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<b>REVIEWER COMMENTS</B> 

Reviewer #1 (Experience: Biochemist, Experimental user's perspective): 

The authors argue that generative models are quickly emerging as promising candidates for novel 

sequence-data driven approaches to protein design, and to obtain structural and functional information 

about proteins. In this manuscript, the authors propose a simple model architecture called arDCA, that is 

based on a shallow (one-layer) autoregressive model paired with generalized logistic regression. Such 

models are computationally efficient and can be developed quickly and reliably. I am enthusiastic about 

the present manuscript which clearly constitutes an important leap ahead in the field. 

My only main criticism is about readibility. The manuscript reads as a work meant for a highly 

specialised audience who is already completely proficient with the problem. The authors have instead 

sent the manuscript to a journal with a highly diversified readership who will not be able to appreciate 

80% of the work presented. While of course the authors should not compromise with quality or rigor, 

they should do some attempts to explain the math presented and to explain the acronyms (e.g. bmDCA, 

plmDCA, etc.) that are introduced but not defined. 

Reviewer #2 (Experience: Machine/Deep learning to predict protein function from sequence/generative 

modeling): 

Summary: 

Trinquier et al. develop an auto-regressive machine learning model for protein families which is based 

on softmax-regression of both single-residue features (resembling DCA potentials) and pairwise-residue 

features (resembling DCA couplings). This unsupervised generative model is trained on the MSA of a 

protein family of interest, with the goal of recapitulating evolutionary conserved and coevolved 

statistical properties of the family’s sequence distribution. The authors show that (1) their model is 

computationally significantly faster to train than the corresponding DCA-based models, (2) samples 

drawn from the model recapitulates amino acid frequencies and pairwise amino acid correlations found 

in the original sequence data, (3) their model marginally outperforms another DCA-based model in 

mutation effect prediction (but is outperformed by a deep variational autoencoder) and (4) their model 

is comparable to another unsupervised DCA-based model for tertiary residue-residue contact 

predictions. 

Significance: 



Overall, I found this to be a well executed study with a rigorous mathematical and computational 

methodology to stand on. The most noteworthy result is the significantly reduced training time needed 

to obtain a model which, for most intents and purposes (as shown empirically on the various tasks), 

resemble a DCA model and recapitulate the same statistical single- and pairwise amino acid properties. 

This more efficient and easier-to-train model will likely be of use to researchers in the field who would 

otherwise use DCA-based modeling. 

However, considering each respective task in isolation (mutational effect prediction, residue-residue 

contact prediction and sequence design), this contribution is probably of limited significance due to the 

recent advances made by deep learning models, and the observed/presumed superior performance of 

those approaches. 

First, for mutational effect prediction, the authors themselves show that a deep variational autoencoder 

(DeepSequence) [1], which is also trained in an unsupervised manner on unlabeled data, outperforms 

their proposed arDCA model. If that’s the case, then I do not see the utility in using their model. 

Granted, the training time is significantly longer for DeepSequence, but I don’t think that is the most 

limiting factor for users, and it is very dependent on machine specifications. Second, for residue-residue 

contact prediction, the authors make no comparison to the deep learning-based AlphaFold or trRosetta 

models [2, 3], which are considered state-of-the-art for contact prediction. On the one hand, AlphaFold 

and trRosetta are trained in a supervised manner on solved structures whereas the authors train their 

model on unlabeled datasets, so the comparison may not be entirely fair. However, the authors argue in 

the introduction that training an unsupervised model is preferable since it enables much larger 

unlabeled datasets to be used. But if AlphaFold and trRosetta outperform this unsupervised model 

(which I think they will), then there is no added benefit (or much utility) of the authors’ new model for 

contact prediction. Third, in the context of sequence design, the authors state in the introduction that 

unsupervised deep generative models are largely unexplored for sequence design. However, there are 

now many approaches based on deep generative models that demonstrate de novo design of protein 

sequences [4, 5, 6, 7, 8, 9], some of which combine unsupervised training with supervised fine-tuning 

[6]. The authors make no comparison to these models and it is hard to think that they would perform 

comparably with this much simpler model. 
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capture the effects of mutations. Nature methods, 15(10), pp.816-822. 
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Bridgland, A. and Penedones, H., 2020. Improved protein structure prediction using potentials from 
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References: 

The authors cite previous and related research (including [1, 2, 3, 4] from above). I would suggest adding 

references to [5, 6, 7, 8, 9] as they are highly relevant for protein sequence design using generative 

models. 

Methodology: 

The computational methodology is presented well. The mathematical framework, problem definition, 

model and optimization are all presented in enough detail to be reproduced. 

To strengthen the conclusions and demonstrated applications, I would suggest complementing some of 

the analyses with additional comparisons. See Suggested Improvements below. 

Concerns and Suggested improvements: 

Major 1: The analysis in Table 1 and Figure 2 compares the proposed model (arDCA) to another DCA 

model (bmDCA) on the basis of statistical properties (amino acid frequency, pairwise and triplet 



correlations) captured from the sequence data. While this shows that arDCA compares well to bmDCA, 

the authors should also include comparisons to unsupervised deep generative models such as 

DeepSequence [1], the auto-regressive model from [4] or the VAE from [6]. This is needed to strengthen 

the claim that their model performs comparably to deep models. 

Major 2: From the current analysis in Figure 3, it seems that the deep generative model DeepSequence 

[1] moderately outperforms the proposed model on average, although for certain families the 

improvement in correlation is significantly higher. It would be good to complement this with a more in-

depth analysis of exactly what type of mutations the deeper model seems to perform better at. Does 

arDCA systematically miss specific types of statistical relationships in the data that DeepSequence can 

learn? 

