of patients with glioblastoma

metabolism

is

inversely

regulated

in

the

tumor

blood

and

Tryptophan

2

3

4

| 6  | Verena Panitz <sup>1,2,*</sup> , Saša Končarević <sup>3,*</sup> , Ahmed Sadik <sup>1,4,*</sup> , Dennis Friedel <sup>1,4</sup> , Tobias Bausbacher <sup>5</sup> , Saskia               |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | Trump <sup>6</sup> , Vadim Farztdinov <sup>3,**</sup> , Sandra Schulz <sup>5</sup> , Philipp Sievers <sup>7,8</sup> , Stefan Schmidt <sup>5</sup> , Ina Jürgenson <sup>1,2</sup> ,     |
| 8  | Stephan Jung <sup>3</sup> , Karsten Kuhn <sup>3</sup> , Irada Pflüger <sup>9</sup> , Suraj Sharma <sup>10</sup> , Antje Wick <sup>2</sup> , Pauline Pfänder <sup>1,4</sup> , Stefan    |
| 9  | Selzer <sup>3</sup> , Philipp Vollmuth <sup>9</sup> , Felix Sahm <sup>7,8</sup> , Andreas von Deimling <sup>7,8</sup> , Ines Heiland <sup>10</sup> , Carsten Hopf <sup>5</sup> , Peter |
| 10 | Schulz-Knappe <sup>3,***</sup> , Ian Pike <sup>11</sup> , Michael Platten <sup>12,13</sup> , Wolfgang Wick <sup>2,14</sup> , Christiane A. Opitz <sup>1,2,§</sup>                      |
| 11 |                                                                                                                                                                                        |
| 12 | <sup>1</sup> DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), 69120 Heidelberg,                                                                               |
| 13 | Germany.                                                                                                                                                                               |
| 14 | <sup>2</sup> Department of Neurology and National Center for Tumor Diseases, Heidelberg University Hospital, 69120                                                                     |
| 15 | Heidelberg, Germany.                                                                                                                                                                   |
| 16 | <sup>3</sup> Proteome Sciences R&D GmbH & Co. KG, Altenhöferallee 3, 60438 Frankfurt/Main, Germany.                                                                                    |
| 17 | <sup>4</sup> Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany.                                                                                                  |
| 18 | <sup>5</sup> Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied                                                                             |
| 19 | Sciences, 68163 Mannheim, Germany.                                                                                                                                                     |
| 20 | <sup>6</sup> Molecular Epidemiology Unit, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117                                                                    |
| 21 | Berlin, Germany.                                                                                                                                                                       |
| 22 | <sup>7</sup> Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg,                                                                   |
| 23 | Germany.                                                                                                                                                                               |
| 24 | <sup>8</sup> Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research                                                                             |
| 25 | (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.                                                                                                               |
| 26 | <sup>9</sup> Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany.                                                                                  |
|    | 1                                                                                                                                                                                      |
|    |                                                                                                                                                                                        |

| 27 | <sup>10</sup> Department of Arctic and Marine Biology, UiT, The Arctic University of Norway, 9037 Tromsø, Norway. |
|----|-------------------------------------------------------------------------------------------------------------------|
| 28 | <sup>11</sup> Proteome Sciences plc, 5 Dashwood Lang Road, Bourne Business Park, Addlestone, Surrey KT15 2HJ,     |
| 29 | United Kingdom.                                                                                                   |
| 30 | <sup>12</sup> Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim,        |
| 31 | Germany.                                                                                                          |
| 32 | <sup>13</sup> DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer            |
| 33 | Research Center (DKFZ), 69120 Heidelberg, Germany.                                                                |
| 34 | <sup>14</sup> Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg,    |
| 35 | Germany.                                                                                                          |
| 36 |                                                                                                                   |
| 37 | *These authors contributed equally                                                                                |
| 38 | <sup>§</sup> Corresponding author: <u>c.opitz@dkfz.de</u>                                                         |
| 39 |                                                                                                                   |
| 40 | **Current address: Core Facility - High-Throughput Mass Spectrometry, Charité - Universitätsmedizin               |
| 41 | Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute         |
| 42 | of Health (BIH), 10117 Berlin, Germany.                                                                           |
| 43 | ***Current address: Mittelorbroich 125, 47839 Krefeld, Germany.                                                   |
|    |                                                                                                                   |



normalization

Reactive group

linker

group



- 45 Figure S1. Trp metabolism-associated genes are upregulated in glioblastoma, related to Figures 1 and
  46 2.
- 47 (A) Boxplot representation of the expression of select Trp metabolism-associated enzymes in normal brain
- 48 tissue (blue) (GTEx data) and in glioblastoma (GBM) tissue (red) (TCGA data) represented as log<sub>2</sub>
- 49 transcripts per million ( $\log_2 \text{TPM}$ ) (Wilcoxon rank-sum test, \*\*\*\* P < 0.0001, n.s. not significant). CCBL1
- 50 (KAT I) and CCBL2 (KAT III) were not expressed in the TCGA data.
- 51 (B) Chemical structure of TMT<sup>®</sup> reagents.
- 52 Abbreviations: AADAT: alpha-aminoadipate aminotransferase; AFMID: arylformamidase; CCBL: cysteine
- 53 conjugate beta lyase; GBM: glioblastoma; GOT2: glutamate oxaloacetate transaminase 2; GTEx: Genotype-
- 54 Tissue Expression; KAT: kynurenine aminotransferase; TCGA: The Cancer Genome Atlas; TMT<sup>®</sup>: tandem
- 55 mass tag; TPH1/2: tryptophan hydroxylase 1/2; TPM: transcripts per million; Trp: tryptophan.

