585 12 0.96
UBE4B (U-box domain) 75 16478 2941 5 0.98
Small ubiquitin-related
modifier 1 76 21695 2669 5 0.99
PABP 79 246405 29045 77 0.97
PSD95 (PDZ factor) 82 208112 7215 60 0.97
Hepatitis C NS5A 113 11423 55 4 1
SUMO conjugating enzyme
UBC9 138 32486 4957 37 0.97
Calmodulin-I 139 36224 7196 30 0.94
GTPase HRas 164 84762 12506 130 0.98
Thiopurine S-
Methyltransferase 177 6688 2351 13 0.98
BRCA1 (BRCT domain) 186 8391 2037 14 0.94
Thiamin Pyrophosphoki-
nase 1 201 9966 3851 26 0.98
HSP90 (ATPase domain) 218 23447 2847 40 0.98
Kanamycin kinase APH(3’)
-II 226 29808 9658 60 0.96
TIM Barrel
(T.thermophilus) 236 23742 4869 98 0.97
TIM Barrel (T.Solfataricus) 237 23743 4913 101 0.97
TIM Barrel (T.Maritima) 239 23745 5001 103 0.97
Aliphatic amide hydrolase 247 76372 20145 340 0.97
Beta-lactamase 252 14783 3818 60 0.97
Mitogen-activated protein
kinase 1 288 65626 7322 400 0.98
PTEN 304 8566 1119 43 0.96
DNA methylase HaeIII 318 26513 11098 230 0.96
Levoglucosan kinase 364 12925 3638 160 0.98
Beta-glucosidase 441 49471 8477 400 0.98
Influenza Hemagglutin 544 51000 62 500 0.99
HIV env (BF520) 657 73441 305 800 0.98
Influenza polymerase PA
subunit 716 19611 9 518 1

Supplementary Table 2. MSA parameters, running time and Pearson correlation for Cij for the 32 families used for
comparison with DMS data.
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Supplementary Figure 7. Pearson correlations for mutational predictions of arDCA and DeepSequence across all
protein families studied.
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Supplementary Note 4. CONTACT PREDICTION

Once the effective couplings are calculated, the standard procedure of DCA is applied [3]. First, each pair of amino
acids is assigned an interaction score given by the Frobenius norm:

Fij = ‖J ij‖2 =

√√√√ 20∑
a,b=1

Jij(a, b)2 . (S2)

Note that the gap state (q = 21) is not taken into account in the norm. Because of overparametrization caused by the
non-independence of the empirical frequencies, both the Potts model and autoregressive models are invariant under
some gauge transformations, that is different sets of parameters give the same probability. On the other side, the
Frobenius norm is not invariant by gauge transformation, so a gauge choice is needed. The zero-sum gauge was found
to be the gauge that minimizes the Frobenius norm; in other words, this gauge choice includes in the couplings only
the information that cannot be treated by fields. Note that the zero-sum gauge is also the gauge of the standard Ising
model. The equations characterizing the zero-sum gauge are:

∑
a hi(a) =

∑
a Jij(a, b) =

∑
b Jij(a, b) = 0. Finally,

the so-called average product correction (APC) is applied on the Frobenius scores, because it was empirically shown

to improve contact prediction: FAPC
ij = Fij − F.jFi.

F..
where the dot represents the average with respect to the index.

1. Results across families

a. PPV – To test the contact prediction, a distance d(i, j) between each heavy atoms in the amino acids was
extracted from the crystal structures present in the PDB database. Sites with atoms at a distance < 8 Å were
considered in contact. Note that 8 Å is too large to be a true contact, but since we are looking for consensus contacts
in the family and there is variability from protein to protein, this definition has become standard. Coherently with the
literature standard, a minimal separation of |i− j| ≥ 5 along the protein chain was imposed in order to consider only
non-trivial contacts corresponding to sites that are not close in the chain. Pairs ij are ranked according to the APC-
corrected Frobenius norm, as defined in Supplementary Note 4. Supplementary Figure 8 shows the positive predictive
value as a function of the number of predicted non-trivial contacts for the arDCA model (blue) and bmDCA (orange).
The Positive Predicted Value (PPV) is the fraction of true contacts among the first n predictions, corresponding to
the n highest scores.

b. Contact map – Supplementary Figure 10 show the contact maps of the arDCA and bmDCA models. The
black crosses represent the true contact map with a threshold of 8 Å. The blue dots are the true positive predictions
and the red ones are the false positive considering the 2L top predictions of non-trivial contacts.



