Supplementary Materials

Table S1 Research using different sequencing approaches.

Reference	Subjects	Approaches	Condition	Main findings
				The abundance of <i>Helicobacteraceae</i> and
	Wild-type (WT) and APPswe/PS1dE9			Desulfovibrionaceae at the family level and Odoribacter
Shen <i>et al</i> .	(APP/PS1) transgenic (Tg) Alzheimer's	16S amplicon	AD	and Helicobacter at the genus level were significantly
[1]	disease (AD) mice	sequencing		higher, while Prevotella abundance was significantly lower
				in APP/PS1 mice than in WT mice.
				The composition of the gut microbiota Bacteroides,
Zhuang <i>et</i>		16S amplicon		Actinobacteria, Ruminococcus, Lachnospiraceae, and
al. [2]	AD patients and healthy controls	sequencing	AD	Selenomonadales differed between AD patients and
				controls.
Minter et al.	Different drug delivery time of	16S amplicon		Early postnatal ABX treatment resulted in long-term
[3]	combinatorial antibiotic (ABX)	sequencing	AD	alteration of gut microbial genera, predominantly expansion

	treatment in APP/PS1 mice			of Lachnospiraceae and reduction of S24-7.
Sun <i>et al</i> . [4]	Male APP/PS1 transgenic mice and matched WT mice treated with or without prebiotic fructooligosaccharides (FOS)	16S amplicon sequencing	AD	FOS reversed the altered microbial composition in the Tg group: increased <i>Proteobacteria</i> , <i>Helicobacteraceae</i> and <i>Desulfovibrionaceae</i> , and decreased <i>Lactobacillus</i> .
Parikh <i>et al</i> . [5]	Mice homozygous for apolipoprotein E 2 (APOE2), APOE3, or APOE4, and familial AD mutations	16S amplicon sequencing	AD	APOE alleles constitute a major genetic risk factor for AD. The relative abundance of multiple bacterial taxa was significantly different as a function of APOE genotype.
Scheperjans <i>et al.</i> [6]	Parkinson's disease (PD) patients and control subjects	16S amplicon sequencing	PD	The abundance of <i>Prevotellaceae</i> in feces of PD patients was reduced compared to controls.
Aho <i>et al.</i> [7]	PD patients and control subjects	16S amplicon sequencing	PD	Specific bacterial taxa differed between patients and controls, such as <i>Roseburia</i> , <i>Prevotella</i> , and <i>Bifidobacterium</i> .
Li <i>et al.</i> [8]	PD patients and healthy volunteers	16S amplicon sequencing	PD	Compared to healthy controls, putative cellulose- degrading bacteria from the genera <i>Blautia</i> , <i>Faecalibacterium</i> , and

Ruminococcus were significantly decreased and putative

pathobionts from the genera Escherichia/Shigella,

Streptococcus, Proteus, and Enterococcus were

significantly increased in PD patients.

Clostridium IV, Aquabacterium, Holdemania,

Qian <i>et al.</i> [9]	PD patients and their healthy spouses	16S amplicon sequencing	PD	Sphingomonas, Clostridium XVIII, Butyricicoccus, and Anaerotruncus were enriched in the feces of PD patients.
Lin <i>et al</i> .	PD patients and aga matched controls	16S amplicon	DD	The abundance of Lachnospiraceae was reduced and
[10]	PD patients and age-matched controls	sequencing	PD	Bifidobacteriaceae was enriched in PD patients.
.		1 < 0 1'		Increased relative abundance of Verrucomicrobia,
Lin <i>et al</i> .	PD patients and age- and gender-	16S amplicon	PD	Mucispirillum, Porphyromonas, Lactobacillus, and
[11]	matched controls	sequencing		Parabacteroides in PD vs controls.
Mertsalmi				
<i>et al.</i> [12]	PD patients and controls	16S amplicon	PD	PD patients with IBS-like symptoms had lower abundance
[]		sequencing	~ ~	of Prevotella bacteria.