## Figure S2



- Figure S2. Bevacizumab treatment does not influence metabolite levels in peripheral blood of patients,
  related to Figure 3.
- Forest plot depicting the association of metabolite levels in peripheral blood of patients (n = 42) with the cumulative dose of bevacizumab received prior to blood draw. Mean ratio (MR) and 95% confidence intervals (CI) are shown.
- 61 See also Table S11.
- 62 Abbreviations: AA: anthranilic acid; CI: confidence interval; FK: *N*-formylkynurenine; Kyn: kynurenine;
- 63 MR: mean ratio; OH-AA: hydroxy-anthranilic acid; OH-Kyn: hydroxy-kynurenine; OH-Trp: hydroxy-
- 64 tryptophan; Trp: tryptophan.

Α

|            | HE   | Trp<br><i>m/z</i> 205.097                      | FK<br><i>m/z</i> 237.087                |
|------------|------|------------------------------------------------|-----------------------------------------|
| Patient 51 |      |                                                |                                         |
| Patient 52 |      |                                                |                                         |
| Patient 53 |      |                                                |                                         |
|            | 3 mm | 205.097 <i>m/z</i> ± 5 ppm<br>3850%<br>0% 100% | 237.087 m/z ± 5 ppm<br>3994%<br>0% 100% |

| Figure | S3 |
|--------|----|
|--------|----|

|            | Trp<br>m/z 205.097                              | FK<br>m/z 237.087                                |
|------------|-------------------------------------------------|--------------------------------------------------|
| Patient 54 |                                                 |                                                  |
| Patient 55 |                                                 |                                                  |
| Patient 56 |                                                 |                                                  |
| Patient 57 |                                                 |                                                  |
| Patient 58 |                                                 |                                                  |
| Patient 59 |                                                 |                                                  |
| Patient 60 |                                                 |                                                  |
|            | 205.097 m/z ± 5 ppm<br>3850%<br>0% 100%<br>3 mm | 237.087 m/z ± 5 ppm<br>33994%<br>0% 100%<br>3 mm |

в

#### Figure S3. Trp and its metabolite FK in glioblastoma tumor tissue, related to Figure 5.

(A) MALDI MSI of Trp and FK distribution in human glioblastoma samples (middle and right column) and 66 corresponding annotated HE-stained adjacent tissue sections (left column) (n = 3). Displayed are Trp-D5 67 normalized ion density maps of Trp (m/z 205.097) and FK (m/z 237.087). Trp and FK were measured using 68 a FT-ICR MS in positive ion mode at a raster size of 50 µm. Slides shown contain preparation artefacts. 69 Annotations of HE-stainings: black: necrosis; red: highly vascularized tumor tissue or blood; yellow: 70 71 artefacts. 72 (B) MALDI MSI of Trp and FK distribution in human glioblastoma samples (n = 7). Displayed are Trp-D5 73 normalized ion density maps of Trp (m/z 205.097) and FK (m/z 237.087). Trp and FK were measured using 74 a FT-ICR MS in positive ion mode at a raster size of 50 µm. Samples without available adjacent HE-stained 75 slide are shown. 76 See also Table S16. Abbreviations: FK: N-formylkynurenine; FT-ICR MS: Fourier-transform ion cyclotron resonance mass 77 78 spectrometer; HE: hematoxylin-and-eosin; MSI: mass spectrometry imaging; Trp: tryptophan; Trp-D5:

79 deuterated tryptophan.







- Figure S4. Expression of marker genes used to characterize the non-malignant cell populations,
  related to Figure 6.
- 82 (A) Bubble plot heatmap showing the mean expression of the select marker genes [7] used to characterize
- 83 the non-malignant Louvain cell clusters of the scRNA-seq dataset (GSE131928). The red color intensity is
- 84 directly proportional to the expression level of a marker gene in a specific cell population. The size of the
- 85 circle denotes the fraction of cells expressing the marker gene.
- 86 (B) Heatmap showing the BPA scores of the macrophage signatures of the subsets M0, M1 and M2 in the
- 87 scRNA-seq dataset (GSE131928).
- 88 Abbreviation: BPA: biological process activity; scRNA-seq: single cell RNA-sequencing.