11

Supplementary Figure 8. PPV curves for the Pfam families PF00014 (a), PF00072 (b), PF00076 (c), PF0595 (d),
and PF13354 (e) obtained with arDCA and bmDCA.

Supplementary Figure 9. PPV curves for the Pfam families PF00014 (a), PF00072 (b), PF00076 (c), PF0595 (d),
and PF13354 (e) obtained with arDCA, plmDCA and GaussDCA (aka mfDCA).
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Supplementary Figure 10. Contact maps for the Pfam families PF00014 (a), PF00072 (b), PF00076 (c), PF0595 (d),
and PF13354 (e).
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Supplementary Figure 11. Histograms of log-odds rations log{P1(seq)/P2(seq)} for subfamily specific profile (panel
a) and arDCA (panel b) models, for the two sub-families of the response-regulator domain family (PF00072)

identified by the coexistence with one of two DNA-binding domains Trans reg C (PF00486) or GerE (PF00196).
Models are learned on randomly extracted training sets of 6000 sequences per sub-family, histograms show the test

sets (blue for coexistence with PF00486, orange with PF00196). The part of the blue (resp. orange) histograms with
negative (resp. positive) values corresponds to correct sub-family annotations via the log-odds ratio; the fraction of

correct predictions for each subfamily and each model is indicated in the legend.

Supplementary Figure 12. Scatter plot of statistical energies of bmDCA and arDCA for the artificial chorismate
mutase enzymes enzymes designed in [8]; the bmDCA energies are the ones published along with the references. The

coloring allows to distinguish experimentally verified functional (red) and non-functional (blue) sequences. Both
energies are highly correlated (Pearson correlation 0.97), and functional sequences are found at low energies only, in

perfect agreement with [8].
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Supplementary Figure 13. Panel a: Comparison of an exemplary PDB structure of the PF00072 family (PDB ID
1nxs [2], grey) with trRosetta predictions for small MSA of 10 arDCA-generated sequences (turquoise, RMSD

1.96Å, and 0.91Å over 94/106 residues with 2Å) and of 10 natural sequences (orange, RMSD 1.74Å, and 0.91Å over
90/108 residues with 2Å). Panel b shows the contact maps for the two trRosetta predictions.
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Supplementary Figure 14. Evolution of the Pearson correlation (for one- and two-point statistics) during the
learning for the family PF00076. The computational time is given in seconds. Both figures compare the one-layer
(red) and the two-layer (blue) models. Figure a shows the Pearson correlation while figure b shows one minus the

Pearson correlation (in semilog scale).

Supplementary Note 5. TWO-LAYER AUTOREGRESSIVE MODELS

Due to the very simple structure of the one-layer arDCA model, one might ask whether a more complicated and
flexible model could perform better. To address this question, we considered an arDCA model for the family PF00076,
but with two layers instead of one. As an exploratory step, we just considered very simple two-layer architectures: each
conditional probability P (ai|ai−1, . . . , a1), i ∈ 2, . . . , L is modeled in terms of a dense input node of size kq× (i− 1)q
for (input amino acid sequences are one-hot-encoded) with non a linear activation function σ, while the second layer
is again a dense node of size q × kq concatenated with a softmax to get a probability as final output:

P̃
(2−layer)
i (a1, . . . , ai−1) = softmax

(
W

[q,kq]
2 · σ

(
W

[kq,(i−1)q]
1 · ~a+~b

[kq]
1

)
+~b

[q]
2

)
, i ∈ {2, . . . , L} , (S3)

where W
[l,m]
1,2 are parameter matrices of size l×m and~b

[l]
1,2 are vectors of parameters (biases) of size l that are optimized

in the training step. We tried different values of k, and different types of activation functions σ and we opted for
k = 5 and σ = ReLU.

Supplementary Figure 14 shows that increasing the complexity of the model does not improve the ability to repro-
duce the statistics of the data. In the specific case of the family PF00076, the one-layer model is even marginally better,
both for the one-point and two-point statistics. Moreover, the computational time is comparable in the two cases,
therefore using a two-layer model gives neither an advantage on the generative qualities, nor on the computational
time.
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