				Compared with PD, butyrate-producing bacteria from the
Vashavanzia		169 ampliaan		genera Blautia, Coprococcus, and Roseburia were
Kesnavarzia	PD patients and healthy controls		PD	significantly increased in feces of controls and bacteria from
n <i>et al</i> . [13]		sequencing		the genus Faecalibacterium were significantly increased in
				the mucosa of controls.
				Compared to healthy controls, the presence of the
Pietrucci et		16S amplicon		Lactobacillaceae, Enterobacteriaceae, and Enterococcaceae
al. [14]	PD patients and healthy controls	sequencing	PD	families were significantly higher, while Lachnospiraceae
				were significantly reduced in feces from PD patients.
De late are		160		Compared to WT mice, both 3- and 6 -month-old BACHD
Radulescu	w I and bacterial artificial chromosome	165 amplicon	HD	mice showed decreased abundance of Prevotella and
<i>et al</i> . [15]	model of HD (BACHD) Tg mice	sequencing		Bacteroides at the genera level.
	Individuals living in urbanized town	1.60		Anti-inflammatory bacteria Faecalibacterium spp.
Park <i>et al</i> .	communities (UTC) and longevity	16S amplicon	Aging	<i>EF402172_s</i> , and <i>EF404388_s</i> were only detected in LVC,
[16]	village communities (LVC)	sequencing		which may play an important role in preserving residents'

health in LVC.

Smith <i>et al</i> . [17]	Male and female mice in control and acarbose treatment groups at each of three study sites	16S amplicon sequencing	Aging	This study suggested a role of the gut microbiota in the longevity-enhancing properties of acarbose.
Haran <i>et al</i> . [18]	Nursing home elders	Metagenomics sequencing	AD	The microbiome of AD elderly showed a lower proportion and prevalence of bacteria with the potential to synthesize butyrate, as well as higher abundances of taxa that are known to cause pro-inflammatory states.
Bedarf <i>et al</i> . [19]	Early stage, Levodopa-naïve PD patients and age-matched controls	Metagenomics sequencing	PD	 Akkermansia muciniphila and unclassified Firmicutes were increased, while Prevotella copri and Eubacterium biforme were decreased in PD samples. Functional analyses of the metagenomes revealed metabolic differences in microbiota in PD involving β-glucuronate and tryptophan metabolism.
Vulevic <i>et</i> <i>al</i> . [20]	Elderly volunteers assigned to two groups: one with placebo (maltodextrin)	Metabolite analysis	Aging	B-GOS led to increases in <i>Bifidobacteria</i> , which correlated with increased lactic acid in fecal fluid.

and the other with Bimuno-galacto-

oligosaccharides mixture (B-GOS)

				Subjects on a Mediterranean diet presented greater fecal
Gutiérrez-				
	Healthy mature volunteers from	Metabolite		concentrations of benzoic and 3-hydroxyphenylacetic acids,
Díaz <i>et al</i> .			Aging	
	Asturias region (North Spain)	analysis		and higher levels of <i>Clostridium cluster XVIa</i> and
[21]				
				Faecalibacterium prausnitzii.
				The existence of age-related differences in the pattern of
				The existence of age-related unreferences in the pattern of
	Caucasian volunteers divided into four			fecal volatile organic compounds (VOCs) like formic acid
Conte et al.	groups: young subjects, elderly	Metabolite		and butyl ester contributes to explaining the complex
			Aging	
[22]	controls, elderly centenarians'	analysis		biology of human aging and longevity. VOCs could be
	offspring, and centenarians			considered as promising markers to evaluate aging and
				longevity
				longe (Ry.
	Adult (3 months old) and aged (16			The probiotics induced in both adult and aged mice higher
Brasili <i>et al</i> .		Metabolite		
	months old) mice received an oral		Aging	4-hydroxyphenylacetate and lower xylose in treated mice
[23]		analysis		
	supplementation of 2 probiotics or			compared with controls, while valerate was higher in treated

	phosphate-buffered saline daily for 30			adult mice and lower in treated aged mice than in controls.
	days			
	Mice transplanted with feces from AD patients or from healthy people	16S amplicon		Microbial diversity was lower in healthy mice than in AD
		sequencing	mice, but stable over time.	
				Nervous system-related metabolites, including taurine, γ - aminobutyrate, and valine, were significantly deficient in
Fujii <i>et at</i> .		Metabolite analysis	AD	
[24]				feces from mice transplanted with feces from AD patients
				compared with mice transplanted with feces from healthy
				people.
		16S amplicon		A trend of higher <i>Prevotella</i> at ages 20 and 24 weeks in MP
		sequencing		mice than in age-matched LC samples.
Ghaisas et	MitoPark (MP) model mice with PD		DD	An increase in sterol absorption in 20-week-old MP mice
al. [25]	and their littermate controls (LCs)	Metabolite analysis	PD	compared to LCs supports the notion that this increased
				absorption may be a response to the rapid weight loss in MP