#### 89 Table S1. Transition parameters for Trp, related to Material and Methods.

90 Transition parameters used to measure Trp. The ion masses of parent and products after fragmentation are

91 given, together with their respective collision energy (CE) values and the S-lens radio frequency levels. For

92 each metabolite the six TMT<sup>®</sup> reporter ions and a metabolite specific fragment were monitored.

| Analyte              | Parent               | Product                          | CE                  | S-lens |
|----------------------|----------------------|----------------------------------|---------------------|--------|
| TMT <sup>®</sup> 126 | 434.26               | 126.13                           | 29                  | 172    |
| TMT <sup>®</sup> 127 | 434.26               | 127.13                           | 29                  | 172    |
| TMT <sup>®</sup> 128 | 434.26               | 128.13                           | 29                  | 172    |
| TMT <sup>®</sup> 129 | 434.26               | 129.14                           | 29                  | 172    |
| TMT <sup>®</sup> 130 | 434.26               | 130.14                           | 29                  | 172    |
| TMT <sup>®</sup> 131 | 434.26               | 131.14                           | 29                  | 172    |
| Fragment 188         | 434.26               | 188.07                           | 28                  | 172    |
| Abbreviations: CE:   | collision energy; TM | IT <sup>®</sup> : tandem mass ta | g; Trp: tryptophan. |        |

93

#### 94 Table S2. Transition parameters for Kyn, related to Material and Methods.

95 Transition parameters used to measure Kyn. The ion masses of parent and products after fragmentation are

96 given, together with their respective collision energy (CE) values and the S-lens radio frequency levels. For

97 each metabolite the six TMT<sup>®</sup> reporter ions and a metabolite specific fragment were monitored.

| Analyte              | Parent | Product | CE | S-lens |
|----------------------|--------|---------|----|--------|
| TMT <sup>®</sup> 126 | 438.25 | 126.13  | 35 | 173    |
| TMT <sup>®</sup> 127 | 438.25 | 127.13  | 35 | 173    |
| TMT <sup>®</sup> 128 | 438.25 | 128.13  | 35 | 173    |
| TMT <sup>®</sup> 129 | 438.25 | 129.14  | 35 | 173    |
| TMT <sup>®</sup> 130 | 438.25 | 130.14  | 35 | 173    |
| TMT <sup>®</sup> 131 | 438.25 | 131.14  | 35 | 173    |

| Fragment 146       | 438.25               | 146.06             | 28                              | 173 |
|--------------------|----------------------|--------------------|---------------------------------|-----|
| Abbreviations: CE: | collision energy; Ky | n: kynurenine; TMT | <sup>®</sup> : tandem mass tag. | I   |

### 99 Table S3. Transition parameters for FK, related to Material and Methods.

100 Transition parameters used to measure FK. The ion masses of parent and products after fragmentation are

101 given, together with their respective collision energy (CE) values and the S-lens radio frequency levels. For

102 each metabolite the six TMT<sup>®</sup> reporter ions and a metabolite specific fragment were monitored.

| Analyte              | Parent                                                                                               | Product | СЕ | S-lens |  |  |  |
|----------------------|------------------------------------------------------------------------------------------------------|---------|----|--------|--|--|--|
| TMT <sup>®</sup> 126 | 466.25                                                                                               | 126.13  | 30 | 150    |  |  |  |
| TMT <sup>®</sup> 127 | 466.25                                                                                               | 127.13  | 30 | 150    |  |  |  |
| TMT <sup>®</sup> 128 | 466.25                                                                                               | 128.13  | 30 | 150    |  |  |  |
| TMT <sup>®</sup> 129 | 466.25                                                                                               | 129.14  | 30 | 150    |  |  |  |
| TMT <sup>®</sup> 130 | 466.25                                                                                               | 130.14  | 30 | 150    |  |  |  |
| TMT <sup>®</sup> 131 | 466.25                                                                                               | 131.14  | 30 | 150    |  |  |  |
| Fragment 174         | 466.25                                                                                               | 174.05  | 30 | 150    |  |  |  |
| Abbreviations: CE:   | Abbreviations: CE: collision energy; <i>N</i> -formylkynurenine; TMT <sup>®</sup> : tandem mass tag. |         |    |        |  |  |  |

103

#### 104 Table S4. Transition parameters for OH-Trp, related to Material and Methods.

Transition parameters used to measure OH-Trp. The ion masses of parent and products after fragmentation
are given, together with their respective collision energy (CE) values and the S-lens radio frequency levels.
For each metabolite the six TMT<sup>®</sup> reporter ions and a metabolite specific fragment were monitored.

| Analyte              | Parent | Product | CE | S-lens |
|----------------------|--------|---------|----|--------|
| TMT <sup>®</sup> 126 | 450.25 | 126.13  | 30 | 150    |
| TMT <sup>®</sup> 127 | 450.25 | 127.13  | 30 | 150    |
| TMT <sup>®</sup> 128 | 450.25 | 128.13  | 30 | 150    |

| TMT <sup>®</sup> 129                                                                                 | 450.25 | 129.14 | 30 | 150 |  |
|------------------------------------------------------------------------------------------------------|--------|--------|----|-----|--|
| TMT <sup>®</sup> 130                                                                                 | 450.25 | 130.14 | 30 | 150 |  |
| TMT <sup>®</sup> 131                                                                                 | 450.25 | 131.14 | 30 | 150 |  |
| Fragment 175                                                                                         | 450.25 | 175.08 | 30 | 150 |  |
| Abbreviations: CE: collision energy; OH-Trp: hydroxy-tryptophan; TMT <sup>®</sup> : tandem mass tag. |        |        |    |     |  |

#### 109 Table S5. Transition parameters for OH-Kyn, related to Material and Methods.

110 Transition parameters used to measure OH-Kyn. The ion masses of parent and products after fragmentation

111 are given, together with their respective collision energy (CE) values and the S-lens radio frequency levels.

