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Appendix Figure S1: BiolD identifies a network of proximity-based ATG9A
interactions. (A) A heat map generated for all putative interactors from the BiolD
proteomics data for HA-BirA* vs HA-ATG9A BirA* streptavidin pull-downs. (B) A heat
map of the top 50 putative interactors from the HA-ATG9A-BirA* BiolD proteomics data
with the highest p-value and fold-change. Normalized protein levels of HA-BirA* and
HA-ATG9A-BirA* were utilized to calculate z-score.
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Appendix Figure S2: Validation of the HCT-116 ATG9A-HA KiI cell line. (A)
Schematic representation of the CRISPR/Cas9-mediated insertion of a 1x HA tag
sequence at the C-terminal end of genomic atg9a (HCT-116 ATG9A-HA KI). Single cell-
derived clones were validated by targeted deep sequencing. (B) The HCT-116 ATG9A-
HA KI 2EG6 clone was validated by knocking out the ATG9A locus with CRISPR/ Cas9
(clones 3, 6 and 8 were successful). Clones were validated by measuring the loss of HA
signal by immunoblotting with indicated antibodies. (C) Confocal images of HCT-116
ATG9A-HA Kl parental cell line or ATG9A KO cells generated in HCT-116 ATG9A-HI KI
cell line by CRISPR/Cas9. Cells were grown in full DMEM media, fixed, labelled with
HA and imaged (Scale bar, 10 uym).
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Appendix Figure S3: Loss of ATG13 and ATG101, but not FIP200, lead to the
accumulation of ATG9A in large puncta. (A) Confocal images of ATG9A puncta in
HCT-116 ATG9A-HA KI-ATG13 WT, ATG101 KO, FIP200 KO and ATG13 KO cells.
Cells were grown in full DMEM media, fixed, labelled with HA and imaged (Scale
bar=10 um) (left). Quantification of average ATG9A puncta surface area. Mean + SEM,
n=1 independent experiments with 30 technical replicates. (B) Confocal images of
ATG9A puncta in HCT-116 ATG9A-HA KI-ATG13 WT, ATG13 KO or ATG13 KO cells
reconstitutes with ATG13 A2AA and ATG13 AHORMA. Cells were grown in full DMEM
media, fixed, labelled with HA and imaged (Scale bar=10 uym) (left). Quantification of
average ATGY9A puncta surface area. Mean + SEM, n=1 independent experiment with
30 technical replicates. Confocal images for A and B were obtained from the same
single independent experiment as Figures EV4 and EVS.
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Appendix Figure S4: Evaluation of a split mVenus system to capture the ATG13-
ATG101 dimer. (A) HEK293T cells were overexpressed with VenusC-ATG101-3X
FLAG only, VenusN-ATG13-Myc only, VenusN-ATG13 A2AA only, VenusN-ATG13
AHORMA or both Venus N and C halves together as indicated. Cells were grown in full
DMEM media, trypsinized, separated in a cell strainer, and analyzed by flow cytometry
without fixation. Gates, laser power, and detector were kept constant between samples.
10,000 cells displayed per histogram. (B) HEK29T cells in A were also collected and
analyzed by western blot to show overall expression. (C) Confocal images of HCT116
ATG9A-HA Kl ATG13-ATG101 double KO cells with or without stable reconstitution with
VenusC-ATG101-3X FLAG and VenusN-ATG13-Myc or VenusN-ATG13 A2AA. Cells
were grown in full DMEM media, fixed, and stained with p62/SQSTM1 antibody as
indicated (Scale bar=10 ym). Quantification of average ATG9A puncta surface area.
Mean £+ SEM, n=1 independent experiments with 30 technical replicates.
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