Major 3: For the residue-residue contact prediction task (Figure 4), I suggest that the authors include 

comparisons to AlphaFold [2] or trRosetta [3], in order to estimate to what extent (if any) such deep 

(supervised) models outperform the authors’ unsupervised DCA-based model. 

Minor 1: The authors make a loose claim on page 5 that “The four context-dependent models perform in 

a very similar way; their predictions are usually more correlated to each other than to the experimental 

data”. Do the authors mean the models overfit to the training data? I suggest either removing or 

clarifying this claim with supporting data. 

Minor 2: In addition to the amino acid statistics reported in Table 1 and Figure 2, I would suggest 

performing additional comparisons between original sequences from the data and samples from the 

proposed model based on biophysical properties. For example, comparing the distributions of 

hydrophobicity indices, instability indices or secondary structure features. These additional comparisons 

would raise credibility in that the proposed model has captured relevant biophysical properties from the 

data. 

Minor 3: In both the introduction and in the discussion, the authors claim that being able to efficiently 

compute the normalizer z (which allows them to estimate normalized probabilities) is of great potential 

importance for homology detection using coevolutionary models, but the authors never present any 

analysis demonstrating that this would work well. So I suggest removing or rephrasing the claim “..., 

thereby enabling the comparison of the same sequence in different models for different protein 

families.” at the end of the introduction. 



Reviewer #3 (Expertise: Machine/Deep learning to predict protein function from sequence/generative 

modeling): 

The work by Trinquier et al. deals with the development of generative models of protein sequence 

families using supervised learning methodologies. This study advances the field of amino acid 

coevolution pioneered by some of the authors and provides an original solution to reduce the 

computational burden that the state of the art sequence models are characterized with. The usefulness 

of sequence Potts models like Direct Coupling Analysis has been evident in recent years to devise 

protein structures, interactions and to approximate fitness landscapes for biomolecules. As the field 

shifts towards protein design, generative methodologies that agree better with the global site statistics 

in a family are needed. The promise is that such models will be more accurate identifying functional 

sequences, and the authors provide evidence of these in their previous work combining generative 

models like bmDCA with experimental protein design. The most important contribution of this article is 

the fact that such generative models are not only expensive but also in many cases do not converge, 

therefore a novel methodology that could resolve this challenge is a very important contribution to the 

field. 

In my opinion, the methodological advances proposed in the “autoregressive DCA” or arDCA are not 

only novel but will also accelerate the research in protein landscapes and design in a meaningful way for 

the scientific community, maybe in a parallel way on how DCA accelerated the field of residue 

coevolution. Although, I find these results very important and of note, I felt that the authors left behind 

important analyses that could help stress the main contribution of their work, i.e. the reduction in 

computational complexity and convergence. The authors focused mostly in showcasing how arDCA is as 

good as bmDCA, which is important to show but they did not formally show how arDCA provides 

advantages over bmDCA or other generative models. I don’t see this as an important drawback but 

simply an issue that can be resolved in a revised version of this manuscript. I also have a series of 

general and minor comments that I would like to be addressed in a new version of this article. 

General Comments 

1. I suggest removing non-objective wording like “extremely”, “astonishingly”, “excellent” and replace 

with more descriptive adjectives 

2. The abstract mentions a “substantially lower computational cost” , please try to add a more 

quantitative statement, maybe with some general improvement numbers 



3. In the discussion of the effect of mutations reference [14] is cited, in my opinion a better or additional 

reference showcasing this concept would be Cheng et al. Molecular Biology and Evolution. 2019 

(doi.org/10.1093/molbev/msw188) 

4. The possibility of calculating exact sequence probabilities is quite interesting and a unique 

contribution of this work. Could the authors provide more details on how its use in sequence homology 

can benefit from this feature of arDCA? Maybe provide an example where using non-exact probabilities 

provides misleading or inconclusive information? This would certainly highlight in a stronger way the 

unique contributions of this methodology. 

5. When the authors mention the application of generative models, particularly bmDCA, they might also 

suggest is recent use in models of evolution as presented in De la Paz et al. PNAS. 2020 

(doi.org/10.1073/pnas.1913071117) 

5. The authors mention that for the case of pseudo likelihood maximization DCA (plmDCA) having 

parameter symmetrization causes accuracy loss. Could the authors provide more details on this 

statement? Maybe an example that can illustrate this drawback in the plmDCA formulation? 

6. The authors make their case when comparing arDCA versus bmDCA which yields accurate statistics. 

However, they focus primarily on well behaved cases like the response regulator. It would be very 

interesting to compare the behavior of arDCA/bmDCA for cases like the Leptin family or the ObR_IG 

(Obesity receptor) where the number of available sequences is more limited and bmDCA has shown 

some convergence problems. An analysis on these cases could strengthen the premise of the utility of 

arDCA. 

7. Following up on the previous comments, the authors should also include a computational complexity 

analysis for some (not necessarily all) of the families described in the paper to showcase the advantages 

in running time for bmDCA (some is already covered in the SI). Using the families in comment 6 could 

also help compare questions about convergence. It would also be useful to include a comparison with 

another generative model called Mi3 from Haldane and Levy (doi.org/10.1016/j.cpc.2020.107312) which 

uses GPUs to accelerate the sampling process. 

8. The manuscript mentions that the generative process of arDCA is more or less equivalent to bmDCA. 

Given that bmDCA was used to generate functional sequences of the chromate mutase enzymes. The 

authors could compare if some of those functional sequences also score well in the probability 

distribution of arDCA, this could give some evidence that arDCA could in fact produce functional 

proteins. 



9. An important claim is that the energy of equation (4) is not a simple sum of parameters but also 

includes the logarithms of the local partition functions. Could the authors give more details on how, in 

practical terms, this is better or more useful. Is there an example that can show the relevance of one 

approach versus the other? 