| 112 | For each metabolite | the six TMT® | <sup>o</sup> reporter ions | and a metabo | lite specific f | ragment were n | ionitored |
|-----|---------------------|--------------|----------------------------|--------------|-----------------|----------------|-----------|
|     |                     |              |                            |              |                 |                |           |

| Analyte              | Parent              | Product            | CE                               | S-lens       |
|----------------------|---------------------|--------------------|----------------------------------|--------------|
| TMT <sup>®</sup> 126 | 342.21              | 126.13             | 35                               | 133          |
| TMT <sup>®</sup> 127 | 342.21              | 127.13             | 35                               | 133          |
| TMT <sup>®</sup> 128 | 342.21              | 128.13             | 35                               | 133          |
| TMT <sup>®</sup> 129 | 342.21              | 129.14             | 35                               | 133          |
| TMT <sup>®</sup> 130 | 342.21              | 130.14             | 35                               | 133          |
| TMT <sup>®</sup> 131 | 342.21              | 131.14             | 35                               | 133          |
| Fragment 190         | 342.21              | 190.05             | 25                               | 133          |
| Abbreviations: CE:   | collision energy; O | H-Kyn: hydroxy-kyn | urenine; TMT <sup>®</sup> : tand | em mass tag. |

113

### 114 Table S6. Transition parameters for AA, related to Material and Methods.

115 Transition parameters used to measure AA. The ion masses of parent and products after fragmentation are

116 given, together with their respective collision energy (CE) values and the S-lens radio frequency levels. For

each metabolite the six TMT<sup>®</sup> reporter ions and a metabolite specific fragment were monitored.

| Analyte | Parent | Product | СЕ | S-lens |
|---------|--------|---------|----|--------|
|         |        |         |    |        |

| TMT <sup>®</sup> 126                                                                           | 367.22 | 126.13 | 26 | 138 |  |
|------------------------------------------------------------------------------------------------|--------|--------|----|-----|--|
| TMT <sup>®</sup> 127                                                                           | 367.22 | 127.13 | 26 | 138 |  |
| TMT <sup>®</sup> 128                                                                           | 367.22 | 128.13 | 26 | 138 |  |
| TMT <sup>®</sup> 129                                                                           | 367.22 | 129.14 | 26 | 138 |  |
| TMT <sup>®</sup> 130                                                                           | 367.22 | 130.14 | 26 | 138 |  |
| TMT <sup>®</sup> 131                                                                           | 367.22 | 131.14 | 26 | 138 |  |
| Fragment 120                                                                                   | 367.22 | 120.04 | 32 | 138 |  |
| Abbreviations: AA: anthranilic acid; CE: collision energy; TMT <sup>®</sup> : tandem mass tag. |        |        |    |     |  |

## 119 Table S7. Transition parameters for OH-AA, related to Material and Methods.

120 Transition parameters used to measure OH-AA. The ion masses of parent and products after fragmentation

121 are given, together with their respective collision energy (CE) values and the S-lens radio frequency levels.

122 For each metabolite the six TMT<sup>®</sup> reporter ions and a metabolite specific fragment were monitored.

| Analyte                                                                                                   | Parent | Product | CE | S-lens |  |  |
|-----------------------------------------------------------------------------------------------------------|--------|---------|----|--------|--|--|
| TMT <sup>®</sup> 126                                                                                      | 383.21 | 126.13  | 26 | 142    |  |  |
| TMT <sup>®</sup> 127                                                                                      | 383.21 | 127.13  | 26 | 142    |  |  |
| TMT <sup>®</sup> 128                                                                                      | 383.21 | 128.13  | 26 | 142    |  |  |
| TMT <sup>®</sup> 129                                                                                      | 383.21 | 129.14  | 26 | 142    |  |  |
| TMT <sup>®</sup> 130                                                                                      | 383.21 | 130.14  | 26 | 142    |  |  |
| TMT <sup>®</sup> 131                                                                                      | 383.21 | 131.14  | 26 | 142    |  |  |
| Fragment 136                                                                                              | 383.21 | 136.04  | 27 | 142    |  |  |
| Abbreviations: CE: collision energy; OH-AA: hydroxy-anthranilic acid; TMT <sup>®</sup> : tandem mass tag. |        |         |    |        |  |  |

## 124 Table S8. CV values of the MS/MS measurements of Trp and its metabolites, related to Material and

#### 125 Methods.

- 126 Representation of the mean coefficient of variation (CV) values and their SD (SD (CV)) for the different
- 127 metabolites in the MS/MS measurements.

| CV mean [%]            | SD (CV) [%]                                                                            |
|------------------------|----------------------------------------------------------------------------------------|
| 2.7                    | 1.6                                                                                    |
| 2.4                    | 2.0                                                                                    |
| 1.8                    | 1.6                                                                                    |
| 2.4                    | 1.6                                                                                    |
| 2.9                    | 3.5                                                                                    |
| 3.8                    | 3.6                                                                                    |
| 5.8                    | 4.4                                                                                    |
| : anthranilic acid; CV | /: coefficient of                                                                      |
|                        | CV mean [%]<br>2.7<br>2.4<br>1.8<br>2.4<br>2.9<br>3.8<br>5.8<br>: anthranilic acid; CV |

Abbreviations: AA: antinannic acid, CV: coefficient of variation; FK: *N*-formylkynurenine; Kyn: kynurenine; MS/MS: tandem mass spectrometry; OH-AA: hydroxyanthranilic acid; OH-Kyn: hydroxy-kynurenine; OH-Trp: hydroxy-tryptophan; SD: standard deviation; Trp: tryptophan.