				progression and severity.
				DDS-1 increased Akkermansia muciniphila and
		16S amplicon		Lactobacillus spp., and reduced the abundance of
	Young and aging mice both fed with	sequencing		Proteobacteria spp
Vemuri et	normal chow and probiotic chow		Aging	DDS 1 resulted in improvement of metabolic phonetype in
al. [26]	containing Lactobacillus acidophilus		Aging	DDS-1 resulted in improvement of metabolic phenotype in
	DDS-1	Metabolite		the aging mice, involving amino-acid metabolism, protein
		analysis		synthesis and metabolism, carbohydrate metabolism, and
				butanoate metabolism.
				FTZ treatment restored the intestinal microbiome disorders
	22-month-old natural aging model	16S amplicon		in aging mice, such as decreased beneficial butyrate-
Shenghua et	divided into a model group and a	sequencing		producing bacteria and increased harmful bacteria
al. [27]	FufangZhenzhuTiaoZhi (FTZ) group;		Aging	FTZ treatment partially reversed fecal metabolite
	two-month-old young mice as control	Metabolite		abnormalities, like linoleic acid, glycerophospholipid, α -
		analysis		

				glycerolipid metabolism.
		16S amplicon		There was a higher species richness and biodiversity in the
	Centenarians (~100 years) and young			
	adults (25–45 years) from a region with	sequencing		family <i>Ruminococcaceae</i> in centenarians.
				In centenarians, there was a higher level of compounds with
Tuikhar <i>et</i>	high centenarian prevalence (>6			neuro pharmacological properties like GABA and imidazole
	centenarians/10,000 citizens) and young		Aging	neuro-pharmacological properties like OADA and initiazoie
al. [28]		Metabolite		4-acetic acid, as well as azole compounds with antifungal
	adults from a nearby region with low	analysis		and amebicidal activity, and lower levels of
	centenarian prevalence (<1			
	contonarian/10,000 sitizans)			cyclohexanecarboxylic acid as an environmental
	centenarian/10,000 citizens)			contaminant in fecal extracts.

References

[1] Shen L, Liu L, Ji H-F. Alzheimer's Disease Histological and Behavioral Manifestations in Transgenic Mice Correlate with Specific Gut Microbiome State. Journal of Alzheimer's disease 2017, 56: 385-390.

[2] Zhuang Z-Q, Shen L-L, Li W-W, Fu X, Zeng F, Gui L, *et al.* Gut Microbiota is Altered in Patients with Alzheimer's Disease. Journal of Alzheimer's Disease 2018, 63: 1337-1346.

[3] Minter MR, Hinterleitner R, Meisel M, Zhang C, Leone V, Zhang X, *et al.* Antibioticinduced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer's disease. Scientific Reports 2017, 7: 10411.

[4] Sun J, Liu S, Ling Z, Wang F, Ling Y, Gong T, *et al.* Fructooligosaccharides Ameliorating Cognitive Deficits and Neurodegeneration in APP/PS1 Transgenic Mice through Modulating Gut Microbiota. Journal of Agricultural and Food Chemistry 2019, 67: 3006-3017.

[5] Parikh IJ, Estus JL, Zajac DJ, Malik M, Maldonado Weng J, Tai LM, et al. Murine Gut Microbiome Association With APOE Alleles. Frontiers in Immunology 2020, 11: 200.

[6] Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E, *et al.* Gut microbiota are related to Parkinson's disease and clinical phenotype. Movement Disorders 2015, 30: 350-358.

[7] Aho VTE, Pereira PAB, Voutilainen S, Paulin L, Pekkonen E, Auvinen P, *et al.* Gut microbiota in Parkinson's disease: Temporal stability and relations to disease progression. EBioMedicine 2019, 44: 691-707.

[8] Li W, Wu X, Hu X, Wang T, Liang S, Duan Y, *et al.* Structural changes of gut microbiota in Parkinson's disease and its correlation with clinical features. Science China Life Sciences

2017, 60: 1223-1233.

[9] Qian Y, Yang X, Xu S, Wu C, Song Y, Qin N, *et al.* Alteration of the fecal microbiota in Chinese patients with Parkinson's disease. Brain, Behavior, and Immunity 2018, 70: 194-202.
[10] Lin A, Zheng W, He Y, Tang W, Wei X, He R, *et al.* Gut microbiota in patients with Parkinson's disease in southern China. Parkinsonism & Related Disorders 2018, 53: 82-88.
[11] Lin C-H, Chen C-C, Chiang H-L, Liou J-M, Chang C-M, Lu T-P, *et al.* Altered gut

microbiota and inflammatory cytokine responses in patients with Parkinson's disease. Journal of Neuroinflammation 2019, 16: 129.