10. The performance on mutational effects is really encouraging especially for viral proteins. Could the 

authors provide a rationale of why this method could be better compared to others when dealing with 

less diverse sequences like the viral ensemble? 

11. Fig. 4 compares contact prediction of arDCA vs. bmDCA. Could the authors also include a comparison 

with respect to mfDCA and plmDCA? That way we would be able to compare arDCA against other non-

generative methods. 

12. To me, one of the most interesting contributions of this work is the ability to compute the entropy 

density of a family efficiently and maybe more accurately. I suggest to include this contribution in the 

abstract. 

13. Given that the advantage of family comparison due to exact probabilities is mentioned several times, 

I suggest including an example that could help showcase this in a more concrete way. 

14. Figure 1 in the SI seems to me quite important, I suggest to bring this back to the main text as well 

with further analysis on computational complexity of the methods. 

15. In several sections a “profile” model is mentioned, could you give more details on this? Is this based 

on Hidden Markov Models? 

16. Make sure to mention in the main text that there is no real advantage for the two-layer model in 

generative qualities or computational time. 

Minor Comments 



1. Introduction. Pfam 34 now has about 19,179 families, please update the number in the introduction. 

2. Results are showcased for the Family PF00076, please explicitly state which family of proteins is this. 

3. References to the SI should be more specific, e.g. include figure numbers, section names/numbers to 

facilitate the reference to the reader. 

4. For the section name in the SI , I suggest changing the title to “Parameter Inference” 

5. In section I of the SI. What was the criterion to select the L2 regularization strengths ? 

6. In the SI, when describing algorithms, I suggest numbering the steps instead of using bullets 

7. In the SI section IV. A-4, subheading a and b, please add a period after PPV and Contact map 

8. In SI section “Families used for mutational effects”, a “standard laptop”, is mentioned. It would be 

good to include the specification of such laptop given that the standard laptop specifications change 

every 6 months. 

9. In SI section V. Positional Order. Is the “natural order” the same as “direct order”? please clarify. 

10. In SI section VI. Replace “Two layer autoregressive models” with “Two-layer autoregressive models” 

11. In SI, the first sentence after equation 9, replace ”is are parameter matrices” with “are parameter 

matrices” 



We thank all reviewers for their careful reading of our manuscript, and for the suggestions,
which have helped to improve contents and presentation. We have taken into account all points
mentioned, cf. the detailed point-by-point responses below - the original reports are reproduced
in black, our answers given in blue. We have also provided a pdf of our manuscript with
highlighted changes compared to our original submission.

Reviewer #1 (Experience: Biochemist, Experimental user's perspective):

The authors argue that generative models are quickly emerging as promising candidates for
novel sequence-data driven approaches to protein design, and to obtain structural and
functional information about proteins. In this manuscript, the authors propose a simple model
architecture called arDCA, that is based on a shallow (one-layer) autoregressive model paired
with generalized logistic regression. Such models are computationally efficient and can be
developed quickly and reliably. I am enthusiastic about the present manuscript which clearly
constitutes an important leap ahead in the field.
My only main criticism is about readability. The manuscript reads as a work meant for a highly
specialised audience who is already completely proficient with the problem. The authors have
instead sent the manuscript to a journal with a highly diversified readership who will not be able
to appreciate 80% of the work presented. While of course the authors should not compromise
with quality or rigor, they should do some attempts to explain the math presented and to explain
the acronyms (e.g. bmDCA, plmDCA, etc.) that are introduced but not defined.

We thank the reviewer for the positive evaluation of our manuscript. We have made an effort to
make the paper more readable for a broader audience. To reach this, we have extended the
introduction by a section about the state of the art, which describes better why we do this study,
and why we think that autoregressive models are an interesting new step in the statistical
modeling of protein families. We need, however, also to keep the technical clarity of the
presentation. What we propose is a method more than a new biological insight, so necessarily
the technical aspects have to be discussed. We hope that the relative weights we give now to
readability vs. technical detail and exactness satisfy the request of the reviewer.

Reviewer #2 (Experience: Machine/Deep learning to predict protein function from
sequence/generative modeling):

Summary:

Trinquier et al. develop an auto-regressive machine learning model for protein families which is
based on softmax-regression of both single-residue features (resembling DCA potentials) and
pairwise-residue features (resembling DCA couplings). This unsupervised generative model is
trained on the MSA of a protein family of interest, with the goal of recapitulating evolutionary
conserved and coevolved statistical properties of the family’s sequence distribution. The authors
show that (1) their model is computationally significantly faster to train than the corresponding
DCA-based models, (2) samples drawn from the model recapitulates amino acid frequencies
and pairwise amino acid correlations found in the original sequence data, (3) their model



marginally outperforms another DCA-based model in mutation effect prediction (but is
outperformed by a deep variational autoencoder) and (4) their model is comparable to another
unsupervised DCA-based model for tertiary residue-residue contact predictions.

Significance:

Overall, I found this to be a well executed study with a rigorous mathematical and computational
methodology to stand on. The most noteworthy result is the significantly reduced training time
needed to obtain a model which, for most intents and purposes (as shown empirically on the
various tasks), resemble a DCA model and recapitulate the same statistical single- and pairwise
amino acid properties. This more efficient and easier-to-train model will likely be of use to
researchers in the field who would otherwise use DCA-based modeling.

However, considering each respective task in isolation (mutational effect prediction,
residue-residue contact prediction and sequence design), this contribution is probably of limited
significance due to the recent advances made by deep learning models, and the
observed/presumed superior performance of those approaches.