## 129 Table S9. Overview of the characteristics of the study cohort for serum metabolite measurements,

## 130 related to Figure 3.

|                                                                                  | Patients              | Controls       |  |  |
|----------------------------------------------------------------------------------|-----------------------|----------------|--|--|
| п                                                                                | 43                    | 43             |  |  |
| Median age in years                                                              | 54.11                 | 54.34          |  |  |
| Sex                                                                              | F: 19<br>M: 24        | F: 19<br>M: 24 |  |  |
| IDH status                                                                       | WT: 33<br>Unknown: 10 |                |  |  |
| Prior bevacizumab treatment                                                      | yes: 29<br>no: 14     |                |  |  |
| Abbreviations: F: female; IDH: isocitrate dehydrogenase; M: male; WT: wild type. |                       |                |  |  |

## 132 Table S10. Detailed patient characteristics of the study cohort for serum metabolite measurements,

## 133 related to Figure 3.

| Patient<br>number | MGMT<br>promotor<br>status | EGFR<br>amplifi-<br>cation | Evidence<br>for<br>PTEN<br>loss | Timespan x<br>between<br>last surgery<br>and blood<br>draw<br>[years] | Previous<br>RT and<br>TMZ<br>treat-<br>ment | Previous<br>second line<br>therapy<br>with<br>nitrosourea | Previ-<br>ous<br>ICB | Bevacizumab<br>treatment<br>before blood<br>draw |
|-------------------|----------------------------|----------------------------|---------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------|----------------------|--------------------------------------------------|
| 1                 | n.a.                       | n.a.                       | n.a.                            | $1.0 < x \le 1.5$                                                     | yes                                         | no                                                        | no                   | yes                                              |
| 2                 | methylated                 | n.a.                       | n.a.                            | $1.5 < x \le 2.5$                                                     | yes                                         | yes                                                       | yes                  | yes                                              |
| 3                 | n.a.                       | n.a.                       | n.a.                            | $2.5 < x \le 6.5$                                                     | yes                                         | no                                                        | yes                  | no                                               |
| 4                 | n.a.                       | n.a.                       | n.a.                            | $1.5 < x \le 2.5$                                                     | yes                                         | yes                                                       | no                   | yes                                              |
| 5                 | unmethylated               | not<br>amplified           | yes                             | $0.5 < x \le 1.0$                                                     | yes                                         | no                                                        | no                   | yes                                              |
| 6                 | n.a.                       | n.a.                       | n.a.                            | $1.5 < x \le 2.5$                                                     | yes                                         | yes                                                       | no                   | yes                                              |
| 7                 | n.a.                       | n.a.                       | n.a.                            | $2.5 < x \le 6.5$                                                     | yes                                         | yes                                                       | no                   | yes                                              |
| 8                 | unmethylated               | amplified                  | no                              | $0.5 < x \le 1.0$                                                     | yes                                         | yes                                                       | yes                  | yes                                              |
| 9                 | n.a.                       | n.a.                       | no                              | $1.0 < x \le 1.5$                                                     | yes                                         | no                                                        | no                   | yes                                              |
| 10                | methylated                 | n.a.                       | n.a.                            | $2.5 < x \le 6.5$                                                     | yes                                         | no                                                        | no                   | yes                                              |
| 11                | methylated                 | not<br>amplified           | n.a.                            | $0.5 < x \le 1.0$                                                     | yes                                         | no                                                        | no                   | yes                                              |
| 12                | unmethylated               | not<br>amplified           | yes                             | $1.0 < x \le 1.5$                                                     | yes                                         | yes                                                       | no                   | yes                                              |
| 13                | n.a.                       | n.a.                       | n.a.                            | $1.0 < x \le 1.5$                                                     | yes                                         | no                                                        | no                   | yes                                              |
| 14                | unmethylated               | n.a.                       | n.a.                            | $2.5 < x \le 6.5$                                                     | yes                                         | no                                                        | no                   | yes                                              |
| 15                | n.a.                       | n.a.                       | n.a.                            | $1.5 < x \le 2.5$                                                     | yes                                         | yes                                                       | no                   | yes                                              |
| 16                | unmethylated               | not<br>amplified           | yes                             | $0.5 < x \le 1.0$                                                     | yes                                         | yes                                                       | no                   | yes                                              |
| 17                | unmethylated               | amplified                  | yes                             | $1.0 < x \le 1.5$                                                     | yes                                         | yes                                                       | no                   | yes                                              |
| 18                | unmethylated               | not<br>amplified           | n.a.                            | $0.5 < x \le 1.0$                                                     | yes                                         | no                                                        | no                   | yes                                              |
| 19                | methylated                 | amplified                  | no                              | $1.0 < x \le 1.5$                                                     | yes                                         | yes                                                       | no                   | no                                               |
| 20                | unmethylated               | not<br>amplified           | n.a.                            | $1.0 < x \le 1.5$                                                     | yes                                         | no                                                        | no                   | no                                               |