[12] Mertsalmi TH, Aho VTE, Pereira PaB, Paulin L, Pekkonen E, Auvinen P, *et al.* More than constipation - bowel symptoms in Parkinson's disease and their connection to gut microbiota. European Journal of Neurology 2017, 24: 1375-1383.

[13] Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, *et al.* Colonic bacterial composition in Parkinson's disease. Movement Disorders 2015, 30: 1351-1360.

[14] Pietrucci D, Cerroni R, Unida V, Farcomeni A, Pierantozzi M, Mercuri NB, *et al.*Dysbiosis of gut microbiota in a selected population of Parkinson's patients. Parkinsonism &Related Disorders 2019, 65: 124-130.

[15] Radulescu CI, Garcia-Miralles M, Sidik H, Bardile CF, Yusof NABM, Lee HU, *et al.* Manipulation of microbiota reveals altered callosal myelination and white matter plasticity in a model of Huntington disease. Neurobiology of Disease 2019, 127: 65-75.

[16] Park S-H, Kim K-A, Ahn Y-T, Jeong J-J, Huh C-S, Kim D-H. Comparative analysis of gut microbiota in elderly people of urbanized towns and longevity villages. BMC microbiology 2015, 15: 49.

[17] Smith BJ, Miller RA, Ericsson AC, Harrison DC, Strong R, Schmidt TM. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC microbiology 2019, 19: 130.

[18] Haran JP, Bhattarai SK, Foley SE, Dutta P, Ward DV, Bucci V, *et al.* Alzheimer's Disease Microbiome Is Associated with Dysregulation of the Anti-Inflammatory P-Glycoprotein Pathway. mBio 2019, 10: e00632-00619.

[19] Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S, Bahram M, Goeser F, *et al.* Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson's disease patients. Genome Medicine 2017, 9: 39.

[20] Vulevic J, Juric A, Walton GE, Claus SP, Tzortzis G, Toward RE, *et al.* Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. The British Journal of Nutrition 2015, 114: 586-595.

[21] Gutiérrez-Díaz I, Fernández-Navarro T, Salazar N, Bartolomé B, Moreno-Arribas MV, de Andres-Galiana EJ, *et al.* Adherence to a Mediterranean Diet Influences the Fecal Metabolic Profile of Microbial-Derived Phenolics in a Spanish Cohort of Middle-Age and Older People. Journal of Agricultural and Food Chemistry 2017, 65: 586-595.

[22] Conte M, Conte G, Martucci M, Monti D, Casarosa L, Serra A, *et al.* The smell of longevity: a combination of Volatile Organic Compounds (VOCs) can discriminate centenarians and their offspring from age-matched subjects and young controls. GeroScience 2020, 42: 201-216.

[23] Brasili E, Mengheri E, Tomassini A, Capuani G, Roselli M, Finamore A, *et al.* Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 induce different age-related metabolic profiles revealed by 1H-NMR spectroscopy in urine and feces of mice. The Journal of Nutrition 2013, 143: 1549-1557.

[24] Fujii Y, Nguyen TTT, Fujimura Y, Kameya N, Nakamura S, Arakawa K, *et al.* Fecal metabolite of a gnotobiotic mouse transplanted with gut microbiota from a patient with Alzheimer's disease. Bioscience, Biotechnology, and Biochemistry 2019, 83: 2144-2152.

[25] Ghaisas S, Langley MR, Palanisamy BN, Dutta S, Narayanaswamy K, Plummer PJ, *et al.* MitoPark transgenic mouse model recapitulates the gastrointestinal dysfunction and gutmicrobiome changes of Parkinson's disease. NeuroToxicology 2019, 75: 186-199.

[26] Vemuri R, Shinde T, Gundamaraju R, Gondalia SV, Karpe AV, Beale DJ, *et al.* Lactobacillus acidophilus DDS-1 Modulates the Gut Microbiota and Improves Metabolic Profiles in Aging Mice. Nutrients 2018, 10: 1255.

[27] Shenghua P, Ziqin Z, Shuyu T, Huixia Z, Xianglu R, Jiao G. An integrated fecal microbiome and metabolome in the aged mice reveal anti-aging effects from the intestines and biochemical mechanism of FuFang zhenshu TiaoZhi(FTZ). Biomedicine & Pharmacotherapy 2020, 121: 109421.

[28] Tuikhar N, Keisam S, Labala RK, Imrat, Ramakrishnan P, Arunkumar MC, *et al.* Comparative analysis of the gut microbiota in centenarians and young adults shows a common signature across genotypically non-related populations. Mechanisms of Ageing and Development 2019, 179: 23-35.