First, for mutational effect prediction, the authors themselves show that a deep variational
autoencoder (DeepSequence) [1], which is also trained in an unsupervised manner on
unlabeled data, outperforms their proposed arDCA model. If that’s the case, then I do not see
the utility in using their model. Granted, the training time is significantly longer for
DeepSequence, but I don’t think that is the most limiting factor for users, and it is very
dependent on machine specifications. Second, for residue-residue contact prediction, the
authors make no comparison to the deep learning-based AlphaFold or trRosetta models [2, 3],
which are considered state-of-the-art for contact prediction. On the one hand, AlphaFold and
trRosetta are trained in a supervised manner on solved structures whereas the authors train
their model on unlabeled datasets, so the comparison may not be entirely fair. However, the
authors argue in the introduction that training an unsupervised model is preferable since it
enables much larger unlabeled datasets to be used. But if AlphaFold and trRosetta outperform
this unsupervised model (which I think they will), then there is no added benefit (or much utility)
of the authors’ new model for contact prediction. Third, in the context of sequence design, the
authors state in the introduction that unsupervised deep generative models are largely
unexplored for sequence design. However, there are now many approaches based on deep
generative models that demonstrate de novo design of protein sequences [4, 5, 6, 7, 8, 9], some
of which combine unsupervised training with supervised fine-tuning [6]. The authors make no
comparison to these models and it is hard to think that they would perform comparably with this
much simpler model.

We thank the reviewer for this overall positive evaluation of our work, and for bringing up the
possible limitations. It is clear that our approach is not optimized for any of the specific
applications, since it is purely based on sequence information and aims at reproducing the
sequence statistics. Extracting biological predictions like mutational effects or contacts are done
in the unsupervised way of standard DCA, and should therefore in particular be compared to



this approach. Concerning the points mentioned by the reviewer in the last paragraph, we have
added some analyses:
(i) We have added a more detailed comparison with DeepSequence for the mutational-effect
prediction. The new Fig.3 shows that DeepSequence and arDCA perform very similarly, possibly
with an advantage for DeepSequence for large datasets, and arDCA for smaller datasets.
However, the differences remain small, and in all cases the prediction of DeepSequence and
arDCA are more correlated to each other than to the experimental measurements (see the new
Fig.S7). It should also be noted that, as shown in arXiv:2012.02296, bmDCA (and thus arDCA,
because they have comparable generative quality) significantly outperforms DeepSequence in
generating homologous sequences with low sequence identity, i.e. in reproducing the overall
statistics of the natural sequences. We have been able to confirm these results for the protein
families of our study.
(ii) Most of the best deep-learning (DL) based contact predictors (including trRosetta, AlphaFold,
RaptorX, DeepMetaPSICOV) first perform unsupervised coevolutionary analysis as done also
by the different implementations of DCA, and use the analysis for many protein families,
together with PDB structures, for a better supervised extraction of contacts from coevolutionary
signals. Our arDCA does only address the first step, and does not use MSA and structures of
other families than the currently studied one. So we agree that for contact prediction, trRosetta
etc. are always to be preferred over arDCA. However, what we show in the manuscript is that
arDCA performs as well as the coevolutionary predictors using the same input data. The benefit
for contact prediction could be to use arDCA in the data-preparation for DL, but this is definitely
a work going beyond the scope of the current paper - which is generative modeling.
In this context, the reviewer’s remark has brought us to an interesting and potentially relevant
idea for testing the generative properties from a structural perspective: are generated
sequences predicted to fold into the same structure as the natural ones? To assess this, we
have used trRosetta to predict structures for limited MSA of 10 natural or 10 artificial sequences.
We have chosen trRosetta, since the web server allows for user-provided MSA (without
enlarging them with natural homologs), and for opting out the use of templates. Interestingly we
find that the generated sequences are predicted to fold into almost the same 3D structure, with
RMSD below 2Å to example PDB structures from the same family. We added these results in
the discussion section, and in a new Fig.S13.

[1] Riesselman, A.J., Ingraham, J.B. and Marks, D.S., 2018. Deep generative models of genetic
variation capture the effects of mutations. Nature methods, 15(10), pp.816-822.
[2] Senior, A.W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., Žídek, A.,
Nelson, A.W., Bridgland, A. and Penedones, H., 2020. Improved protein structure prediction
using potentials from deep learning. Nature, 577(7792), pp.706-710.
[3] Yang, Jianyi, et al. "Improved protein structure prediction using predicted interresidue
orientations." Proceedings of the National Academy of Sciences 117.3 (2020): 1496-1503.
[4] Riesselman, Adam J., et al. "Accelerating Protein Design Using Autoregressive Generative
Models." bioRxiv (2019): 757252.
[5] Greener, Joe G., Lewis Moffat, and David T. Jones. "Design of metalloproteins and novel
protein folds using variational autoencoders." Scientific reports 8.1 (2018): 1-12.



[6] Costello, Zak, and Hector Garcia Martin. "How to hallucinate functional proteins." arXiv
preprint arXiv:1903.00458 (2019).
[7] Repecka, D., Jauniskis, V., Karpus, L., Rembeza, E., Rokaitis, I., Zrimec, J., Poviloniene, S.,
Laurynenas, A., Viknander, S., Abuajwa, W. and Savolainen, O., 2021. Expanding functional
protein sequence spaces using generative adversarial networks. Nature Machine Intelligence,
pp.1-10.
[8] Amimeur, Tileli, et al. "Designing Feature-Controlled Humanoid Antibody Discovery Libraries
Using Generative Adversarial Networks." bioRxiv (2020).
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Cell Systems 11.4 (2020): 402-411.

References:

The authors cite previous and related research (including [1, 2, 3, 4] from above). I would
suggest adding references to [5, 6, 7, 8, 9] as they are highly relevant for protein sequence
design using generative models.

We have followed the suggestion of the reviewer and cited the aforementioned papers, together
with some additional new references. Note that following the comments of Reviewer #1, we
have added a new section reviewing the state of the art, where most of these references are
now discussed.