| 21 | unmethylated | n.a.             | n.a. | $0.5 < x \le 1.0$ | yes     | yes | no | no  |
|----|--------------|------------------|------|-------------------|---------|-----|----|-----|
| 22 | methylated   | amplified        | n.a. | $1.0 < x \le 1.5$ | yes     | yes | no | yes |
| 23 | n.a.         | n.a.             | n.a. | $0 < x \le 0.5$   | yes     | no  | no | yes |
| 24 | n.a.         | n.a.             | n.a. | $1.0 < x \le 1.5$ | yes     | yes | no | yes |
| 25 | methylated   | n.a.             | no   | $0 < x \le 0.5$   | yes     | yes | no | yes |
| 26 | methylated   | not<br>amplified | yes  | $1.5 < x \le 2.5$ | yes     | no  | no | yes |
| 27 | unmethylated | n.a.             | yes  | $1.0 < x \le 1.5$ | yes     | no  | no | yes |
| 28 | unmethylated | n.a.             | n.a. | $1.0 < x \le 1.5$ | only RT | no  | no | no  |
| 29 | n.a.         | n.a.             | n.a. | $2.5 < x \le 6.5$ | yes     | yes | no | yes |
| 30 | methylated   | n.a.             | n.a. | $0 < x \le 0.5$   | yes     | no  | no | no  |
| 31 | n.a.         | n.a.             | n.a. | $1.5 < x \le 2.5$ | yes     | no  | no | no  |
| 32 | methylated   | n.a.             | n.a. | $2.5 < x \le 6.5$ | yes     | no  | no | yes |
| 33 | methylated   | not<br>amplified | yes  | $0 < x \le 0.5$   | yes     | no  | no | no  |
| 34 | methylated   | n.a.             | n.a. | $0 < x \le 0.5$   | yes     | yes | no | no  |
| 35 | unmethylated | amplified        | yes  | $0 < x \le 0.5$   | yes     | no  | no | no  |
| 36 | methylated   | not<br>amplified | n.a. | $0.5 < x \le 1.0$ | yes     | no  | no | no  |
| 37 | n.a.         | n.a.             | no   | $1.0 < x \le 1.5$ | yes     | yes | no | yes |
| 38 | methylated   | amplified        | yes  | $0 < x \le 0.5$   | yes     | yes | no | yes |
| 39 | methylated   | not<br>amplified | yes  | $0 < x \le 0.5$   | yes     | no  | no | no  |
| 40 | methylated   | n.a.             | n.a. | $0 < x \le 0.5$   | yes     | no  | no | no  |
| 41 | unmethylated | not<br>amplified | yes  | $0 < x \le 0.5$   | yes     | yes | no | yes |
| 42 | n.a.         | n.a.             | n.a. | $0.5 < x \le 1.0$ | yes     | no  | no | no  |
| 43 | unmethylated | not<br>amplified | no   | $0 < x \le 0.5$   | yes     | no  | no | yes |

Abbreviations: EGFR: epidermal growth factor receptor; ICB: immune checkpoint blockade; MGMT: O<sup>6</sup>methylguanine-DNA methyltransferase; n.a.: not applicable, clinical data not available; PTEN: phosphatase and tensin homolog; RT: radiotherapy; TMZ: temozolomide.

## Table S11. Prior bevacizumab treatment does not influence Trp metabolite levels in serum, related toFigure 3.

Representation of the mean metabolite abundance in the sera of glioblastoma patient groups having received
prior therapy with bevacizumab or not relative to reference sample depicted as log<sub>2</sub>Ratio. Group
comparisons were performed using a two-tailed unpaired Student's t test, p values are given as numbers.

| Metabolite | Bevacizumab<br>treatment prior to<br>blood draw (n = 29) | No bevacizumab<br>treatment prior to<br>blood draw $(n = 14)$ | P value  |
|------------|----------------------------------------------------------|---------------------------------------------------------------|----------|
| Trp        | -0.23929                                                 | -0.171806                                                     | 0.541873 |
| OH-Trp     | -0.20438                                                 | -0.147861                                                     | 0.590434 |
| FK         | -0.18088                                                 | -0.128576                                                     | 0.623908 |
| Kyn        | -0.30523                                                 | -0.296833                                                     | 0.943081 |
| AA         | -0.19042                                                 | -0.203277                                                     | 0.861635 |
| OH-Kyn     | 0.54967                                                  | 0.431191                                                      | 0.376339 |
| OH-AA      | -0.21835                                                 | -0.074910                                                     | 0.365114 |

Abbreviations: AA: anthranilic acid; FK: *N*-formylkynurenine; Kyn: kynurenine; OH-AA: hydroxyanthranilic acid; OH-Kyn: hydroxy-kynurenine; OH-Trp: hydroxy-tryptophan; Trp: tryptophan.

140

## 141 Table S12. MGMT promotor methylation status does not influence Trp metabolite levels in serum,

142 related to Figure 3.