Methodology:

The computational methodology is presented well. The mathematical framework, problem
definition, model and optimization are all presented in enough detail to be reproduced.

To strengthen the conclusions and demonstrated applications, I would suggest complementing
some of the analyses with additional comparisons. See Suggested Improvements below.

Concerns and Suggested improvements:

Major 1: The analysis in Table 1 and Figure 2 compares the proposed model (arDCA) to another
DCA model (bmDCA) on the basis of statistical properties (amino acid frequency, pairwise and
triplet correlations) captured from the sequence data. While this shows that arDCA compares
well to bmDCA, the authors should also include comparisons to unsupervised deep generative
models such as DeepSequence [1], the auto-regressive model from [4] or the VAE from [6]. This
is needed to strengthen the claim that their model performs comparably to deep models.

We thank the reviewer for these remarks. We have found a recent reference
[arXiv:2012.02296], which has compared Mi3, a GPU-based implementation of Boltzmann
machine learning (i.e. an approach equivalent to bmDCA) with DeepSequence and their own
implementation of VAE. They find that Potts models outperform DeepSequence in their
generative capacity, according to various measures. We now cite this observation in the



introduction, and confirm the results also in comparison to arDCA for the protein families used in
our study (cf. new results added to Table I). We have also looked into the other generative
models suggested by the referee. In particular the deep autoregressive model of [4] would be
interesting to compare to our simple autoregressive architecture. Unfortunately the provided
code is defective (a problem known to the authors, but currently not corrected), and the code of
[6] is not yet publicly available. We thus conclude that the comparison to bmDCA in the
generative capacity is the most stringent comparison we were able to perform. We have
elaborated this argument in the revised manuscript, see Sec.IIC.

Major 2: From the current analysis in Figure 3, it seems that the deep generative model
DeepSequence [1] moderately outperforms the proposed model on average, although for
certain families the improvement in correlation is significantly higher. It would be good to
complement this with a more in-depth analysis of exactly what type of mutations the deeper
model seems to perform better at. Does arDCA systematically miss specific types of statistical
relationships in the data that DeepSequence can learn?

We have performed a more quantitative comparison between DeepSequence and arDCA for
mutational effect prediction, as already mentioned above. We find that both perform
systematically in a very similar way, with a scatter around the diagonal in the new Fig. 3B. We
observe a slight advantage for DeepSequence in large MSA, and for arDCA in small MSA, as to
be expected from model complexity.

We have tried to pin down the differences between the two methods. We found, however, no
striking systematic and interpretable difference. On the contrary, DeepSequence and arDCA are
in general highly correlated to each other, with correlations above 80% (cf. new supplementary
Fig.S7), i.e. much higher than to most experimental datasets, which measure specific
phenotypes providing only rough proxies for fitness. Viral families are exceptions, in which
arDCA is much less correlated with DeepSequence (Fig.S7), and for these families arDCA
definitely outperforms DeepSequence (Fig.3B).

We conclude that arDCA would be the preferred method when going to large-scale studies (due
to its computational efficiency) or to limited datasets, while DeepSequence would be expected
to perform better in the case of very deep MSA. We have modified the manuscript to include the
new figures comparing the two methods (Fig.3B and S7), and the conclusion on the preferred
usage in mutational effect prediction (Sec.IID).

Major 3: For the residue-residue contact prediction task (Figure 4), I suggest that the authors
include comparisons to AlphaFold [2] or trRosetta [3], in order to estimate to what extent (if any)
such deep (supervised) models outperform the authors’ unsupervised DCA-based model.

Since deep-learning based contact predictors (using many MSA and PDBs for training) are
proven in numerous studies to outperform unsupervised contact prediction by methods like
DCA, Gremlin, PSICOV etc., and arDCA performs just as good as DCA, the conclusion is clear:
Do not use arDCA for contact prediction, it is not intended for this application! Our comparison



was thought to compare with an established method using exactly the same input data - a single
MSA for the family of interest. We have made this idea very clear in our revision (Sec.IIE).

However, as mentioned above, arDCA is a generative model, so the main question is if
generated sequences are good sequences. So we have used trRosetta, in a version suitable for
benchmarking sequences using only user-provided MSA and no structural templates, and found
that the predicted structure for small artificial MSA is almost identical to the one predicted for a
small sub-MSA of natural sequences, and below 2Å RMSD to an example PDB of a protein
from the same family (PF00072). This is comparable to the variability between different
exemplary PDB structures for different proteins of one family. We have added this observation
to the discussion section of our paper, and corroborated the findings by new supplementary
Fig.S13.

Minor 1: The authors make a loose claim on page 5 that “The four context-dependent models
perform in a very similar way; their predictions are usually more correlated to each other than to
the experimental data”. Do the authors mean the models overfit to the training data? I suggest
either removing or clarifying this claim with supporting data.

As we have mentioned before, we have performed a deeper comparison between
DeepSequence and arDCA, now reported in Fig.S7. We would not say that the methods overfit
the data, but more optimistically that they extract similar information - which however has only
limited correlation to the specific experimental phenotype (frequently protein stability of ligand
binding affinity, and not protein “fitness”). We think that this is an intrinsic limitation because
when using sequence data, we extract common evolutionary constraints acting on proteins over
evolutionary timescales and under different conditions in different species, while DMS
experiments measure changes in a specific phenotype in a specific protein under single
amino-acid substitutions.

We have clarified this point in our revision. We would need complementary work overcoming
this common discrepancy of all MSA-based predictors with DMS experiments, but this question
goes clearly beyond the scope of our paper.

Minor 2: In addition to the amino acid statistics reported in Table 1 and Figure 2, I would suggest
performing additional comparisons between original sequences from the data and samples from
the proposed model based on biophysical properties. For example, comparing the distributions
of hydrophobicity indices, instability indices or secondary structure features. These additional
comparisons would raise credibility in that the proposed model has captured relevant
biophysical properties from the data.

As mentioned above, we have done structure prediction using trRosetta for the generated
artificial sequences. The high similarity to sample structures for the studied protein family, and to
predicted structures from natural data, implies directly that important biophysical properties (like
secondary structure, solvent accessibility, hydrophobic core) are also reproduced. We could add



more direct predictors of these properties if required by the reviewer, but we hope that the
predicted structure for the artificial sequences is already a convincing argument.

Minor 3: In both the introduction and in the discussion, the authors claim that being able to
efficiently compute the normalizer z (which allows them to estimate normalized probabilities) is
of great potential importance for homology detection using coevolutionary models, but the
authors never present any analysis demonstrating that this would work well. So I suggest
removing or rephrasing the claim “..., thereby enabling the comparison of the same sequence in
different models for different protein families.” at the end of the introduction.

To support our claim, we have included a simple experiment: We have extracted from the
response-regulator (RR) family PF00072 two subfamilies, characterized by the presence of two
distinct DNA-binding domains in the same protein. While belonging to the same RR family, the
corresponding subfamilies have slightly different properties: while having highly similar protein
folds, they form structurally different homodimers. From each subfamily, we have randomly
extracted 2000 proteins, and learned sub-family specific profile and arDCA models. In turn, we
have computed the log-odds ratios log( P(seq|OmpR) / P(seq|GerE) ) for all sequences from the
subfamilies. The results are reported in the new Fig.S11. A profile model performs already very
well for this case (3% of false positive subfamily assignments), but the arDCA model almost
solves the problem – only 0.3% of the proteins are wrongly assigned. We also observe that the
profile model makes some strong errors ( | log odds | ~ 50 ), while the errors in arDCA are very
close to the decision threshold.

We hope that this simple experiment illustrates the potential, which should be exploited in future
work. In the current manuscript, we now discuss this experiment to illustrate the point, in the
discussion section and in Fig.S11.

Reviewer #3 (Expertise: Machine/Deep learning to predict protein function from
sequence/generative modeling):

The work by Trinquier et al. deals with the development of generative models of protein
sequence families using supervised learning methodologies. This study advances the field of
amino acid coevolution pioneered by some of the authors and provides an original solution to
reduce the computational burden that the state of the art sequence models are characterized
with. The usefulness of sequence Potts models like Direct Coupling Analysis has been evident
in recent years to devise protein structures, interactions and to approximate fitness landscapes
for biomolecules. As the field shifts towards protein design, generative methodologies that agree
better with the global site statistics in a family are needed. The promise is that such models will
be more accurate identifying functional sequences, and the authors provide evidence of these in
their previous work combining generative models like bmDCA with experimental protein design.
The most important contribution of this article is the fact that such generative models are not
only expensive but also in many cases do not converge, therefore a novel methodology that
could resolve this challenge is a very important contribution to the field.



In my opinion, the methodological advances proposed in the “autoregressive DCA” or arDCA
are not only novel but will also accelerate the research in protein landscapes and design in a
meaningful way for the scientific community, maybe in a parallel way on how DCA accelerated
the field of residue coevolution. Although I find these results very important and of note, I felt
that the authors left behind important analyses that could help stress the main contribution of
their work, i.e. the reduction in computational complexity and convergence. The authors focused
mostly on showcasing how arDCA is as good as bmDCA, which is important to show but they
did not formally show how arDCA provides advantages over bmDCA or other generative
models. I don’t see this as an important drawback but simply an issue that can be resolved in a
revised version of this manuscript. I also have a series of general and minor comments that I
would like to be addressed in a new version of this article.

We are grateful to the reviewer for the positive evaluation of our work, and for pointing out open
questions and current drawbacks in our manuscript. We have carefully revised our manuscript
to address all points, cf. the point-by-point reply below.

General Comments

1. I suggest removing non-objective wording like “extremely”, “astonishingly”, “excellent” and
replace with more descriptive adjectives

We have removed this kind of wording to reach more objective formulations.

2. The abstract mentions a “substantially lower computational cost” , please try to add a more
quantitative statement, maybe with some general improvement numbers

Table 1 contains running times for arDCA vs. bmDCA, with updated numbers using the latest
improvements in our implementation. They show that arDCA is about 2-3 orders of magnitude
faster than bmDCA when run on a single CPU (we added the specification of the CPU used for
the runs). We have now also included in Sec.IIA a discussion of these times and a comparison
with Mi3, an efficient implementation of Boltzmann-machine learning using GPUs, which still
remains substantially slower than arDCA running on a simple standard CPU.

3. In the discussion of the effect of mutations reference [14] is cited, in my opinion a better or
additional reference showcasing this concept would be Cheng et al. Molecular Biology and
Evolution. 2019 (doi.org/10.1093/molbev/msw188)

We have added the reference. Given the early publication date of [14] as compared to most
other papers in the field, we wanted to keep this reference.

4. The possibility of calculating exact sequence probabilities is quite interesting and a unique
contribution of this work. Could the authors provide more details on how its use in sequence
homology can benefit from this feature of arDCA? Maybe provide an example where using

http://doi.org/10.1093/molbev/msw188


non-exact probabilities provides misleading or inconclusive information? This would certainly
highlight in a stronger way the unique contributions of this methodology.

To support our claim, we have included a simple experiment: We have extracted from the
response-regulator (RR) family PF00072 two subfamilies, characterized by the presence of two
distinct DNA-binding domains in the same protein. While belonging to the same RR family, the
corresponding subfamilies have slightly different properties: while having highly similar protein
folds, they form structurally different homodimers. From each subfamily, we have randomly
extracted 2000 proteins, and learned sub-family specific profile and arDCA models. In turn, we
have computed the log-odds ratios log( P(seq|OmpR) / P(seq|GerE) ) for all sequences from the
subfamilies. The results are reported in the new Fig.S11. A profile model performs already very
well for this case (3% of false positive subfamily assignments), but the arDCA model almost
solves the problem – only 0.3% of the proteins are wrongly assigned. We also observe that the
profile model makes some strong errors ( | log odds | ~ 50 ), while the errors in arDCA are very
close to the decision threshold.