143 Representation of the mean metabolite abundance in the sera of glioblastoma patient groups with a

144 methylated or unmethylated MGMT promotor relative to reference sample depicted as log<sub>2</sub>Ratio. Group

145 comparisons were performed using a two-tailed unpaired Student's t test, p values are given as numbers.

| Metabolite | methylated<br>MGMT promotor<br>(n = 15) | unmethylated<br>MGMT promotor<br>(n = 14) | P value  |
|------------|-----------------------------------------|-------------------------------------------|----------|
| Trp        | -0.307804                               | -0.23550                                  | 0.606817 |
| OH-Trp     | -0.290598                               | -0.17417                                  | 0.379436 |
| FK         | -0.244386                               | -0.19412                                  | 0.710315 |
| Kyn        | -0.318028                               | -0.36445                                  | 0.737927 |

| АА                                                                                                                                                                                                                                                                 | -0.269437 | -0.19970 | 0.408155 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|--|--|
| OH-Kyn                                                                                                                                                                                                                                                             | 0.552551  | 0.42303  | 0.412657 |  |  |
| OH-AA                                                                                                                                                                                                                                                              | -0.165172 | -0.06865 | 0.568299 |  |  |
| Abbreviations: AA: anthranilic acid; FK: <i>N</i> -formylkynurenine; Kyn: kynurenine; MGMT: O <sup>6</sup> -<br>methylguanine-DNA methyltransferase; OH-AA: hydroxy-anthranilic acid; OH-Kyn: hydroxy-<br>kynurenine; OH-Trp: hydroxy-tryptophan; Trp: tryptophan. |           |          |          |  |  |

## 147 Table S13. EGFR amplification status does not influence Trp metabolite levels in serum, related to

- 148 Figure 3.
- 149 Representation of the mean metabolite abundance in the sera of glioblastoma patient groups with EGFR

amplification or not relative to reference sample depicted as log<sub>2</sub>Ratio. Group comparisons were performed

using a two-tailed unpaired Student's t test, p values are given as numbers.

| Metabolite | EGFR amplification<br>(n = 6) | No EGFR<br>amplification<br>(n = 12) | P value  |  |  |  |
|------------|-------------------------------|--------------------------------------|----------|--|--|--|
| Trp        | -0.284102                     | -0.36048                             | 0.682655 |  |  |  |
| OH-Trp     | -0.190309                     | -0.33811                             | 0.413630 |  |  |  |
| FK         | -0.226813                     | -0.31161                             | 0.635678 |  |  |  |
| Kyn        | -0.333124                     | -0.42910                             | 0.589516 |  |  |  |
| AA         | -0.264457                     | -0.30276                             | 0.730573 |  |  |  |
| OH-Kyn     | 0.526196                      | 0.34979                              | 0.392807 |  |  |  |
| OH-AA      | -0.264156                     | -0.17875                             | 0.709499 |  |  |  |
|            |                               |                                      |          |  |  |  |

Abbreviations: AA: anthranilic acid; EGFR: epidermal growth factor receptor; FK: *N*-formylkynurenine; Kyn: kynurenine; OH-AA: hydroxy-anthranilic acid; OH-Kyn: hydroxy-kynurenine; OH-Trp: hydroxy-tryptophan; Trp: tryptophan.

152

#### 153 Table S14. PTEN loss does not influence Trp metabolite levels in serum, related to Figure 3.

154 Representation of the mean metabolite abundance in the sera of glioblastoma patient groups with evidence

- 155 for PTEN loss or not relative to reference sample depicted as log<sub>2</sub>Ratio. Group comparisons were performed
- using a two-tailed unpaired Student's t test, p values are given as numbers.

| Metabolite                                                                                                                                                                                                                                   | Evidence for PTEN<br>loss (n = 11) | No evidence for<br>PTEN loss ( <i>n</i> = 6) | P value  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------|----------|--|
| Trp                                                                                                                                                                                                                                          | -0.395536                          | -0.24675                                     | 0.429786 |  |
| OH-Trp                                                                                                                                                                                                                                       | -0.333291                          | -0.16009                                     | 0.360572 |  |
| FK                                                                                                                                                                                                                                           | -0.350850                          | -0.15310                                     | 0.272037 |  |
| Kyn                                                                                                                                                                                                                                          | -0.464462                          | -0.19459                                     | 0.134742 |  |
| AA                                                                                                                                                                                                                                           | -0.300172                          | -0.21243                                     | 0.447791 |  |
| OH-Kyn                                                                                                                                                                                                                                       | 0.440620                           | 0.64832                                      | 0.248894 |  |
| OH-AA                                                                                                                                                                                                                                        | -0.117671                          | -0.51601                                     | 0.064070 |  |
| Abbreviations: AA: anthranilic acid; FK: <i>N</i> -formylkynurenine; Kyn: kynurenine; OH-AA: hydroxy-<br>anthranilic acid; OH-Kyn: hydroxy-kynurenine; OH-Trp: hydroxy-tryptophan; PTEN: phosphatase and<br>tensin homolog; Trp: tryptophan. |                                    |                                              |          |  |

## 158 Table S15. Reduction of metabolite levels in glioblastoma patient sera, related to Figure 4.

Representation of the log<sub>2</sub> fold change (FC) values of metabolite level reduction in patient versus age- and
sex-matched control sera as depicted in Figure 4B and the corresponding reduction of metabolite levels
given in %.