We hope that this simple experiment illustrates the potential, which should be exploited in future
work. In the current manuscript, we now discuss this experiment to illustrate the point, in the
discussion section and in Fig.S11.

5. When the authors mention the application of generative models, particularly bmDCA, they
might also suggest is recent use in models of evolution as presented in De la Paz et al. PNAS.
2020 (doi.org/10.1073/pnas.1913071117)

We have included the reference in the introduction, together with a remark that generative
models can be used as underlying sequence landscapes for data-driven evolutionary models.

5. The authors mention that for the case of pseudo likelihood maximization DCA (plmDCA)
having parameter symmetrization causes accuracy loss. Could the authors provide more details
on this statement? Maybe an example that can illustrate this drawback in the plmDCA
formulation?

plmDCA infers parameters by maximising the pseudo-likelihood. When symmetrizing the
parameters, we move parameters away from their PLM values, getting therefore a symmetric
but somewhat uncontrolled model. Using only the conditional probability for a_i given the
sequence context a_{-i} for predicting mutational effects in site i is actually slightly more
accurate than using the standard energy difference in the symmetrized Potts model. While this
is an interesting observation on its own, we think it does not fit into the paper, which
concentrates on arDCA rather than improving plmDCA-based mutational predictions.

We have reformulated the statement in a more cautious way in the revised manuscript, and
added a reference to Ref.[6] where this aspect is discussed in detail.

http://doi.org/10.1073/pnas.1913071117


6. The authors make their case when comparing arDCA versus bmDCA which yields accurate
statistics. However, they focus primarily on well behaved cases like the response regulator. It
would be very interesting to compare the behavior of arDCA/bmDCA for cases like the Leptin
family or the ObR_IG (Obesity receptor) where the number of available sequences is more
limited and bmDCA has shown some convergence problems. An analysis on these cases could
strengthen the premise of the utility of arDCA.

We performed bmDCA and arDCA training on Leptin and ObR_IG. arDCA does not suffer from
convergence problems and it gives reliable generative results, but it does not cure the standard
problem of inaccurate contact prediction from small MSA.

For bmDCA, the MCMC sampling becomes non-ergodic during training, which causes very long
equilibration times. As a consequence, the resampling from bmDCA gives very poor results: the
Pearson is high during training (0.99) but low during resampling (0.43 and 0.62, respectively, for
the two families).

So, we can conclude that arDCA outperforms bmDCA in those cases. We added a discussion of
this point in the Supplementary Section S3.

7. Following up on the previous comments, the authors should also include a computational
complexity analysis for some (not necessarily all) of the families described in the paper to
showcase the advantages in running time for bmDCA (some is already covered in the SI). Using
the families in comment 6 could also help compare questions about convergence. It would also
be useful to include a comparison with another generative model called Mi3 from Haldane and
Levy (doi.org/10.1016/j.cpc.2020.107312) which uses GPUs to accelerate the sampling
process.

Table 1 contains running times for arDCA vs. bmDCA, with updated numbers using the latest
improvements in our implementation. They show that arDCA is about 2-3 orders of magnitude
faster than bmDCA when run on a single CPU (we added the specification of the CPU used for
the runs). We have now also included in Sec.IIA a discussion of these times and a comparison
with Mi3, an efficient implementation of Boltzmann-machine learning using GPUs, which still
remains substantially slower than arDCA running on a simple standard CPU.

8. The manuscript mentions that the generative process of arDCA is more or less equivalent to
bmDCA. Given that bmDCA was used to generate functional sequences of the chromate
mutase enzymes. The authors could compare if some of those functional sequences also score
well in the probability distribution of arDCA, this could give some evidence that arDCA could in
fact produce functional proteins.

We thank the reviewer for bringing up this point, the results increase the confidence in the
arDCA model: For the synthetic chorismate mutases, we find a strong correlation of 97%
between the energies of the bmDCA model used in Russ et al. and the arDCA learned on the
same natural MSA. This leads to the fact that also for arDCA, high-energy sequences are not

http://doi.org/10.1016/j.cpc.2020.107312


functional, while low-energy sequences may be functional. We have included this observation
into the discussion of our paper, and added a new figure S12 to the SI.

9. An important claim is that the energy of equation (4) is not a simple sum of parameters but
also includes the logarithms of the local partition functions. Could the authors give more details
on how, in practical terms, this is better or more useful. Is there an example that can show the
relevance of one approach versus the other?

At this point, it is only a statement of a mathematical fact, which is not necessarily useful or
better. The model has the capacity to take higher-order terms into account via these restricted
partition functions, but the usefulness of this is hard to quantify.

The real advantage (besides computational efficiency) is in the fact that we can calculate
probabilities and not only weights, cf. the answer to Question 4.

10. The performance on mutational effects is really encouraging especially for viral proteins.
Could the authors provide a rationale of why this method could be better compared to others
when dealing with less diverse sequences like the viral ensemble?

Unfortunately, we do not have a good explanation for this fact, it is more an observation.
Following a question of Reviewer #2, we have analyzed the relative performance of Deep
Sequence and arDCA. We find them to be similar in performance, with DeepSequence having a
little advantage for large, arDCA for small datasets. We think this is an example of the famous
bias / variance tradeoff encountered in machine learning, which is in favour of simpler, possibly
biased but more robust methods for small datasets, and of models of higher representational
power for very large datasets. However, this is more a speculation than an explanation.

The more quantitative comparison of mutational predictions of arDCA and DeepSequence is
now part of the manuscript, as new figures 3B and S7.

11. Fig. 4 compares contact prediction of arDCA vs. bmDCA. Could the authors also include a
comparison with respect to mfDCA and plmDCA? That way we would be able to compare
arDCA against other non-generative methods.

We have included the predictions into the SI, new figure S9, and they confirm our major
conclusions up to little quantitative differences. Since these methods have very similar
performances, and since our paper concentrates on arDCA as a generative model, we felt that
this would overload the figure and the discussion in the main text.

12. To me, one of the most interesting contributions of this work is the ability to compute the
entropy density of a family efficiently and maybe more accurately. I suggest to include this
contribution in the abstract.



There was information about this in the abstract, but we made the connection between entropy
and size of viable sequence space more explicit in the abstract.

13. Given that the advantage of family comparison due to exact probabilities is mentioned
several times, I suggest including an example that could help showcase this in a more concrete
way.

Cf. our answer to Question 4.

14. Figure 1 in the SI seems to me quite important, I suggest to bring this back to the main text
as well with further analysis on computational complexity of the methods.

This figure (now Fig. S4) uses MCMC sampling for the arDCA model, to illustrate its inefficiency
as compared to the direct sampling used in the paper, which exploits the positional order in the
factorized structure of auto-regressive models. While MCMC is not fully decorrelated even after
104 MCMC sweeps, the direct sampling needs to see each position exactly once (i.e.
corresponding to a single sweep) to extract a sequence from the model.

Since MCMC sampling is not used in the paper for any arDCA model, we think that inclusion of
this figure into the main text would be potentially confusing. However, we have introduced a
direct reference to the figure into the main text.

15. In several sections a “profile” model is mentioned, could you give more details on this? Is
this based on Hidden Markov Models?

We have now well-defined the term “profile model”, also referred to as “independent-site model”
or “fields-only” model.

16. Make sure to mention in the main text that there is no real advantage for the two-layer
model in generative qualities or computational time.

We had originally mentioned this observation only in the discussion, now we have added it also
to the discussion of the model architecture in Sec. II.A. With our analysis we cannot exclude that
some better multi-layer architecture may lead to better results than arDCA, but for sure there
has to be some fine-tuning of the precise architecture.

Minor Comments

1. Introduction. Pfam 34 now has about 19,179 families, please update the number in the
introduction.

We have updated the numbers.



2. Results are showcased for the Family PF00076, please explicitly state which family of
proteins is this.

There was an error in the manuscript, results were actually for the response-regulator family
PF00072, results for PF00076 (RRM_1 RNA recognition motif) are part of the SI. We have
corrected this error and included the name “response regulator” into the paper at the first
appearance of the family.

3. References to the SI should be more specific, e.g. include figure numbers, section
names/numbers to facilitate the reference to the reader.

We have made references to the SI more specific.

4. For the section name in the SI, I suggest changing the title to “Parameter Inference”

We have updated the name.

5. In section I of the SI. What was the criterion to select the L2 regularization strengths ?

We used a L2 regularization, with regularization strength of 0.0001 for the generative tests and
0.001 for mutational effects and contact prediction. A small regularization leads to better results
on generative tests, but a larger regularization is needed for contact prediction or mutational
effects. Contact prediction can indeed suffer from too large parameters, and therefore a larger
regularization was chosen, coherently with the one used in PlmDCA. We added this discussion
to the SI, Sec.S1.

6. In the SI, when describing algorithms, I suggest numbering the steps instead of using bullets

We have updated the SI accordingly.

7. In the SI section IV. A-4, subheading a and b, please add a period after PPV and Contact
map

We have corrected this point.

8. In SI section “Families used for mutational effects”, a “standard laptop”, is mentioned. It would
be good to include the specification of such laptop given that the standard laptop specifications
change every 6 months.

We have added the specification of the CPU used for the training of the model in Table 1.

9. In SI section V. Positional Order. Is the “natural order” the same as “direct order”? please
clarify.



We have replaced “natural order” by “direct order” for full coherence.

10. In SI section VI. Replace “Two layer autoregressive models” with “Two-layer autoregressive
models”

We have corrected this point.

11. In SI, the first sentence after equation 9, replace ”is are parameter matrices” with “are
parameter matrices”

We have corrected this point.



<b>REVIEWERS' COMMENTS</b> 

Reviewer #1 (Remarks to the Author): 

The manucsript has significantly improved. I reccommend it for publication in its present form. 

Reviewer #2 (Remarks to the Author): 

The authors have made a great effort in updating their manuscript and they have addressed all of my 

main concerns. 

In particular, I applaud them for carrying out additional comparisons to DeepSequence (Table 1 and Fig 

3), and for conducting the new homology detection experiment which showcases their model's utility in 

inferring probabilities. I also believe the new "State-of-the-art" section in the introduction is a great way 

to introduce the general setting and context to Nature Comms' audience. The trRosetta-folding of 

arDCA-generated sequences is also very interesting and shows by example the fact that their generative 

model recapitulates important determinants. 

I have no further concerns and recommend accepting the manuscript. 

Reviewer #3 (Remarks to the Author): 

In this revision, Trinquier et al. address reviewers inquiries and suggestions and produce an updated 

version of their article on autoregressive models for protein sequence generation. The authors address 

all my comments and questions in a clear and rigorous manner. I also revised the answers to other 

reviewers and their responses seem appropriate and in my opinion improved the original article 

considerably. The new version includes a new section describing the state of the art in the field, 

something that will be useful for non-specialists but does not compromise the rigor and methodological 

soundness of the original manuscript. Given this extensive revision with multiple new analyses, figures 

and the fact that the conclusions were strengthened and the message clarified, I support its publication. 