| Metabolite | Log <sub>2</sub> (FC<br>patients vs<br>controls) | FC (patients vs<br>controls) | Metabolite level<br>reduction in<br>patients vs<br>controls (%) | P value     |
|------------|--------------------------------------------------|------------------------------|-----------------------------------------------------------------|-------------|
| Trp        | -0.300                                           | 0.812                        | 18.8                                                            | 0.000261358 |
| OH-Trp     | -0.268                                           | 0.830                        | 17.0                                                            | 0.000460516 |
| FK         | -0.273                                           | 0.827                        | 17.3                                                            | 0.000558024 |
| Kyn        | -0.219                                           | 0.859                        | 14.1                                                            | 0.010150130 |
| AA         | -0.164                                           | 0.892                        | 10.8                                                            | 0.007304935 |
| OH-Kyn     | -0.042                                           | 0.971                        | 2.9                                                             | 0.686404933 |
| OH-AA      | -0.007                                           | 0.995                        | 0.5                                                             | 0.952159761 |

Abbreviations: AA: anthranilic acid; FC: fold change; FK: *N*-formylkynurenine; Kyn: kynurenine; OH-AA: hydroxy-anthranilic acid; OH-Kyn: hydroxy-kynurenine; OH-Trp: hydroxy-tryptophan; Trp: tryptophan; vs: versus.

# Table S16. Characteristics of tumor tissue samples analyzed with MALDI MSI, related to Figure 5 and Figure S3.

| Patient<br>number                                                                                                                                                                                      | Primary<br>glioblastoma | IDH status | MGMT<br>promotor<br>status | EGFR<br>amplification | Evidence for<br>PTEN loss |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|----------------------------|-----------------------|---------------------------|
| 44                                                                                                                                                                                                     | primary                 | WT         | methylated                 | amplified             | n.a.                      |
| 45                                                                                                                                                                                                     | primary                 | WT         | methylated                 | not amplified         | n.a.                      |
| 46                                                                                                                                                                                                     | primary                 | WT         | unmethylated               | not amplified         | n.a.                      |
| 47                                                                                                                                                                                                     | primary                 | WT         | unmethylated               | not amplified         | no                        |
| 48                                                                                                                                                                                                     | primary                 | WT         | unmethylated               | amplified             | no                        |
| 49                                                                                                                                                                                                     | primary                 | WT         | methylated                 | not amplified         | n.a.                      |
| 50                                                                                                                                                                                                     | primary                 | WT         | unmethylated               | not amplified         | no                        |
| 51                                                                                                                                                                                                     | primary                 | WT         | unmethylated               | not amplified         | no                        |
| 52                                                                                                                                                                                                     | primary                 | WT         | methylated                 | amplified             | n.a.                      |
| 53                                                                                                                                                                                                     | primary                 | WT         | unmethylated               | amplified             | yes                       |
| 54                                                                                                                                                                                                     | primary                 | WT         | unmethylated               | n.a.                  | yes                       |
| 55                                                                                                                                                                                                     | n.a.                    | WT         | unmethylated               | not amplified         | no                        |
| 56                                                                                                                                                                                                     | primary                 | WT         | methylated                 | not amplified         | no                        |
| 57                                                                                                                                                                                                     | n.a.                    | n.a.       | n.a.                       | n.a.                  | n.a.                      |
| 58                                                                                                                                                                                                     | primary                 | WT         | methylated                 | not amplified         | no                        |
| 59                                                                                                                                                                                                     | primary                 | n.a.       | n.a.                       | not amplified         | n.a.                      |
| 60                                                                                                                                                                                                     | primary                 | WT         | methylated                 | not amplified         | no                        |
| Abbreviations: EGFR: epidermal growth factor receptor; IDH: isocitrate dehydrogenase; MALDI MSI: MALDI mass spectrometry imaging; MGMT: O <sup>6</sup> -methylguanine-DNA methyltransferase; n.a.: not |                         |            |                            |                       |                           |

applicable, clinical data not available; PTEN: phosphatase and tensin homolog; WT: wild type.

## 166 Table S17. AHR activity associates with worse overall survival in glioblastoma patients, related to

- 167 Figure 6.
- 168 Univariate and multivariate cox regression analysis of the effect of AHR activity and age at diagnosis on
- 169 overall survival in glioblastoma patients in the TCGA database.

| Univariate analysis   |             |             |             |             |
|-----------------------|-------------|-------------|-------------|-------------|
|                       | Coef        | Se.coef.    | Z           | P value     |
| Age at diagnosis      | 9.60E-05    | 2.44E-05    | 3.930614673 | 8.47E-05    |
| AHR activity          | 0.190344934 | 0.092285956 | 2.06255581  | 0.03915485  |
| Multivariate analysis |             |             |             |             |
|                       | Coef        | Se.coef.    | Z           | P value     |
| Age at diagnosis      | 9.75E-05    | 2.49E-05    | 3.912168313 | 9.15E-05    |
| AHR activity          | 0.187806232 | 0.092976393 | 2.019934585 | 0.043390173 |
|                       |             |             |             |             |

Abbreviations: AHR: aryl hydrocarbon receptor; Coef: coefficient; Se.coef.: Standard error of the coefficient; Z: Wald test z score, which is the coefficient divided by its standard error.